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Abstract: Molecular Dynamics (MD) is of central im-
portance to computational chemistry and its myriad
applications. Here we show that, at even a prelimi-
nary stage of development, MD can be implemented
efficiently on a COTS FPGA board, and that a 57x
speed-up over a PC implementation can be obtained.
We sketch our FPGA implementation and describe how
performance tuning and precision management (cur-
rently in progress) could double this factor.

1 Introduction
Molecular Dynamics (MD) is a fundamental part of
computational chemistry. In the last few years MD has
become, if anything, even more critical as it has been
applied to modeling molecular interactions in drug de-
sign (see e.g. [4]), and to predicting molecule structure
with applications to homeland security.

MD is an iterative technique that runs in phases:
the forces on each atom/molecule are computed, then
applied using equations of motion. Although mod-
ern force computations have become highly sophisti-
cated, with terms describing ten or more phenomena,
the complexity generally resides in computing the van
der Waals (Lennard-Jones or LJ) and Coulombic terms.
These are O(N2) in the number of particles N , while
the motion updates are O(N), and the other forces–
which only look at bonds–are also O(N). In this ex-
tended abstract, we describe preliminary work in accel-
erating MD using FPGAs. We restrict our attention to
the motion updates and the O(N 2) force terms.

MD is an obvious candidate for acceleration with
special purpose hardware. Examples are the well-
known GRAPE-derived boards (see e.g. [5]) and the
FPGA implementation presented at the last FCCM
[2]. In the latter study, 2001-era FPGA technology
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was used to obtain performance similar to that of a
PC; this was extrapolated to a 20x speed-up by assum-
ing modest hardware updates.

Our work differs from previous approaches in that
we combine the following: on the hardware side, that
we use a COTS board; on the implementation side, that
we model the Coulombic as well as the LJ term, and
that we support the simultaneous modeling of multiple
types of molecules. There are also numerous imple-
mentation details which we mention only briefly.

Our primary result is that FPGA-based MD accel-
eration is likely to be many times more effective than
previously indicated. We have already obtained a 57x
speed-up while using a more detailed computational
model; straightforward tuning and precision manage-
ment could increase that speed-up substantially.

The primary significance is that a speed-up of two
orders of magnitude is the often cited minimum thresh-
old for initial acceptance of non-standard computing
technology. Also significant is that this can be achieved
using a flexible COTS board; that it is FPGA-based
means that the hardware can ride the technology curve
for commodity chips and that the configured algo-
rithms can be updated as new discoveries are made.

2 Methods
The LJ force for particle i can be expressed as:
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where the εab and σab are parameters related to the
types of particles, i.e. particle i is type a and particle
j is type b. The coulombic force can be expressed as:
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We implement both coulombic and LJ forces; we also
implement multiple atom types. We use the Verlet
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method for motion updates. For serial reference code
(as in [2]) we began with that described in [3]. We also
created our own serial reference code that tracks the
hardware implementation, e.g. in varying precision.
The standard reference code ran at about 9.5s per MD
time-step on a PC with a 2.4GHz Xeon CPU. This is
similar to the 10.8s for a 2.4GHz P4 described in [2].

3 Implementation and Results
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Figure 1: Shown is block diagram of system.

The high-level design is shown in Figure 1. As is
common in MD hardware implementations, fixed point
is used. Scaled units bound the datapath size while
maintaining near maximum precision throughout the
computation. The precisions for the various data are
as in [1]. Also, the force computations use table look-
ups with interpolation.

The design was implemented on the WildstarII-Pro
board from Annapolis Micro Systems, Inc. with two
Xilinx Virtex-II-Pro XC2VP70 -5 FPGAs. However,
only one of the FPGAs is currently used. The critical
resource for both speed and area is the hard multipli-
ers. In order to get the multipliers off the timing critical
path, we created customized 40-bit multipliers. Instead
of using 3 hard multipliers with 25ns latency, we use 9
hard multipliers with 9ns pipelined latency. The imple-
mentation has four pipelines in both force and verlet
computations. As mentioned, the critical resource pre-
venting more pipelines from being implemented is the
shortage of hard multipliers: 87% of these are used.

The implementation was validated against both ref-
erence codes. Against our own, the match was exact.
Against the double precision floating point code (see
[3]) there was a very close match as to be expected
from the analysis in [1].

The clock delay is currently 9.98ns which, for a
model with 8192 particles, yields a latency of .167s per
time-step for a speed-up of 57x.

4 Optimizations and Extensions
We have only begun optimizing the design. It appears
that a relatively straightforward change in the multi-
pliers, i.e. using a mix of hard and soft components,
will reduce the hard multiplier count by 30% without
affecting the operating frequency. This would likely en-
able the implementation of two more pairs of pipelines.
Another optimization is with the adders that currently
comprise the critical timing path; a simple change us-
ing available resources should get them off and reduce
the clock latency to 9ns. Further optimizations will
almost certainly emerge from guiding placement, etc.

We are currently examining the effect of reducing
the precision. This is a complex issue as it is not the
variance in motion that matters, but rather the fidelity
of observable macro phenomena. Still, a reduction of
even a few bits will have a drastic effect on our design
and our initial simulations are favorable.

The most interesting investigations involve compar-
ing trade-offs in algorithm (particularly as a result of
the choice of boundary conditions), FPGA resource
utilization (and therefore performance), and simula-
tion accuracy. The implementation described here
works well for fixed and stochastic cut-offs. However,
many implementations use periodic boundary condi-
tions. These are susceptible to other kinds of error
than the cut-offs, but perhaps more significantly, allow
use of Ewald Sums and other O(N log N) methods.

Finally, this work is part of a larger project involv-
ing the acceleration of applications in computational
biochemistry (e.g. [6]) and will be integrated into that.
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