
Elements of High-Performance
Reconfigurable Computing*

TOM VANCOURT†

Department of Electrical and Computer Engineering,

Boston University, Boston, Massachusetts 02215

MARTIN C. HERBORDT

Department of Electrical and Computer Engineering,

Boston University, Boston, Massachusetts 02215

Abstract

Numerous application areas, including bioinformatics and computational

biology (BCB), demand increasing amounts of processing capability. In many

cases, the computation cores and data types are suited to field-programmable

gate arrays (FPGAs). The challenge is identifying those design techniques that

can extract high performance from the FPGA fabric while allowing efficient

development of production-worthy program codes. After brief introductions to

high-performance reconfigurable computing (HPRC) systems and some appli-

cations for which they are well suited, we present a dozen such techniques

together with examples of their use in our own research in BCB. Each technique,

if ignored in a naive implementation, would have cost at least a factor 2 in

performance, with most saving a factor of 10 or more. We follow this by

comparing HPRC with an alternative accelerator technology, the use of graphics

processors for general-purpose computing (GPGPU). We conclude with a

discussion of some implications for future HPRC development tools.

* This chapter is based on two articles previously published by the IEEE: ‘‘Achieving High

Performance with FPGA-Based Computing’’ which appeared in IEEE Computer in March 2007, and

‘‘Computing Models for FPGA-Based Accelerators’’ which appeared in IEEE Computing in Science

and Engineering in November/December 2008.
{ Currently with Altera, Inc.

ADVANCES IN COMPUTERS, VOL. 75 113 Copyright © 2009 Elsevier Inc.

ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00802-4 All rights reserved.

Author's personalpersonal copycopy

1. Introduction . 115

2. FPGA Accelerator Architecture and Computing Models 117

2.1. Low-Level FPGA Models . 117

2.2. FPGA Computation Basics . 119

3. Sample Applications . 120

3.1. Molecular Dynamics . 121

3.2. Multigrid for Electrostatic Computation 121

3.3. Discrete Molecular Dynamics . 123

3.4. Modeling Molecular Interactions (Docking) 123

3.5. Sequence Alignment: Dynamic Programming-Based Methods 124

3.6. Sequence Alignment: BLAST . 124

3.7. Sequence Analysis Case Study: Finding Repetitive Structures 125

3.8. Microarray Data Analysis Case Study: Finding Best Combinations 125

3.9. Characteristics of Computations Amenable to FPGA Acceleration 126

4. Methods for Avoiding

Implementational Heat . 127

4.1. Use an Appropriate FPGA Computing Model 128

4.2. Use an Appropriate FPGA Algorithm . 132

4.3. Use Appropriate FPGA Structures . 133

4.4. Mitigate Amdahl’s Law . 136

4.5. Hide Latency of Independent Functions 136

4.6. Speed-Match Sequential Computations 138

4.7. High Performance = High-Performance Data Access 139

4.8. Use Appropriate Arithmetic Precision . 141

4.9. Use Appropriate Arithmetic Mode . 142

4.10. Minimize Use of High-Cost Arithmetic 143

4.11. Support Families of Applications Rather Than Point Solutions 144

4.12. Scale Application for Maximal Use of Target Hardware 146

5. GPGPU An Alternative Approach to Acceleration 148

5.1. Overview . 148

5.2. Data Path Structure . 149

5.3. Memory Access . 150

5.4. Task Scheduling . 150

5.5. Comparison with HPRC . 151

6. Conclusion . 152

114 T. VANCOURT AND M. C. HERBORDT

personal copy

1. Introduction

For many years computational scientists could depend on continual access to ever

faster computers. In the last few years, however, power concerns have caused

microprocessor operating frequencies to stagnate. Moreover, while advances in

process technology continue to provide ever more features per chip, these are no

longer used primarily to augment individual microprocessors; rather they are com-

monly used to replicate the CPUs. Production chips with hundreds of CPU cores are

projected to be delivered in the next several years. At the same time, however, it has

become clear that replicating cores is only one of several viable strategies for

developing next-generation high-performance computing (HPC) architectures.

Some promising alternatives are based on field-programmable gate arrays

(FPGAs) [25]. FPGAs are commodity integrated circuits (ICs) whose logic can be

determined, or programmed, in the field. This is in contrast to other classes of ICs

(e.g., application-specific integrated circuits—ASICs) whose logic is fixed at fabri-

cation time. The tradeoff is that FPGAs are less dense and fast than ASICs; often,

however, the flexibility more than makes up for these drawbacks. Applications

accelerated with FPGAs have often delivered 100-fold speedups per node

over microprocessor-based systems. This, combined with the current ferment in

computer architecture activity, has resulted in such systems moving toward the

mainstream, with integration support being provided by the largest vendors [6, 52].

The enormous potential performance derived from accelerating HPC applications

with FPGAs (high-performance reconfigurable computing—HPRC) comes from

two sources (1) parallelism—1000� is possible, especially for low-precision com-

putations and (2) payload per computation—since most control is configured into

the logic itself, overhead instructions (such as array indexing and loop computa-

tions) need not be emulated. On the other hand, there are significant, inherent,

challenges. One is the low operating frequency: an FPGA clocks at one tenth the

speed of a high-end microprocessor. Another is simply Amdahl’s law: to achieve the

speedup factors required for user acceptance of a new technology (preferably 50�
[11]) close to 99% of the target application must lend itself to substantial accelera-

tion. As a result, performance of HPC applications accelerated with FPGA copro-

cessors is unusually sensitive to the quality of the implementation. Put another way,

the potential performance of HPRC is tremendous, but what users often find is that it

is much easier to get no speedup at all.

The problem described here is a classic one: how to achieve significant speedups

on a new architecture without expending exorbitant development effort, and while

retaining flexibility, portability, and maintainability. This problem is familiar

in porting uniprocessor applications to massively parallel processors (MPPs).

ELEMENTS OF HPRC 115

Author's personal copy

Two differences are as follows (1) FPGAs are far more different from uniprocessors

than MPPs are from uniprocessors and (2) the process of parallelizing code for

MPPs, while challenging, is still better understood and supported than porting codes

to FPGAs. The basic parameters for the ‘‘portability problem’’ (whether among

MPPs or other non-PC architectures) were stated by Snyder [64]. First, that a parallel

solution utilizing P processors can improve the best sequential solution by at most a

factor of P. Second, that HPC problems tend to have third- to fourth-order complex-

ity and so parallel computation, while essential, offers only modest benefit. And

finally, that therefore ‘‘the whole force of parallelism must be transferred to the

problem, not converted to ‘heat’ of implementational overhead.’’

The portability problem has been addressed variously over the last 40 years, with

well-known approaches involving language design, optimizing compilers, other

software engineering tools and methods, and function and application libraries

(see, e.g., last year’s Advances in Computers for some approaches used in DARPA’s

HPCS program [21, 24]). It is generally agreed that compromises are required: one

can restrict the variety of architectures, or the scope of application; or one can bound

expectations in performance, or in ease of implementation. The point in the spec-

trum we have chosen is as follows. For architecture, we assume a standard PC with

FPGA coprocessor on a high-speed bus. For performance, we aim to achieve at least

10� (with 50� the target) to motivate using a nonstandard architecture. For appli-

cations, we concentrate on those that are widely used, have high potential parallel-

ism, and, preferably, low precision. And finally, for effort, we consider from a few

programmer/designer months to 1 year or 2 (depending on application complexity

and potential impact) as being realistic. Our methods follow standard FPGA design

procedures, based primarily on the VHDL hardware description language (HDL)

augmented with our own LAMP tool suite [68, 69].

We continue this chapter with brief introductions to HPRC systems and some

applications for which they are well suited. The central part of this chapter

describes 12 methods we have used to avoid ‘‘generating implementational

heat’’ in our acceleration of several HPRC applications. Each, if ignored, would

have cost at least a factor of 2 in performance, with most saving a factor of 10 or

more. As many of these methods are well known to those experienced in the

HPRC, this survey is particularly targeted to the many newcomers to the field

who may wish to augment performance obtained through direct C-to-gates imple-

mentations. We follow this by comparing HPRC with an alternative accelerator

technology, the use of graphics processors (GPUs) for general-purpose computing

(GPGPU). We conclude with a discussion of the implications of these methods

to the design of the next generation of design tools. Integration into future HPRC

design processes appears to be readily achievable, and will not require HPRC

designers to become proficient in an HDL.

116 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

2. FPGA Accelerator Architecture and
Computing Models

FPGAs have been available since the 1980s, but have only recently started to

become popular as computation accelerators. To understand why, it is necessary to

understand something about their basic technology. That technology explains the

FPGAs’ strengths and limitations as application accelerators, shows why FPGA

programming is so different from traditional kinds of application programming, and

determines the applications likely to benefit from FPGA acceleration.

2.1 Low-Level FPGA Models

FPGAs are reprogrammable chips containing large numbers of configurable logic

gates, registers, and interconnections. FPGA programming means defining the bit-

level configuration of these resources to create a circuit that implements a desired

function. The FPGAs of interest store their configuration data in static RAM cells

distributed across the chip, so they can be reused indefinitely for different computa-

tions defined by different logic configurations.

While it is possible to program an FPGA by specifying settings of individual

components, this is rarely done for HPRC applications; if anything, HPRC devel-

opers are more willing to trade off performance for programmability by using the

highest possible level of abstraction. Still, the historic computing model is useful:

FPGAs are a ‘‘bag of gates’’ that can be configured into logic designs using HDLs

such as Verilog and VHDL.

In the last few years, high-end FPGAs have come to be dominated by embedded

components such as multipliers, independently addressable memories (block

RAMs—BRAMs), and high-speed I/O links. Aligned with these changes, a new

low-level computing model has emerged: FPGAs as a ‘‘bag of computer parts.’’

A designer using this model would likely consider the following FPGA features

when designing an application:

l Reconfigurable in milliseconds

l Hundreds of hardwired memories and arithmetic units

l Millions of gate-equivalents

l Millions of communication paths, both local and global

l Hundreds of gigabit I/O ports and tens of multigigabit I/O ports

l Libraries of existing designs analogous to the various system and application

libraries commonly used by programmers

ELEMENTS OF HPRC 117

Author's personal copy

As with microprocessors, making FPGAs appropriate for HPC requires added

hardware support and this too is part of the low-level model. A sample system is

the Wildstar board from Annapolis Microsystems, a facsimile of which is shown

Fig. 1. Although now dated, we found this design to be particularly well balanced.

Critical are the seven independently addressable memory banks per FPGA

(SRAMs and DRAM). Since memory is managed explicitly in HPRC applications,

there is no hardware caching support. Communication with the host is over an I/O

bus (PCI).

Recently, the trend with HPRC systems is toward tighter integration of the FPGA

board into the host system, for example, by making FPGA boards plug-compatible

with Intel Front Side Bus slots (see Fig. 2) with offerings from XtremeData and DRC

[17, 54, 67, 78]. The effect is to give FPGAs in a standard PC or server access

capability to main memory and other system components equal to that of the

microprocessors. These architectural developments have been accompanied by a

similar level of activity in software integration. For example, Intel has developed

QuickAssist to be ‘‘a common software framework that exposes a unified accelera-

tor interface on top of FPGA accelerator modules’’ [52]. This integration support is

perhaps the crucial factor in differentiating this from previous generations of

accelerators.

32FPGA

SRAM
bank

36 36 36

36 36 36

DRAM
bank

PCI

32

PCI bus interface

I/O

SRAM
bank

SRAM
bank

SRAM
bank

SRAM
bank

SRAM
bank

FIG. 1. Typical configuration of an FPGA-based accelerator that could be plug-compatible with

a microprocessor. This configuration is based on the Annapolis Microsystems Wildstar II Pro.

118 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

2.2 FPGA Computation Basics

Recall that FPGA-based acceleration is successful when high parallelism and

utilization can be achieved. Here we examine FPGA attributes in more detail and see

how these translate into that capability. If FPGAs can be viewed in the second order

as a configurable bag of computer parts, these parts must still be laid out in two

dimensions and in finite space. This puts a premium on (1) connecting computa-

tional blocks with short paths, (2) taking advantage of long paths with high fan out,

viz., broadcast, and (3) low-precision computation.

Another issue, as with microprocessors, is support for various working set sizes and

the bandwidth available to swap those working sets. There are typically several distinct

levels in the HPRC memory hierarchy. Most have analogs in a conventional PC, but

with somewhat different properties, especially to support fine-grained parallelism:

1. On-chip registers and lookup tables (LUTs). The FPGA substrate consists

of registers and lookup tables through which logic is generated. These com-

ponents can be configured into either computational logic or storage, with

most designs having some mix. While all register contents can potentially be

accessed every cycle, LUTs can only be accessed 1 or 2 bits at a time. For

example, the Xilinx Virtex-5 LX330T has 26 KB of registers and 427 KB of

LUT RAM; the aggregate potential bandwidth at 200 MHz is 12 TB/s.

Memory
Hub

FPGA accelerator board

FPGA

Local
memory

Second
FPGA

Local
memory

Intel Xeon
processor with
Front Side Bus

architecture

FBDIMM

I/O
Hub

Graphics

FIG. 2. Current HPRC accelerators are coequals with microprocessors in standard multisocket PCs.

This configuration is based on the XtremeData XD1000.

ELEMENTS OF HPRC 119

Author's personal copy

2. On-chip BRAMs. High-end FPGAs have several hundred independently

addressable multiported BRAMs. For example, the Xilinx Virtex-5 LX330T

has 324 BRAMs with 1.5 MB total storage and each accessible with a word

size of up to 72 bits; the aggregate potential bandwidth at 200 MHz is 1.2 TB/s.

3. On-board SRAM. High-end FPGAs have hundreds of signal pins that can be

used for off-chip memory. Typical boards, however, have between two and six

32-bit independent SRAM banks, with recent boards, such as the SGI RASC

having close to 100 MB. As with the on-chip BRAMs, off-chip access is

completely random and per cycle. The maximum possible such bandwidth

for the Xilinx Virtex-5 LX330T is 49 GB/s, but a figure between 1.6 and 5 GB/s

is more common.

4. On-board DRAM. Many boards either also have DRAM or replace SRAM

completely with DRAM. Recent boards support multiple GB of DRAM. The

bandwidth numbers are similar to those with SRAM, but with higher access

latency.

5. Host memory. Several recent boards support high-speed access to host memory

through, for example, SGI’s NumaLink, Intel’s Front Side Bus, and Hypertran-

sport used by AMD systems. Bandwidth of these links ranges from 5 to 20 GB/s

or more.

6. High-speed I/O links. FPGA applications commonly involve high-speed

communication. High-end Xilinx FPGAs have up to 24 3 GB/s ports.

The actual performance naturally depends on the existence of configurations that

can use this bandwidth. In our own work, we frequently use the entire available

BRAM bandwidth, and almost as often use most of the available off-chip bandwidth

as well. In fact, we interpret this achievement for any particular application as an

indication that we are on target with our mapping of application to hardware.

3. Sample Applications

Any computing platform works better for some applications than for others, partly

because of the physical structure of the computing hardware and partly due to the

computational characteristics of the application. This section serves two purposes.

The first is to put in a single place outlines of the applications used as case studies

in our description of implementation methods. The second is to show the character-

istics of applications that are good candidates for FPGA acceleration. We first

describe a number of applications we have accelerated, and then summarize their

applicable characteristics.

120 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

3.1 Molecular Dynamics

Molecular dynamics (MD) is an iterative application of Newtonian mechanics to

ensembles of atoms and molecules (for more detail, see, e.g., Rapaport [58] or Haile

[31]). Time steps alternate between force computation and motion integration.

The short- and long-range components of the nonbonded force computation domi-

nate execution. As they have very different character, especially when mapped to

FPGAs, we consider them separately. The short-range force part, especially, has

been well studied for FPGA-based systems (see, e.g., [1, 3, 28, 41, 61, 76]).

MD forces may include van der Waals attraction and Pauli repulsion (approxi-

mated together as the Lennard–Jones, or LJ, force), Coulomb, hydrogen bond, and

various covalent bond terms:

Ftotal ¼ Fbond þ Fangle þ Ftorsion þ FH�bond þ Fnonbonded: ð1Þ
Because the hydrogen bond and covalent terms (bond, angle, and torsion) affect

only neighboring atoms, computing their effect is O(N) in the number of particles

N being simulated. The motion integration computation is alsoO(N). Although some

of these O(N) terms are easily computed on an FPGA, their low complexity makes

them likely candidates for host processing, which is what we assume here. The LJ

force for particle i can be expressed as:

F
LJ
i ¼

X
j 6¼i

eab
s2ab

12
sab
jrjij
� �14

� 6
sab
jrjij
� �8()

rji; ð2Þ

where eab and sab are parameters related to the types of particles, that is, particle i is
type a and particle j is type b. The Coulombic force can be expressed as:

FC
i ¼ qi

X
j6¼i

qj

jrjij3
 !

rji: ð3Þ

In general, the forces between all particle pairs must be computed leading to an

undesirable O(N2) complexity. The common solution is to split the nonbonded forces

into two parts: a fast converging short-range part, which consists of the LJ force and the

nearby component of the Coulombic, and the remaining long-range part of the

Coulombic (which is described in Section 3.2). The complexity of the short-range force

computation is then reduced toO(N) by only processing forces among nearby particles.

3.2 Multigrid for Electrostatic Computation

Numerous methods reduce the complexity of the long-range force computation

from O(N2) to O(N log N), often by using the fast Fourier transform (FFT). As these

have so far proven difficult to map efficiently to FPGAs, however, the multigrid

ELEMENTS OF HPRC 121

Author's personal copy

method may be preferable [26] (see, e.g., [9, 37, 60, 62] for its application to

electrostatics).

The difficulty with the Coulombic force is that it converges too slowly to restrict

computation solely to proximate particle pairs. The solution begins by splitting the

force into two components, a fast converging part that can be solved locally without

loss of accuracy, and the remainder. This splitting appears to create an even more

difficult problem: the remainder converges more slowly than the original. The key

idea is to continue this process of splitting, each time passing the remainder on to the

next coarser level, where it is again split. This continues until a level is reached

where the problem size (i.e., N) is small enough for the direct all-to-all solution to

be efficient.

The overall multigrid algorithm is shown schematically in Fig. 3 (for details, see,

e.g., [79]). Starting at the upper left, the per-particle potentials are partitioned into

short- and long-range components. The short range is computed directly as shown in

Section 3.1, while the long-range component is applied to the finest grid. Here

the force is split again, with the high-frequency component solved directly and the

low-frequency passed on to the next coarser grid. This continues until the coarsest

level where the problem is solved directly. This direct solution is then successively

combined with the previously computed finer solutions (corrections) until the finest

grid is reached. Here the forces are applied directly to the particles.

Apply particles to grid

Anterpolating grid

Anterpolating grid

Direct solution

Correction

Correction

Interpolating grid

Interpolating grid

Apply grid to particles

Short range force
w/ cell lists

FIG. 3. Schematic of the multigrid method for the Coulomb force.

122 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

3.3 Discrete Molecular Dynamics

Increasingly popular is MD with simplified models, such as the approximation of

forces with stepwise potentials (see, e.g., [58]). This approximation results in

simulations that advance by discrete event rather than time step. The foundation

of discrete molecular dynamics (DMD) is intuitive, hypothesis-driven, modeling

based on tailoring simplified models to the physical systems of interest [19]. Using

intuitive models, simulation length and time scales can exceed those of time step-

driven MD by eight or more orders of magnitude [20]. Even so, not only is DMD still

compute bound, causality concerns make it difficult to scale to a significant number

of processors. An efficient mapping to FPGAs is described in [34, 53].

Discrete event simulation (DES) is sketched in Fig. 4: the primary components are

the event queue, event processor, event predictor (which can also cancel previously

predicted events), and system state. Parallelization of DES has generally taken one

of two approaches (1) conservative, which guarantees causal order, or (2) optimistic,

which allows some speculative violation of causality and corrects violations with

rollback. Neither approach has worked well for DMD. The conservative approach,

which relies on there being a ‘‘safe’’ window, falters because in DMD there is none.

Processed events invalidate predicted events anywhere in the event queue with equal

probability, and potentially anywhere in the simulated space. For similar reasons,

the optimistic approach has frequent rollbacks, resulting in poor scaling.

3.4 Modeling Molecular Interactions (Docking)

Noncovalent bonding between molecules, or molecular docking, is basic to the

processes of life and to the effectiveness of pharmaceuticals (see, e.g., [42] for a

survey and [65, 71, 74] for FPGA implementations). While detailed chemical

Time-ordered
event queue

arbitrary insertions
and deletions

Event
processor

Event
predictor

(and remover)

System
state

Events

New state
info

State
info Events and

invalidations

FIG. 4. Block diagram of a typical discrete event simulation.

ELEMENTS OF HPRC 123

Author's personal copy

models are sometimes used, such techniques are computationally exorbitant and

infeasible for answering the fundamental question: at what approximate offsets and

orientations could the molecules possibly interact at all? Less costly techniques are

used for initial estimates of the docked pose, the relative offset and rotation that give

the strongest interaction. Many applications assume rigid structure as a simplifying

approximation: 3D voxel grids represent the interacting molecules and 3D correla-

tion is used for determining the best fit [39]. This is the specific application we

address here.

3.5 Sequence Alignment: Dynamic

Programming-Based Methods

A fundamental abstraction in bioinformatics represents macromolecules such as

proteins and DNA with sequences of characters. Bioinformatics applications use

sequence alignment (approximate string matching) to find similarities among mole-

cules that have diverged through mutation and evolution (for more detail, see, e.g.,

Durbin et al. [22] or Gusfield [30]). For two sequences of length m and n, dynamic

programming (DP)-based methods (such as Needleman–Wunsch and Smith–Water-

man) build an m � n-table of character–character match scores. The table is then

traversed using a recurrence relation where the score of each cell Si, j depends only
on the scores of cells Si; j�1, Si�1; j, and Si�1; j�1. The serial complexity is O(mn).

DP-based can be implemented in hardware with a one-dimensional systolic array

of processing elements (PEs). In a simple case, the length m-sequence is held in

the array, one character per PE, while the length n-sequence streams through.

The hardware complexity is O(n); there have been many such implementations

[7, 8, 14, 23, 29, 35, 49, 50, 59, 73, 80].

3.6 Sequence Alignment: BLAST

Although O(mn) for sequence alignment is a remarkable improvement over the

naive algorithms, which have unbounded complexity, it is still far too great for large

databases. A heuristic algorithm, BLAST, generally runs in O(n) time, and is often

sufficiently sensitive (see, e.g., [2, 44] for details). BLAST is based on an observa-

tion about the typical distribution of high-scoring character matches in the DP

alignment table: There are relatively few overall, and only a small fraction are

promising. This promising fraction is often recognizable as proximate line segments

parallel to the main diagonal.

We now sketch the classic BLAST algorithm [2]. There are three phases: identi-

fying contiguous high scores (parallel to the main diagonal), extending them along

124 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

the diagonal, and attempting to merge nearby extensions, which may or may not be

on the same diagonal. The third phase, which accounts for gaps, is nowadays often

replaced by a pass of Smith–Waterman on the regions of the database identified as of

possible interest. The O(mn) complexity of Smith–Waterman is not as significant

when only run on small parts of the database; for example, Krishnamurthy et al. [45]
find that, for a set of BLASTn experiments, the final pass accounts for well under 1%

of the run time. This (effectively) makes the final pass O(m2), where m� n. There
have been several FPGA implementations of BLAST (see, e.g., [13, 32, 38, 55]).

3.7 Sequence Analysis Case Study: Finding

Repetitive Structures

Another important bioinformatics task is analyzing DNA or protein sequences for

patterns that might be indicative of disease or be otherwise fundamental to cell

processes. These patterns are typically repetitive structures, such as tandem arrays

and palindromes, under various mismatch models [5, 30, 46]. The asymptotically

optimal algorithms are often based on suffix trees; practical algorithms often include

heuristics. Some of the hardware structures useful for HPRC in finding repetitive

structures are either obvious or go back decades; Conti et al. [15] describe some of

these and several extensions.

3.8 Microarray Data Analysis Case Study:

Finding Best Combinations

Microarrays, sometimes called ‘‘gene chips,’’ measure the expression products of

thousands of genes in a tissue sample and so are being used to investigate a number of

critical biological questions (see, e.g., [4, 43, 77]). Typical questions microarrays are

used to answer involve finding relationships among gene expressions, therapeutic

agents, and patient outcomes. Although a remarkably powerful tool, the analysis of the

resulting data is extremely challenging. Data are low precision (just a few bits), noisy,

and sometimes missing altogether. The number of microarrays is invariably much

smaller than the data per microarray leading to underconstrained systems not amena-

ble to traditional statistical analysis such as finding correlations. More common are

various forms of clustering, inference nets, and decision trees.

In one study, Kim et al. [40] would like to find a set of genes whose expression

could be used to determine whether liver samples are metastatic on not. For

biological reasons, it is likely that three genes is an appropriate number to make

this determination. Kim et al. further propose that use of linear regression would

be appropriate to evaluate the gene subsets over the available samples. Since there

ELEMENTS OF HPRC 125

Author's personal copy

are tens of thousands of potential genes, 1011–1012 data subsets need to be pro-

cessed. Although simple to implement, he reported that this computation was

intractable even on his small cluster of PCs. We found that this algorithm could

be implemented extremely efficiently on an FPGA [75] (see also [57] for the

application of FPGAs in using microarray data for learning gene regulatory net-

works). While this combinatoric algorithm has not found widespread use, the FPGA

case study illustrates the methods central to microarray computation, including

handling noisy low-precision data, reducing large vector spaces, and applying

basic operators in linear algebra.

3.9 Characteristics of Computations Amenable

to FPGA Acceleration

We now summarize the characteristics of computations amenable to FPGA

acceleration:

l Massive, open-ended parallelism. HPRC applications are highly parallel, with

the possibility of thousands of operations being executed concurrently. Many

HPRC applications also feature open-ended parallelism, in the sense that there

is effectively no upper bound on the number of PEs that can be applied to the

calculation. These applications map well onto devices with thousands of con-

current PEs. For example, processing of long strings parallelizes at the charac-

ter level, and grid-based molecule interactions parallelize at the level of grid

cells. Many HPRC applications share this level of parallelism, despite their

different basic units of computation.

l Dense, regular communication patterns. Communication is generally regular

and local: on any iteration, data only need to be passed to adjacent PEs.

The FPGA’s large number of communication paths ensures that all PEs can

send and receive data every cycle, while the local communication ensures low

latency. For example, string processing, alignment by dynamic programming,

3D correlation, and other applications all meet this description. This allows

well-understood hardware techniques to be employed, including systolic arrays

and pipelines with hundreds or thousands of steps.

l Modest working sets and deterministic data access. Although HPRC data sets

can be large, they are often amenable to partitioning and to heavy reuse of data

within partitions. When the working sets are too large to fit on-chip, they

usually have predictable reference patterns. This allows the relatively high

latency of off-chip transfers to be hidden by the high off-chip bandwidth

(500 signal pins). In extreme cases, such as when processing large databases,

126 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

data can be streamed through the FPGA at multi-Gb rates by using the dedi-

cated I/O transceivers.

l Data elements with small numbers of bits. Reducing the precision of the

function units to that required by the computation allows the FPGA to be

configured into a larger number of function units. Many HPRC applications

naturally use small data values, such as characters in the four-letter nucleotide

alphabet, or bits and fixed-point values for grid models of molecules. Although

standard implementations generally use floating point, analysis often shows

that simpler values work equally well.

l Simple processing kernels. Many HPRC computations are repetitive with

relatively simple processing kernels being repeated large numbers of times.

The fine-grained resource allocation within an FPGA allocates only as many

logic resources as needed to each PE. Simpler kernels, requiring less logic each,

allow more PEs to be built in a given FPGA. This tradeoff of computation

complexity versus processor parallelism is not available on fixed processors.

As already stated, HPRC calculations often benefit from large computing

arrays, and PEs within the arrays are typically simple.

l Associative computation. FPGA hardware works well with common associative

operators: broadcast, match, reduction, and leader election. In all of these cases,

FPGAs can be configured to execute the associative operator using the long

communication pathways on the chip. The result is that, rather than being a

bottleneck, these associative operators afford perhaps the greatest speedup of

all: processing at the speed of electrical transmissions.

Not all problems work well in FPGAs. Those requiring high-precision floating-

point calculations often consume so many logic resources that there is little oppor-

tunity for on-chip parallelism. In many cases, however, applications implemented in

double-precision floating point on standard processor can be reimplemented in

reduced precision, fixed point, or other arithmetic, with little or no cost in accuracy.

4. Methods for Avoiding
Implementational Heat

These 12 methods were selected for easy visualization; they are neither exhaus-

tive nor disjoint. Also, we have avoided low-level issues related to logic design and

synthesis that are well known in electronic design automation, and high-level issues

such as partitioning that are well known in parallel processing. The focus is on our

ELEMENTS OF HPRC 127

Author's personal copy

own work in bioinformatics and computational biology (BCB), but applies also

to other standard FPGA domains such as signal and image processing.

4.1 Use an Appropriate FPGA Computing Model

4.1.1 Overview

In recent work [33], we have addressed the fact that while HPRC has tremendous

potential performance, few developers of HPC applications have thus far developed

FPGA-based systems. One reason, besides the newness of their viability, is that

FPGAs are commonly viewed as hardware devices and thus require use of alien

development tools. Another is that new users may disregard the hardware altogether

by translating serial codes directly into FPGA configurations (using one of many

available tools; see, e.g., [36] for a survey). While this results in rapid development,

it may also result in unacceptable loss of performance when key features are not

used to their capability.

We have found that successful development of HPRC applications requires a

middle path: that the developer must avoid getting caught up in logic details, but at

the same time should keep in mind an appropriate FPGA-oriented computing model.

There are several such models for HPRC; moreover, they differ significantly from

models generally used in HPC programming (see, e.g., [16, 64]). For example,

whereas parallel computing models are often based on thread execution and inter-

action, FPGA computing can take advantage of additional degrees of freedom than

available in software. This enables models based on the fundamental characteristics

from which FPGAs get their capability, including highly flexible fine-grained

parallelism and associative operations such as broadcast and collective response

(see DeHon et al. [18] for a perspective of these issues from the point of view of

design patterns).

Putting this idea together with FPGA characteristics described earlier: A good

FPGA computing model is one that lets us create mappings that make maximal use

of available hardware. This often includes one or more levels of the FPGA memory

hierarchy. These mappings commonly contain large amounts of fine-grained paral-

lelism. PEs are often connected as either a few long pipelines (sometimes with 50

stages or more), or broadside with up to a few hundred very short pipelines.

Another critical factor in finding a good FPGA model is that code size translates

into FPGA area. The best performance is, of course, achieved if the entire FPGA

is used continuously, usually through fine-grained parallelism as just described.

Conversely, if a single pipeline does not fit on the chip, performance may be poor.

Poor performance can also occur with applications that have many conditional

computations. For example, consider a molecular simulation where determining

128 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

the potential between pairs of particles is the main computation. Moreover, let the

choice of function to compute the potential depend on the particles’ separation. For a

microprocessor, invoking each different function probably involves little overhead.

For an FPGA, however, this can be problematic: each function takes up part of the

chip, whether it is being used or not. In the worst case, only a fraction of the FPGA is

ever in use. Note that all may not be lost: it may still be possible to maintain high

utilization by scheduling tasks among the functions and reconfiguring the FPGA

as needed.

Finally, while FPGA configurations resemble high-level language programs, they

specify hardware, not software. Since good computing models for software are not

necessarily good computing models for hardware, it follows that restructuring an

application can often substantially improve its performance. For example, while

random access and pointer-based data structures are staples of serial computing,

they may yield poor performance on FPGAs. Much preferred are streaming, systolic

and associative computing, and arrays of fine-grained automata.

4.1.2 Examples

4.1.2.1 Molecular Dynamics: Short-Range Forces. The

short-range force kernel can be mapped into a streaming model [28]; this is illu-

strated in Fig. 5. Particle positions and types are the input, the accelerations the

output. Streams source and sink in the BRAMs. The number of streams is a function

of FPGA hardware resources and the computation parameters, with the usual range

being from 2 to 8.

The wrapper around this kernel is also implemented in the FPGA: it ensures that

particles in neighborhoods are available together in the BRAMs; these are swapped

in the background as the computation progresses. The force computation has three

parts, as shown in blue, purple, and orange, respectively. The first part checks for

validity, adjusts for boundary conditions, and computes r2. The second part com-

putes the exponentials in r. As is often done even in serial MD codes, these terms are

not computed directly, but rather with table lookup followed by interpolation. Third

order is shown in Fig. 5. The final part combines the r�n terms with the particle type

coefficients to generate the force.

4.1.2.2 Sequence Alignment Using BLAST. Recall that the
BLAST algorithm, which operates in multiple phases. First seeds, or good matches

of short subsequences, are determined. Second, these seeds are extended to find

promising candidates. The direct mapping of this algorithm onto the FPGA

is dominated by the extension phase, which requires many random accesses into

ELEMENTS OF HPRC 129

personal copy

off-chip memory. We found a different approach that avoids random accesses into a

large database; rather, the database is streamed through a two-dimensional systolic

array. The first dimension generates, on every cycle, the character–character match

scores for a particular alignment of the sequence of interest versus the database.

The second dimension processes the score sequence to find the maximal local

alignment. The tree structure keeps the hardware cost low; pipelining assures that

the maximal local alignments are generated at streaming rate (Fig. 6). Multiple

streams can operate in parallel.

4.1.2.3 Discrete Event-Based Molecular Dynamics

(DMD). For DMD, our approach is based on associative computing [53].

We process the entire simulation a single long pipeline (see right panel of Fig. 7).

While dozens of events are processed simultaneously, at most one event is com-

mitted per cycle. To achieve maximum throughput, the following must be done

within a single cycle (1) update the system state, (2) process all causal event

pos

r2

r2 r−14,
r−8,
r−3,
 r2

r−14,
r−8,
r−3

Force pipeline array

Pos, type
memory

Acceleration
memory

POS, type
cache

Acceleration
cache

BUS

Host memory

Boundary
condition

check

Cutoff
check

Distance
squared

Extract format, a, (x−a)

((C3*(x−a)+C2)*(x−a)+C1)*(x−a)+C0

Lennard-jones
force

Short-range
part of CL force

Pseudo
force

FIG. 5. Pipeline for short-range force computation.

130 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

cancellations and (3) new event insertions, and (4) advance the event priority queue.

This, in turn, uses the associative primitives of broadcast, tag check, and conditional

execution. When an event is committed, the IDs of the particles it involves are

M C

G

L

W

K

W

K

W

W

M

Y

Y

F

FC

Leaf Leaf Leaf Leaf

Intern. Intern.

Intern.

Max local alignment score
for this alignment

Streaming database

Query string

Score sequence
of this alignment

Leaf nodes

Non-leaf nodes

Score “covered”
subsequences

For this alignment, generate
character-character match scores

−2 −3 −2 −3 −3 −1 8 8

FIG. 6. BLAST can be restructured so that most of the work is done by a filtering step, resulting from

the use of the streaming computing mode.

Commit
bufferEvent processor

Event
predictor

units

Particle tags

= = = =

Invalidation broadcast

Bead
memory banks

E
vent priority

queue

W
rite

B
ack

Event
insertion

=

FIG. 7. Block diagram of an HPRC implementation of DMD. System state is the bead memory,

updates and invalidations are performed by the broadcast network, and processing is done by the

computation pipeline.

ELEMENTS OF HPRC 131

Author's personal copy

broadcast to the events in the priority queue. If there is an ID match, the predicted

event is cancelled. Similarly, when events are predicted, their timestamp is broad-

cast throughout the priority queue. Existing events compare their timestamps to that

of the new event and it is inserted accordingly.

4.2 Use an Appropriate FPGA Algorithm

4.2.1 Overview

Even with the selection of an appropriate computing model, it is common for

there to be multiple plausible algorithms for a given task, with selection based on

application and target hardware. Crucial to creating HPRC applications is that,

frequently, the optimal algorithm for an FPGA is different from the optimal

algorithm for a serial computer or MPP.

4.2.2 Example

In rigid molecule docking, a commonly used technique digitizes each molecule

onto a 3D voxel grid, then applies correlations to match the physical shape and

chemical affinities of a candidate drug molecule to pockets within a protein or other

biomolecule of medical interest. A generalized 3D correlation is then computed

using some number of FFTs.

Correlation can of course be performed either directly or by FFTs. Transform-

based techniques have better asymptotic complexity than direct summation.

Comparisons of polynomial complexity can be deceptive, however, since they

apply only to problems so big that low-order terms and scaling constants no longer

matter.

When the digitizing grid has edge dimension N, correlation by direct summation

has asymptotic complexityO(N6). FFT-based techniques, however, have complexity

O(N3 log N). This theoretical advantage has large practical importance on PC

implementations of useful sizes, cubical grids of edge dimension around 100. Com-

parisons of polynomial complexity are only valid for asymptotically large programs,

however. When one of the molecules is small, as is often the case in drug design, then

technology-dependent coefficients and low-order terms often dominate [65].

So despite having worse asymptotic complexity, the preferred FPGA algorithm—

at least for small molecule docking—is based on direct summation. This is due to

multiple factors. The first is that small data sizes, such as 1-bit values for represent-

ing interior versus exterior information, offer little advantage on a PC processor.

On an FPGA, however, smaller PEs allow larger numbers of PEs for a given amount

132 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

of computing fabric, and products of 1-bit values are trivial to implement. Second,

efficient systolic arrays for correlation are well known. The form we chose requires

one input value and generates one output value per cycle, while holding partial sums

in on-chip registers and RAM-based FIFOs. Hundreds of dual-ported, on-chip

RAMs hold intermediate results, eliminating that as a potential bottleneck. Third,

our implementation (after a brief setup phase) delivers one multiply-accumulate

(MAC) operation per clock cycle per PE, with hundreds to thousands of PEs in the

computing array. No additional cycles are required for indexing, loop control, load/

store operations, or memory stalls. Despite clock rates at least 10� lower than a

PC’s, the FPGA executes thousands of times more payload computations per cycle.

As an aside, we observe that direct summation creates research opportunities that

were considered infeasible using transform-based techniques. FFTs handle only stan-

dard correlation, involving sums of products. Although complex chemical effects are

modeled by summing multiple correlations of different molecular features, FFTs

require every model to be phrased somehow as sums of a � b. Direct summation

makes it easy to perform a generalized sum-of-F(a, b) operation, where F computes an

arbitrary and possibly nonlinear score for the interaction of the two voxels from the two

molecules. It also allows arbitrary (and possibly different) data types for representing

voxels from the twomolecules.We commonly represent voxels as tupleswith fields for

steric effects, short-range forces, Coulombic interaction, or other phenomena.

4.3 Use Appropriate FPGA Structures

4.3.1 Overview

Certain data structures such as stacks, trees, and priority queues are ubiquitous in

application programs, as are basic operations such as search, reduction, parallel

prefix, and suffix trees. Digital logic often has analogs to these structures and

operations that are equally well known to logic designers. They are also completely

different from what is obtained by translating the software structures to hardware

using an HDL. The power of this method is twofold: to use such structures when

called for, and to steer the mapping toward those structures with the highest relative

efficiency. One particular hardware structure is perhaps the most commonly used in

all HPRC: the systolic array used for convolutions and correlations (see, e.g., [66]).

4.3.2 Examples

4.3.2.1 Multigrid for Electrostatic Computation. When

mapping multigrid to an FPGA, we partition the computation into three functions

(1) applying the charges to a 3D grid, (2) performing multigrid to convert the 3D

ELEMENTS OF HPRC 133

Author's personal copy

charge density grid to a 3D potential energy grid, and (3) applying the 3D potential to

the particles to compute the forces. The two particle–grid functions are similar enough

to be considered together, as are the various phases of the grid–grid computations. For

the 3D grid–grid convolutions we use the well-known systolic array. Its iterative

application to build up two- and three-dimensional convolvers is shown in Fig. 8.

In the basic 1D systolic array, shown in Fig. 8A, the kernel A[0. . .L] is held in the
PEs and the new elements of the ‘‘signal’’ B[i] are broadcast to the array, one per

iteration. At each PE, the B[i] are combined with the A[k]; the result is added to the

running sum. The running sums are then shifted, completing the iteration. One result

is generated per iteration. The same basic procedure is used for the 2D and 3D cases

(shown in Fig. 8B and C), but with delay FIFOs added to account for difference in

sizes of A and B.

S

FIFO

FIFO

FIFO

bij

bijk
aij3

aij2

aij1

aij0

FIFO

FIFO

FIFO

S

a32a33

... …

... … C[k]

A[L]

B[i]

0

A[L-1] A[0]A[L-2]

PE

A[k]

Init_A

a31 a30

a22a23 a21 a20

a12a13 a11 a10

a02a03 a01 a00

B

A

C

FIG. 8. Shown are (A) a one-dimensional systolic convolver array, and its extension to (B) two, and to

(C) three dimensions.

134 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

4.3.2.2 Finding Repetitive Structures in Biological

Sequences. The hardware implementation of a palindrome finder is well

known. We use it as shown in Fig. 9 to find, at streaming rate, palindromes of

various lengths, with arbitrary gap size, and with some number of mismatches.

Sequences to be analyzed are input from the left and streamed through the circuit.

Palindrome recognition results from character–character comparisons of the folded

string. To find the greatest length exact match palindrome at any position

(not shown), the matches pass directly through a priority encoder which converts

the binary sequence (of T/F) to the length of the sequence of Ts from right to left.

For a predefined gap size, a delay FIFO can be added.

To account for some number of mismatches, the logic shown is appended. As a

string streams through the character comparison portion of the array, it is folded back

on itself. The center of the fold is considered to be position 0. Characters at positions

+n and�n relative to the fold are stored in the same cell and compared, giving a value

of +1 for matching success or 0 for failure. The 1 and 0 outputs are summed across the

length of the folded string, starting from position 0. As long as the sum at position

n has the value n, then all characters from the fold to that point match and the

palindrome is exact. Rather than create a summing chain (and propagation delay)

Gap

++
+

≥T4? ≥T3?

Priority encoder

Maximal palindrome length

= = =
=

Len=1Len=2Len=3Len=4

Character
comparison

Length
summation

Threshold
detection

Length
reporting

≥T2? ≥T1?

FIG. 9. This structure finds all palindromes in a sequence with some number of errors and a fixed gap.

ELEMENTS OF HPRC 135

Author's personal copy

the full length of the character comparison array, this implementation pipelines

summation so that only one addition is performed per clock cycle. Summation results

are lagged so that all of the length totals for a single time step exit the length

summation section together.

4.4 Mitigate Amdahl’s Law

4.4.1 Overview

Amdahl’s law states that speeding up an application significantly through an

enhancement requires most of the application to be enhanced. This is sometimes

difficult to achieve with existing HPC code; for example, profiling has pointed to

kernels comprises just 60–80% of execution time when much more could have been

expected (as was found, e.g., by Alam et al. [1] in their MD application). The

problem is especially severe with legacy codes and may require a substantial rewrite.

Not all is lost, however. The nonkernel code may lend itself to substantial improve-

ment; as its relative execution time decreases, expending effort on its optimization

may become worthwhile. Also, combining computations not equally amenable to

FPGA acceleration may have optimized the original code; separating them can

increase the acceleratable kernel.

4.4.2 Example

Molecular dynamics codes are often highly complex and often have legacies

extending over decades (see, e.g., [10, 12]). While these codes sometimes extend to

millions of lines, the acceleratable kernels are much smaller. Various approaches have

been used. These include writing the MD code from scratch [61]; using a simplified

version of an existing standard, in this case NAMD [41]; accelerating what is possible

in an existing standard, in this case AMBER [63]; and using a code already designed

for acceleration, for example, ProtoMol [28]. In the last case the ProtoMol framework

was designed especially for computational experimentation and so has well-defined

partitions among computations [51]. We have found that the acceleratable kernel not

only comprises more than 90% of execution time with ProtoMol, but the modularity

enables straightforward integration of an FPGA accelerator [28].

4.5 Hide Latency of Independent Functions

4.5.1 Overview

Latency hiding is a basic technique for obtaining high performance in parallel

applications. Overlap between computation and communication is especially desir-

able. In FPGA implementations, further opportunities arise: rather than allocating

136 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

tasks to processors among which communication is then necessary, functions are

simply laid out on the same chip and operate in parallel.

Looking at this in a little more detail, while having function units lying idle is

the bane of HPRC, functional parallelism can also be one its strengths. Again, the

opportunity has to do with FPGA chip area versus compute time: functions that take

a long time in software, but relatively little space in hardware are the best.

For example, a simulator may require frequent generation of high-quality random

numbers. Such a function takes relatively little space on an FPGA, can be fully

pipelined, and can thus provide random numbers with latency completely hidden.

4.5.2 Example

We return to the docking example. There are three independent functions, shown

in Fig. 10: rotation, correlation, and filtering. The correlations must be repeated

at many three-axis rotations: over 104 for typical 10-degree sampling intervals.

Implementations on sequential processors typically rotate the molecule in a step

separate from the correlation.

Again, the FPGA solution is quite different. Rather than performing an explicit

rotation, the pixels are retrieved in ‘‘rotated order.’’ The (i, j, k) of each voxel in

index space can be expressed as a function of the original (x, y, z) coordinates and the
rotation (see Fig. 11). A simplified computation depends on 18 parameters specific

to each rotation. One possible FPGA implementation computes the (i, j, k) in series

with the pixel fetch, resulting in prohibitive overhead. Another possible solution is

to precompute the indices and load them as needed. But since there are typically 106

Data reduction
filter

Molecule
voxel memory

Systolic 3D
correlation array

FIG. 10. The HPRC rigid docking application consists of three pipelined, independent functions.

x, y image
axes

i, j traversal
axes

Pad to new size
bounding box

FIG. 11. The rotation function is performed by fetching voxels in rotated order.

ELEMENTS OF HPRC 137

personal copy

voxels and 104 rotations, this would require gigabytes of storage, and so not lend

itself to rapid retrieval.

The preferred FPGA solution is based on the run-time index calculation, but with

two modifications. The first is that the index calculator be a separate hardware

module; this only requires a few percent area of a contemporary high-end FPGA.

The second is that the calculator be fully pipelined so that the rotation-space

coordinates are generated at operating frequency.

4.6 Speed-Match Sequential Computations

4.6.1 Overview

If a computation pipeline has strictly linear structure, it can run only at the speed

of the slowest element in the pipeline. It is not always convenient or even possible to

insert pipelining registers into a time-consuming operation to increase its clock rate.

Instead, the pipeline element can be replicated to operate in parallel and used in

rotation to get the desired throughput.

4.6.2 Example

In our microarray case study, we used a data set (from Perou et al. [56]) of roughly
100 samples, each of 104 gene expressions, with cancerous versus healthy state as

the independent variable. We analyzed the samples to find correlations between

expression patterns and disease phenomena. Each gene expression is represented as

a vector with 100 entries, each corresponding to a sample. The procedure was to

examine all three-way combination of the 104 expressions, or roughly 1011 combi-

nations. Scoring of expression subsets was done by linear regressions of diagnosis

against expressions. The kernel operation here is a series of dot products and sums

(DPS) feeding covariance, matrix inversion, and regression (CIR) logic.

The problem was that CIR was 10 times faster than DPS. As we have seen, the

power of the FPGA comes from the parallel hardware that can be brought to bear on

a problem. Usually the solution, as here, involves a very deep pipeline hundreds or

even thousands of stages long. When successive functions have different rates of

sourcing and sinking data, however, throughput is reduced to that of the bottleneck.

The solution is to rate-match sequential functions by replicating the slower func-

tions, and then using them in rotation to get the desired throughput. In the microarray

kernel, the DPS units take about 10 times as long to sum over vectors as the CIR units

take to consume DPS results, so DPS are replicated that number of times per CIR: the

resulting design is shown in Fig. 12. In this application one more factor contributed to

the efficacy of the solution: DPS was much less resource intensive than CIR and so the

final design was well balanced between these functions.

138 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

4.7 High Performance = High-Performance

Data Access

4.7.1 Overview

The ‘‘memory wall’’ is often said to limit HPC performance. In tuning applications,

therefore, a great deal of effort goes into maximizing locality through careful place-

ment of data and ordering of data accesses. With FPGAs, our experience is that there

is no one wall; instead, there are many different ones, each characterized by a different

pattern of memory access. Data placement and access orchestration are still critical,

although with a different memory model. An additional opportunity for optimization

results from configuring the multiple internal memory buses to optimize data access

for a particular application.

Already mentioned is that if you can use the full bandwidth at any level of the

memory hierarchy, the application is likely to be highly efficient. Added here is that

on an FPGA, complex parallel memory access patterns can be configured. This

problem was the object of much study in the early days of array processors (see,

e.g., [48]): the objective was to enable parallel conflict-free access to slices of data,

such as array rows or columns, followed by alignment of that data with the correct

processing elements. With the FPGA, the programmable connections allow this

capability to be tailored to the application-specific reference patterns (see, e.g., [70]).

4.7.2 Examples

For our first application, we continue with the microarray analysis case study.

The kernel computation is as before; here we add a communication network to route

triplets of input vectors to the DPS units. The FPGA used has enough computing

Covariance,
inverse, and
regression

D

D

D
D

Dot products and sums

Dot products & sums

Dot products and sums

Result
registers

FIG. 12. In the microarray case study, the dot-product bottleneck can be removed by replicating the

slow elements.

ELEMENTS OF HPRC 139

Author's personal copy

fabric to instantiate 90 DPS pipelines. Each DPS processes three vectors of mea-

surement data (X-vectors) plus one vector of diagnosis values (the Y-vector).
Diagnoses are the same in all cases, but each DPS must process a different set of

three X values, or 270 in all. At 4 bits per X value, that would have required over

1000 bits of memory data per cycle.

Although feasible within chip resources, system considerations showed that our

host and backplane would not be able to supply data fast enough to keep the

computation units busy. Instead of accessing 270 values from memory, our imple-

mentation accesses only nine, as shown in Fig. 13. This bus subsets the nine X values

into all possible subsets of size three—84 subsets in all. Although the data bus reads

only nine X values from RAM, the FPGA’s high capacity for fan out turns that into

252 values supplied to computation units, a 28� boost at essentially no hardware cost.

For the second example, we complete our discussion of the multigrid application.

The first and third phases are transformations from particle to grid and grid to

particle representations, respectively. Since atoms almost never align to the grid

points on which the field is computed, tricubic interpolation uses the 64 grid points

nearest the atom to determine field strength. Figure 14 illustrates the computation,

simplified to the bilinear case in two dimensions.

DPS0 DPS1 DPS2 DPS3 DPS3 DPS83…

Y

X1-9

(m = 9)

Vector Data
Memory (VDM)

Divide n objects into
subsets of size m ...

... so that every size-3 subset
is in just one size-m subset

FIG. 13. In the microarray case study, vectors are routed into combinations.

A C

P

B D

FIG. 14. In this simplified drawing, point P is shown along with its nearest, 2D grid points.

140 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

Atom positions are not wholly predictable, so there is no opportunity for common

memory optimizations based on predicting access patterns. Instead, field values for

all 64 of the atom’s neighboring grid points must be fetched to compute field

strength. In a PC, this would require 64 separate memory access operations. Even

if the computation itself had no cost, it would still require a minimum of 64 cycles to

complete. The FPGA solution’s goal is to create a structure that computes forces at a

rate of one per cycle, accounting for unpredictable sequences of atom positions.

Our FPGA implementation starts (for the simpler trilinear eight-point case) with

the observation that of the X-axis points around the atom, one always has an even

value and the other is odd. The same is true along the Y- and Z-axes. Of the eight grid
points neighboring the atom, one has an (even, even, even) index triplet, one is (odd,

odd, odd), and so on for all eight of the possible index combinations. That makes it

possible to create a memory specifically for this application with eight interleaved

memory banks, using the FPGA’s internal RAMs. One memory bank holds only

words with (even, even, even) indices, and so on for the other seven index combina-

tions and memory banks. It should be clear that every bank is required for one

trilinear interpolation, and that no atom position can cause an access collision at any

memory bank. In other words, this interleaving allows one eight-point interpolation

to be started at each clock cycle, an improvement over one every 8 cycles. Some

logic is required for handling the differences between (even, odd) and (odd, even)

pairs along each axis. For current purposes, it is enough to say that the necessary

logic took only a tiny percentage of the FPGA’s logic resources. If that logic had

been on the computation’s critical path, it could easily have been pipelined.

4.8 Use Appropriate Arithmetic Precision

4.8.1 Overview

With high-end microprocessors having 64-bit data paths, it is often overlooked that

many BCB applications require only a few bits of precision. In fact even the canoni-

cally floating-point MD has often been implemented with substantially reduced

precision, although this remains controversial. In contrast with microprocessors,

FPGAs allow data paths to be configured into arbitrary sizes. This offers at least

two kinds of potential performance improvement. The smaller effect comes from

shorter propagation delays through narrower adders or multipliers. The bigger oppor-

tunity, though, comes from the ability to reallocate resources trimmed out of one PE

into another one. If one data path is cut from 8 to 4 bits, it may be possible to create a

second data path from the resources saved. Resource conservation does not just

optimize PEs, it can change the size and degree of parallelism in the array of PEs.

ELEMENTS OF HPRC 141

Author's personal copy

4.8.2 Examples

All applications described here benefit substantially from the selection of non-

standard data type sizes. Microarray values and biological sequences require only

4–5 bits, shape characterization of a rigid molecule only 2–7. While MD probably

requires more than the 24 bits provided by single-precision floating point, double

precision (53 bits) may not be required [27].

The tradeoff between PE complexity and degree of parallelism was made clear in

the docking case study [71]. There we examined six different models describing

intermolecular forces. Molecule descriptions range from 2 to 7 bits per voxel, and

scoring functions varied with the application. Fitting the various maximum-sized

cubical computing arrays into a Xilinx XC2VP70, the number of PEs ranged from

512 to 2744. Since clock speeds also differed for each application-specific accelera-

tor, they covered a 7:1 performance range. If we had been restricted to, say, 8-bit

arithmetic, the performance differential would have been even greater.

Similar, though less dramatic, results appeared in a case study that accelerated the

computation core of the ProtoMol molecular dynamics code [27]. There we pre-

sented a careful examination of computation quality, measured as numerical stabil-

ity, as a function of the number of bits used for computation. We observed that, after

about 35 bits of precision in the accumulators, there was little additional gain in the

quality measure. That allowed eight force pipelines to be instantiated rather than

four. Because of the difficulty in routing the larger design, only a small performance

gain was observed, however.

4.9 Use Appropriate Arithmetic Mode

4.9.1 Overview

Microprocessors provide support for integer and floating point data types, and,

depending on multimedia features, 8-bit saturated values. In digital signal processing

systems, however, cost concerns often requireDSPs to have only integers. Software can

emulate floating point, when required; also common is block floating point. FPGA’s

analogous situation is that, although plausible, single-precision floating point remains

costly and should be avoided if possible, with well-tuned libraries available. Alterna-

tives include the block floating point, log representations, and the semifloating point.

4.9.2 Example

The MD computation’s inner kernel operation requires computing r�14 and r�8

for the radius r between atoms, over a wide range, usually with a table lookup.

We would generally use double-precision floating point for further computations.

142 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

Careful analysis shows that the number of computed distinct alignments is quite

small even though the range of exponents is large. This enables the use of a stripped-

down floating-point mode, particularly one that does not require a variable shift.

The resulting force pipelines (with 35-bit precision) are 25% smaller than ones built

with a commercial single-precision (24-bit) floating-point library.

4.10 Minimize Use of High-Cost Arithmetic

4.10.1 Overview

The relative costs of arithmetic functions are very different on FPGAs than they

are on microprocessors. For example, FPGA integer multiplication is efficient in

comparison with addition, while division is orders of magnitude slower. Even if the

division logic is fully pipelined to hide its latency, the cost is still high in chip area,

especially if the logic must be replicated. On an FPGA, unused functions need not be

implemented; recovered area can then be used to increase parallelism. Thus restruc-

turing arithmetic with respect to an FPGA cost function can result in substantial

performance gain.

A related tradeoff involves the general observation that these differences encour-

age careful attention to the way in which numbers are represented and the ways in

which arithmetic operations are implemented, decisions that often go together.

4.10.2 Example

The microarray data analysis kernel as originally formulated requires division.

Our solution is to represent some numbers as rationals, maintaining separate numer-

ator and denominator, replacing division operations with multiplication. This dou-

bles the number of bits required, but rational values are needed only in a short, late

occurring segment of the data path. As a result, the additional logic needed for the

wider data path is far lower than logic for division would have been.

We also turn to the microarray application for an example of where rewriting

expressions can be helpful. This application originally involved a matrix inversion

for each evaluation.

We initially expressed the problem as a 4 � 4-matrix, which would then need to

be inverted to find the final result. This, however, led to an unacceptable complexity

in the hardware computation. After additional research, we found an equivalent way

to phrase the problem. It required more computation in setting up the problem, and

more bits of precision in the intermediate expressions, but allowed us to reduce the

system to a 3� 3-matrix. The net effect was to reduce overall computing complexity

at the cost of some increase in the number of bits needed in the intermediate results.

ELEMENTS OF HPRC 143

Author's personal copy

At this point, Cramer’s rule became an attractive solution technique. The algorithm

is notoriously unstable, and has polynomial complexity of N! in the size of the matrix.

At this small array size, however, N! is still small enough for the algorithm to be

feasible and it does not have enough terms for the instabilities to accumulate. We also

knew that the matrix (and therefore its inverse) was symmetric, so some result terms

could be copied rather than recomputed. As a result, the inverse could be expressed in

closed form using a manageable number of terms. Since we knew that the input values

had only 4-bit precision, we were able to reduce the precision of some intermediate

expressions—4-bit input precision hardly justifies 64-bit output precision.

4.11 Support Families of Applications Rather

Than Point Solutions

4.11.1 Overview

HPC applications are often complex and highly parameterized: this results in the

software having variations not only in data format, but also in algorithm to be

applied. These variations, including parameterization of functions, are easily sup-

ported with contemporary object-oriented technology. This level of parameteriza-

tion is far more difficult to use in current HDLs, but enables higher reuse of the

design. Amortization of development cost is over a larger number of uses, and there

is less reliance on skilled hardware developers for each variation on the application.

4.11.2 Example

Essential methods for searching biological databases are based on dynamic

programming (DP). Although generally referred to by the name of one variation,

Smith–Waterman, DP-based approximate string matching is a large number of related

algorithms, which vary significantly in purpose and complexity. Achieving high

performance in HPRC requires careful tuning to the specifics of the application,

which limits a component’s reusability. General, programmable PEs rarely approach

the speed or resource efficiency of tuned applications. Reusable HPC/FPGA applica-

tions must resolve the conflicting requirements of generality and customization.

We start with two observations on component reuse in FPGA systems. The first is

that, in traditional hardware design systems, components are black boxes with

limited parameterization of their internals. Reuse consists largely of creating com-

munication and synchronization structures between them, and connecting them to

the memory subsystems. The second observation is that, in HPRC, it is often the

leaf data types and arithmetic expressions that change between applications, that is,

the innermost components. The FPGA system’s performance depends on its

144 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

memory, synchronization, and communication, which are the parts most unfamiliar

to programmers with traditional skills. As with the standard C library’s qsort(),

control and communication are the reusable parts; inner function blocks and data

types are the customizations—the opposite of what typical design tools support.

We use the term application family to describe a computation that matches this

description, and offer a family of approximate string-matching algorithms as an

example [73]. These are dynamic programming algorithms for computing edit

distances between strings—weighted scores representing the number of insertions,

deletions, and character replacements needed to convert one string into another.

These algorithms all have the same general kind of recurrence relation, but differ

from each other at several levels, as shown in Fig. 15.

The lowest level of variation is Fig. 15’s character rule (CharRule) abstraction.

This defines the data type of a single character in one of the strings to be compared.

In biological applications, these commonly represent DNA strings (2-bit encodings),

proteins (5 bits), or codons (6 bits). The character rule also defines a matching

function, such as an exact equality test, wildcard match, or graded goodness-of-

match scores based on parameterized BLOSUM or PAM substitution matrices.

Character rule components written to the common interface are interchangeable

in the matching cell (MatchCell in Fig. 15). This implements the recurrence relation

in the dynamic programming algorithm. Matching cells are somewhat different for

end-to-end (Needleman–Wunsch) string comparisons than for best-substring

(Smith–Waterman) matching. Both use character rule instances in the same way,

Abstract

Concrete

A implements B

A contains B

Y

B

A

Score Only

Traceback

Needleman-
Wunsch

Smith-
Waterman

DNA

IUPAC
wildcards

Protein

…

N Param Param

Param

Param

Param

Param

Param

Param

A

1
Sequencer Match Cell Char Rule X

B

FIG. 15. Logical structure of application family of DP-based approximate string matching. Each level

of the design hierarchy has fixed interfaces to the components above and below that hierarchy. Within a

hierarchical level, each component type has several possible implementations, which the fixed interface

hides from other design layers.

ELEMENTS OF HPRC 145

Author's personal copy

and assume the same communication paths between matching cells. The similarities

are captured in their shared abstraction; their differences in algorithm and in

bookkeeping data are hidden in their private implementation details.

At the third level, data are sequenced through the matching cells in one of two

ways: in a single matching pass, producing only an integer similarity score, or with a

second traceback pass that records the character by character relationships that yield

the highest score.

Our initial implementation using the LAMP tool suite [68, 69] allowed over 200

combinations of the three component types, with many more variations possible

through parameter settings. This structure was quite natural in the object-oriented

algorithms we used but required more configurability than VHDL features provide.

4.12 Scale Application for Maximal Use of

Target Hardware

FPGA-based computations very often differ from standard logic applications in one

critical feature. Logic designs typically have specific performance goals. Success is

binary: a design does or does not meet its timing requirements. There is little or no

benefit in exceeding requirements by a larger margin. In computing applications,

however, faster is better. Since computation accelerators are very often arrays of PEs,

and since performance is typically dominated by the degree of parallelism, part of

accelerator design consists of instantiating as many PEs as the FPGA’s computing

fabric will support. The number of PEs depends on three sources of information: the

FPGA’s capacity, the geometry of the array defined by the application family, and

the sizes of PEs defined by a specific member of the application family [72].

FPGA capacity has several terms, according to the hardware resources available:

hard multipliers and block RAMs as well as general-purpose logic elements. Even at

that, capacity is hard to abstract across different families of FPGAs. For example,

block RAMs in Xilinx Virtex-II FPGAs are 18 Kbit units, but Altera’s Stratix family

offers a combination of 512-bit, 4 Kbit, and 512 Kbit units. The Altera FPGA family

that corresponds most closely to V5 is Stratix IV. In that family, the Ram sizes are

640 b, 9k b, 144k b. Multiple units can be combined, in both systems, to create a

wide variety of logical memory structures, but the Virtex and Stratix resources are

not interchangeable in all cases.

The application family defines the geometry of the computation array. As shown

in Fig. 16A, arrays can be simple linear structures. Other geometries are possible,

however, and present different problems for designers optimizing the performance

of computing arrays. Figure 16B illustrates a rectangular array. It is characterized by

two different architectural parameters (N1 for height and N2 for width) rather than

just one. Architectural parameters need not be numbers of PEs; they can abstract

146 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

aspects of the design in arbitrary ways. They can also introduce new kinds of

constraints, for example, when a rectangular array requires width greater than or

equal to its height.

Figure 16D illustrates a tree-structured computing array, showing just one of the

ways that arrays can grow according to exponential or other nonlinear law. We have

also observed computing arrays like, that in Fig. 16C, composed of multiple coupled

subsystems. In many cases, the different subsystems grow according to different

algebraic growth laws, at the same time that they remain coupled to each other.

Because different subsystems often use different FPGA resources (as in Fig. 16E),

either resource can be the one that limits eventual growth of the computing array.

Of course, computing arrays can combine these features. The growth law can include

multiple architectural parameters, nonlinear growth patterns, coupled subsystems that

grow according to different algebraic laws, and use of multiple resource types.

The form of the computing array is defined by the application family, but the size

of each PE in the array depends on the specific member of the application family.

In string applications, PE size depends on the number of bits in the string element

(e.g., 2 bits for DNA or 5 bits for proteins) and on the kinds of comparison being

performed. In the drug-docking application, PE size depends on the number of bits per

voxel and on the function used to score juxtaposition of the two voxel values.

In this view, the size of an FPGA-based computing array is not a design parameter

but a natural result of other design features. The array’s architectural parameters are

N

Linear array.
one structural

parameter N2
B: Rectangular array.

N1 � N2 PEs

N1

N

Tree of depth N.
2N−1 PEs

N

C: Coupled structures.
related sizes N, N2, N3

Logic

E: Multiple FPGA resources,
with dependencies between

allocation amounts

RAM

A

D

B C

FIG. 16. Growth force laws for computing arrays specified in terms of architectural parameters.

(A) Linear array—one structural parameter. (B) Rectangular array—N1 � N2 PEs. (C) Coupled

structures—related sizes N, N2, N3. (D) Tree of depth N � 2N � 1 PEs. (E) Multiple FPGA resources,

with dependencies between allocation amounts.

ELEMENTS OF HPRC 147

Author's personal copy

chosen to maximize some application-specific function that represents the value of

different configurations. The ‘‘best’’ architectural parameter values are the ones that

define the array of highest value, as long as the array’s structure is valid for that

application family, and as along as the family member’s PEs live within the FPGA’s

resource budget. Automating this kind of optimization is possible within the experi-

mental LAMP design system [68, 69, 72]; it cannot be expressed in mainstream

design automation tools or methodologies.

5. GPGPU An Alternative Approach to
Acceleration

5.1 Overview

Graphics processing units (GPUs), such as those from Nvidia and ATI/AMD,

present another emerging technology in HPC. By intent, GPUs address the seem-

ingly insatiable need for graphics performance in gaming—a market of millions of

units annually. Because their architecture optimizes a few basic features of real-time

graphics computing, they offer a huge performance boost over standard processors

for typical graphics applications. First, the rendering pipeline has a fixed, widely

accepted structure, so the processing pipeline can be tuned to that sequence of

operations. Second, pixels in different parts of a scene tend to have few dependen-

cies between them, allowing them to be computed independently of pixels elsewhere

in the image. Third, pixels close to each other, for example, on the same side of some

geometric figure, can often be processed using the same set of operations on slightly

different pixel values, allowing a high degree of SIMD parallelism.

Despite the relatively specialized goals of GPUs, their programming model has

been adapted for a wide range of applications. As with HPRC, successful accelera-

tion depends on aligning the implementation to the assumptions built into the

underlying hardware. Although recent generations of GPUs have additional features

that support general programming with GPUs (GPGPU), the features that both

enable and limit performance have remained constant. These fall into several

major categories, including:

l Data path structure

l Memory access

l Scheduling of processing tasks

Although somewhat intertwined, these need to be considered individually, and in

contrast to FPGA programming.

148 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

5.2 Data Path Structure

Figure 17 illustrates the logical structure of GPU acceleration hardware. There

has been rapid advancement in years. The biggest changes, however, have been in

capacity, rather than in drastic architectural updates.

Pixel processing operations have traditionally been characterized by arithmetic

intensity (including floating point, 2D interpolations, exponents, and trigonometry

operations), but simple control structures and short code fragments. Although

capacities keep improving, the code fragments (sometimes called ‘‘shaders’’

because of their graphics heritage) have been strictly limited in length. Early

GPUs allowed only as few as 64 assembly-level operations. Sizes of code buffers

have increased, however, and virtualization allows effectively unlimited numbers of

instructions—but with a high penalty when the hardware’s code buffer size is

exceeded.

Early GPUs used a strict SIMDmodel, performing the same calculation on a large

set of pixels. This made conditional logic difficult, when possible at all, because all

of the SIMD PEs would have to execute both the ‘‘then’’ and ‘‘else’’ branches of a

conditional, selectively quashing results from one branch or the other according to

each PE’s condition settings. More recent GPUs allow greater flexibility in condi-

tional execution, including looping constructs, but good GPU performance often

argues against using these features.

Tasks awaiting input
and task scheduler

SIMD
Arithmetic

units

Output waiting to be written
and output scheduler

Main
graphics
memory
(off chip)

FIG. 17. Logical structure of a GPU.

ELEMENTS OF HPRC 149

Author's personal copy

Although the arithmetic units in a GPU have fixed structure, there is some

flexibility in scratch storage. A fixed amount of space for holding the PEs’ operands

exists, but it can be partitioned differently across the whole ensemble of PEs. Of

course, larger allocations to some PEs mean smaller allocations to others, possibly

preventing those other PEs from being used at all.

Also, the GPU supports little to no communication between PEs. Recent genera-

tions allow some sharing of data between PEs via on-chip buffers, but the main

memory remains the only way to exchange large amounts of data between peer PEs

or between successive stages of a processing pipeline. As we describe in the next

sections, this represents a challenge in exploiting the GPU’s processing power.

5.3 Memory Access

The GPU has some amount of on-chip scratch memory that can be accessed by

many PEs concurrently, and often has modest memory resources of other kinds. Bulk

data storage, however, relies entirely on the GPU’s on-board memory. GPUs typically

cannot access host memory on their own; the CPU must initiate all data transfers. As a

result, even on-board memories of 1 GB or more can become a limiting resource when

shared among input data, output data, and intermediate results.

GPU memory is famous for raw bandwidth. Some current models transfer 320 or

more bits per clock cycle at rates over 1.5 GHz. Used properly, a GPU can sustain

impressive data transfer bandwidth to and from the on-board RAM. This model

presents two obvious constraints, however. First, the pipelining in the memory itself,

plus additional delays into and out of the GPU, can result in latencies of tens of

memory cycles. To sustain throughput, the GPU must have enough tasks available

so that many of them can wait for input or output while others occupy the SIMD

processors. Second, wide transfers necessarily carry many data words at each

memory cycle. Bandwidth is wasted if some of those words are not used.

These features of the GPU memory hierarchy have potentially substantial impli-

cations for the application programmer: poor use results in order-of-magnitude

performance loss. Wide accesses mean that sparse data structures (like C structs in

which not all elements are used) waste bandwidth. Long latency combined with

limited communication paths between PEs penalize data dependencies, beyond

those within a single code fragment. Also, subtle effects arise, for example, when

computing a vector sum ‘‘x ¼ a + b’’ on operands aligned differently.

5.4 Task Scheduling

At first glance, the programming model might seem daunting. It requires

hundreds to thousands of concurrent tasks to use the hardware effectively, since

large numbers of tasks must wait for operands to load from memory or results to

150 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

store into memory at any given time. Then, memory reads and writes must be

scheduled to maximize the utilization of different operands or result slots within

each memory transfer. If scheduling needed to be done by the application program-

mer, for example, by using common system primitives, then this task would be

infeasible for all but a very few skilled programmers.

Instead, GPUs move scheduling responsibilities into hardware. In some ways, this

resembles data flow computing. As a task (or SIMD task group) has all its depen-

dencies met, it moves to the arithmetic units. On the other side, and somewhat

symmetric to the input operations, some number of completed tasks awaits retire-

ment of results into main memory. Here, the scheduler’s job is to bundle results from

different tasks into a single memory transfer, so that the largest possible number of

16- or 32-bit words in a transfer carry payload data.

An application developer must understand at least this much about the GPU’s task

scheduler to use the GPU’s parallelism effectively. It is not enough to keep all of the

PEs busy. The programmer must create a large factor more threads than PEs so that

not only are those used, but so that tasks waiting to load operands or store results can

use the whole width of each memory transfer effectively. A GPU’s potential

performance is rarely realized until the application makes hundreds or thousands

of tasks available to the scheduler.

Since GPU computations work best as sequences of relatively small computa-

tions, a second level of scheduling also becomes important. The host CPU must

synchronize and schedule macroevents, such as major phases of execution, while the

GPU itself schedules microevents, such as fetching of operands or selection

of individual tasks to run. Starting and flushing the GPU’s execution pipeline

represents more potential loss of efficiency.

5.5 Comparison with HPRC

Although broad generalizations always have exception, a few basic factors tend to

distinguish FPGA-based from GPU-based computing. These include:

l Fixed versus configurable data path. GPUs use ASIC optimizations to tune

performance for data types and operations supported. While FPGAs also have

ASIC optimizations, these are at a lower level. FPGAs thus allow arbitrary data

types and operations, enabling detailed tradeoffs between numbers of bits per

operation and numbers of hardware operators instantiated.

l Fixed versus configurable memory structure. GPUs achieve high potential

bandwidth using memory and cache structures optimized for rendering opera-

tions. FPGAs offer flexibility in the number and width of off-chip memories,

ELEMENTS OF HPRC 151

Author's personal copy

and in arrangement of their hundreds to thousands of independently addressable

on-chip RAM blocks.

l Organization of parallelism. GPUs offer a fixed parallelism model built around

SIMD processing and limited dependencies among data elements. FPGAs

allow arbitrary combinations of pipelined and broadside parallelism, and can

handle complex communication among processing elements.

l Familiarity of programming model. In GPUs, operations on individual data

elements can be programmed in languages close to familiar C or assembler.

Efficient use of FPGAs usually requires unfamiliar languages, like Verilog or

VHDL.

l Host communication. GPUs have limited kinds of interactions with host mem-

ory. Different FPGA accelerators have different host interaction capabilities.

For example, direct Hypertransport connection offers the possibility of access

to all of host memory under FPGA control.

l Floating-point support. GPUs have traditionally had better floating-point sup-

port, up to the set of hardware primitives supported. Larger FPGAs and recent

tool innovations [47] have reduced their performance differences.

Each does well at a specific class of operations. If you can cast your application

into the GPU’s computing model and create enough parallelism (hundreds- to

thousands-way), GPUs can do very well, and with widely accessible programming

skills. FPGAs do better with idiosyncratic control, data types, concurrency models,

and degrees of parallelism. Even with the complexities of GPU memory optimiza-

tion, FPGAs often require unfamiliar programming skills to reach their performance

potential.

6. Conclusion

FPGA-based computation is just now emerging into the main stream of comput-

ing practice. Practitioners do not yet have the experience, programming idioms, and

tool support needed for pushing FPGAs to their performance potential, and experi-

ence from the logic design community has limited value for HPC application. Good

tool support will come from a good understanding of the general principles and

techniques of FPGA-based computation. General principles can only come from

experience with real applications.

We present our case studies, with the lessons learned from them, as a step toward

wider use of FPGAs in HPC. Those lessons include intangible advice to application

designers. Other lessons have enabled construction of specific design tools,

152 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

including experimental tools that automate creation of memory structures with

application-specific interleaving strategies. At the highest level, we present the

concepts of application families and scaling of computation arrays. Although these

ideas have been put to use in experimental design tools, they will be most useful as

the basis for future experimentation and understanding.

High-performance computers in general remain challenging to program with the

result that high-performance programmers are a highly sophisticated but scarce

resource. These programmers can therefore be expected to readily use new technol-

ogy, but not have extended time available to learn a completely new skill such as

logic design. As a result, much effort has been expended in developing design tools

that translate high-level language programs to FPGA configurations, but with

modest expectations even from their developers.

In this chapter, we have described a number of methods that must be applied for

HPRC to obtain more than a small fraction of its potential. The critical question is

whether these goals are compatible. In other words, what support would enable an

HPC programmer to use these methods? We are encouraged that all of the methods

we have described appear to be within reach of the HPC programming community.

The 12 methods for avoiding implementational heat can be divided into three

categories (as shown in Table I): augmenting existing design automation tools in

plausible ways (some have already been implemented in some systems), creating

function libraries, and modest programmer training.

Table I

A CLASSIFICATION OF DESIGN METHODS FOR HPRC

Type of support required Methods supported

EDA: languages and synthesis speed-match sequential functions

high-performance memory access

select optimal arithmetic precision

create families of applications

scale applications

Function/arithmetic libraries select appropriate HW structures

select appropriate arithmetic mode

Programmer/designer FPGA awareness select appropriate computing mode

select appropriate algorithm

hide latency of independent functions

optimize arithmetic with respect to operation cost

None deal with Amdahl’s law

ELEMENTS OF HPRC 153

Author's personal copy

Acknowledgments

This work was supported in part by the NIH through awards #R01 RR023168-01 and #R21 RR020209-01

by an IBM Faculty Award, and facilitated by donations fromAltera Corporation, Xilinx Corporation, SGI,

and XtremeData, Inc.

References

[1] Alam S., Agarwal P., Smith M., Vetter J., and Caliga D., 2007. Using FPGA devices to accelerate

biomolecular simulations. Computer, 40(3): 66–73.
[2] Altschul S., Gish W., Miller W., Myers E., and Lipman D., 1990. Basic local alignment search tool.

Journal of Molecular Biology, 215, 403–410.

[3] Azizi N., Kuon I., Egier A., Darabiha A., and Chow P., 2004. Reconfigurable molecular dynamics

simulator. In Proceedings of the IEEE Symposium on Field Programmable Custom Computing
Machines, pp. 197–206.

[4] Baldi P., and Hatfield G., 2002. DNA Microarrays and Gene Expression. Cambridge University

Press, Cambridge, UK.

[5] Benson G., 1999. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids
Research, 27(2): 573–580.

[6] Bhatt A., 2007. Accelerating with many-cores and special purpose hardware. Keynote Talk, Field

Programmable Logic and Applications.

[7] Bluethgen H.-M., and Noll T., 2000. A programmable processor for approximate string matching

with high throughput rate. In Proceedings of ASAP, pp. 309–316.

[8] Borah M., Bajwa R., Hannenhalli S., and Irwin M., 1994. A SIMD solution to the sequence

comparison problem on the MGAP. In Proceedings of ASAP, pp. 336–345.
[9] Briggs E., Sullivan D., and Bernholc J., 1996. Real-space multigrid-based approach to large-scale

electronic structure calculations. Physical Review B, 54, 14362–14375.

[10] Brooks B., Bruccoleri R., Olafson B., States D., Swaminathan S., and Karplus M., 1983. Charmm:

Program for macromolecular energy, minimization, and dynamics calculations. Journal of
Computational Chemistry, 4, 187–217.

[11] Buell D., July 2006. Reconfigurable systems. Keynote Talk, Reconfigurable Systems Summer

Institute.

[12] Case D., Cheatham T., III, Darden T., Gohlke H., Luo R., Merz K., Jr., Onufriev A., Simmerling C.,

Wang B., and Woods R., 2005. The Amber biomolecular simulation programs. Journal of Compu-

tational Chemistry, 26, 1668–1688.

[13] Chang C., 2004. BLAST Implementation on BEE2. Electrical Engineering and Computer Science.

University of California, Berkeley.

[14] Chow E., Hunkapiller T., and Peterson J., 1991. Biological information signal processor.

In Proceedings of the International Conference on Application Specific Systems, Architectures,

and Processors, pp. 144–160.
[15] Conti A., VanCourt T., and Herbordt M., 2004. Flexible FPGA acceleration of dynamic program-

ming string processing. In Proceedings of the IEEE Conference on Field Programmable Logic and

Applications.
[16] Culler D., Singh J., and Gupta A., 1999. Parallel Computer Architecture: A Hardware/Software

Approach. Morgan-Kaufmann, San Francisco, CA.

154 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

[17] D’Amour M., 2008. Reconfigurable computing for acceleration in HPC. FPGA and Structured ASIC
Journal. http://www.fpgajournal.com/articles_2008/20080226_drc.htm.

[18] DeHon A., Adams J., DeLorimier M., Kapre N., Matsuda Y., Naeimi H., Vanier M., and

Wrighton M., 2004. Design patterns for reconfigurable computing. In Proceedings of the IEEE

Symposium on Field Programmable Custom Computing Machines, pp. 13–23.
[19] Ding F., and Dokholyan N., 2005. Simple but predictive protein models. Trends in Biotechnology,

3(9): 450–455.

[20] Dokholyan N., 2006. Studies of folding and misfolding using simplified models. Current Opinion in

Structural Biology, 16, 79–85.
[21] Dongarra J., et al., 2008. DARPA’s HPCS program: History, models, tools, languages. In Advances

in Computers, v72: High Performance Computing, M. Zelkowitz, ed. pp. 3–102. Academic Press,

London.

[22] Durbin R., Eddy S., Krogh A., and Mitchison G., 1998. Biological Sequence Analysis. Cambridge

University Press, Cambridge, UK.

[23] Dydel S., andBala P., 2004. Large scale protein sequence alignment using FPGA reprogrammable logic

devices. In Proceedings of the IEEE Conference on Field Programmable Logic and Applications.
[24] Ginsberg M., 2008. Bibliographic snapshots of high performance/high productivity computing.

In Advances in Computers, v72: High Performance Computing, M. Zelkowitz, ed. Academic

Press, London.

[25] Gokhale M., Rickett C., Tripp J., Hsu C., and Scrofano R., 2006. Promises and pitfalls of reconfigur-

able supercomputing. In Proceedings of the 2006 Conference on the Engineering of Reconfigurable

Systems and Algorithms, pp. 11–20.

[26] Gu Y., and Herbordt M., 2007. FPGA-based multigrid computations for molecular dynamics

simulations. In Proceedings of the IEEE Symposium on Field Programmable Custom Computing
Machines, pp. 117–126.

[27] Gu Y., VanCourt T., and Herbordt M., 2006. Improved interpolation and system integration for

FPGA-based molecular dynamics simulations. In Proceedings of the IEEE Conference on Field
Programmable Logic and Applications, pp. 21–28.

[28] Gu Y., VanCourt T., and Herbordt M., 2008. Explicit design of FPGA-based coprocessors for short-

range force computation in molecular dynamics simulations. Parallel Computing, 34(4–5): 261–271.

[29] Guccione S., and Keller E., 2002. Gene matching using JBits. In Proceedings of the IEEE
Conference on Field Programmable Logic and Applications, pp. 1168–1171.

[30] Gusfield D., 1997. Algorithms on Strings, Trees, and Sequences: Computer Science and

Computational Biology. Cambridge University Press, Cambridge, UK.

[31] Haile J., 1997. Molecular Dynamics Simulation. Wiley, New York, NY.

[32] Herbordt M., Model J., Sukhwani B., Gu Y., and VanCourt T., 2007. Single pass streaming BLAST

on FPGAs. Parallel Computing, 33(10–11): 741–756.

[33] Herbordt M., Gu Y., VanCourt T., Model J., Sukhwani B., and Chiu M., 2008. Computing models

for FPGA-based accelerators with case studies in molecular modeling. Computing in Science &
Engineering, 10(6): 35–45.

[34] Herbordt M., Kosie F., and Model J., 2008. An efficient O(1) priority queue for large FPGA-based

discrete event simulations of molecular dynamics. In Proceedings of the IEEE Symposium on Field
Programmable Custom Computing Machines.

[35] Hoang D., 1993. Searching genetic databases on SPLASH 2. In Proceedings of FCCM, pp. 185–191.

[36] Holland B., Vacas M., Aggarwal V., DeVille R., Troxel I., and George A., 2005. Survey of C-based

application mapping tools for reconfigurable computing. In Proceedings of the 8th International
Conference on Military and Aerospace Programmable Logic Devices.

ELEMENTS OF HPRC 155

Author's personal copy

[37] Izaguirre J., Hampton S., and Matthey T., 2005. Parallel multigrid summation for the n-body
problem. Journal of Parallel and Distributed Computing, 65, 949–962.

[38] Jacob A., Lancaster J., Buhler J., and Chamberlain R., 2007. FPGA-accelerated seed generation in

mercury BLASTP. In Proceedings of the IEEE Symposium on Field Programmable Custom

Computing Machines.
[39] Katchalski-Katzir E., Shariv I., Eisenstein M., Friesem A., Aflalo C., and Vakser I., 1992. Molecular

surface recognition: Determination of geometric fit between proteins and their ligands by correlation

techniques. Proceedings of the National Academy of Sciences of the United States of America, 89,

2195–2199.

[40] Kim Y., Noh M.-J., Han T.-D., Kim S.-D., and Yang S.-B., 2001. Finding genes for cancer

classification: Many genes and small number of samples. 2nd. In Annual Houston Forum on Cancer

Genomics and Informatics.

[41] Kindratenko V., and Pointer D., 2006. A case study in porting a production scientific supercomput-

ing application to a reconfigurable computer. In Proceedings of the IEEE Symposium on Field

Programmable Custom Computing Machines, pp. 13–22.

[42] Kitchen D., Decornez H., Furr J., and Bajorath J., 2004. Docking and scoring in virtual screening for

drug discovery: Methods and applications. Nature Reviews. Drug Discovery, 3, 935–949.

[43] Kohane I., Kho A., and Butte A., 2003. Microarrays for an Integrative Genomics. MIT Press,

Cambridge, MA.

[44] Korf I., Yandell M., and Bedell J., 2003. BLAST: An Essential Guide to the Basic Local Alignment

Search Tool. O’Reilly & Associates, Sebastopol, CA.

[45] Krishnamurthy P., Buhler J., Chamberlain R., Franklin M., Gyang K., and Lancaster J., 2004.

Biosequence similarity search on the Mercury system. In Proceedings of the International Confer-

ence on Application Specific Systems, Architectures, and Processors, pp. 365–375.
[46] Landau G., Schmidt J., and Sokol D., 2001. An algorithm for approximate tandem repeats. Journal

of Computational Biology, 8(1): 1–18.

[47] Langhammer M., 2008. Floating point data path synthesis for FPGAs. In Proceedings of the IEEE
Conference on Field Programmable Logic and Applications, pp. 355–360.

[48] Lawrie D., 1975. Access and alignment of data in an array processor. IEEE Transactions on

Computers, C-24(12): 1145–1155.

[49] Liptov R., and Lopresti D., 1986. Comparing long strings on a short systolic array. In Systolic
Arrays, W. Moore, A. McCabe, and R. Uquhart, Eds. Adam Hilger, Boston, MA.

[50] Lopresti D., 1987. P-NAC: A systolic array for comparing nucleic acid sequences. IEEE Computer,

20(7): 98–99.

[51] Matthey T., 2004. ProtoMol, an object-oriented framework for prototyping novel algorithms for

molecular dynamics. ACM Transactions on Mathematical Software, 30(3): 237–265.

[52] McCallum I., 2007. Platform-Level Services for Accelerators: Intel QuickAssist Technology Accel-

erator Abstraction Layer (AAL). Intel Corporation, Santa Clara, CA.

[53] Model J., and Herbordt M., 2007. Discrete event simulation of molecular dynamics with configur-

able logic. In Proceedings of the IEEE Conference on Field Programmable Logic and Applications,

pp. 151–158. http://www.fpgajournal.com/articles_2007/20070710_cots.htm.

[54] Morris K., 2007. COTS supercomputing. FPGA and Structured ASIC Journal. http://www.

fpgajournal.com/articles_2007/20070710_cots.htm.

[55] Muriki K., Underwood K., and Sass R., 2005. RC-BLAST: Towards an open source hardware

implementation. In Proceedings of the International Workshop on High Performance Computa-

tional Biology.
[56] Perou C., et al., 2003. Prediction of clinical outcome with microarray data: A partial least squares

discriminant analysis (PLS-DA) approach. Human Genetics, 112, 581–592.

156 T. VANCOURT AND M. C. HERBORDT

Author's personal copy

[57] Pournara I., Bouganis S.-S., and Constantinides G., 2005. FPGA-accelerated Bayesian learning for

reconstruction of gene regulatory networks. In Proceedings of the IEEE Conference on Field

Programmable Logic and Applications.

[58] Rapaport D., 2004. The Art of Molecular Dynamics Simulation. Cambridge University Press,

Cambridge, UK.

[59] Roberts L., 1989. New chip may speed genome analysis. Science, 244(4905): 655–656.

[60] Sagui C., and Darden T., 2001. Multigrid methods for classical molecular dynamics simulations of

biomolecules. Journal of Chemical Physics, 114, 6578–6591.

[61] Scrofano R., Gokhale M., Trouw F., and Prasanna V., 2006. A hardware/software approach to

molecular dynamics on reconfigurable computers. In Proceedings of the IEEE Symposium on Field

Programmable Custom Computing Machines, pp. 23–32.

[62] Skeel R., Tezcan I., and Hardy D., 2002. Multiple grid methods for classical molecular dynamics.

Journal of Computational Chemistry, 23, 673–684.
[63] Smith M., Alam S., Agarwal P., Vetter J., and Caliga D., 2006. A task-based development model for

accelerating large-scale scientific applications on FPGA-based reconfigurable computing platforms.

In Proceedings of the Reconfigurable Systems Summer Institute.
[64] Snyder L., 1986. Type architectures, shared memory, and the corollary of modest potential. Annual

Review of Computer Science, 1, 289–317.

[65] Sukhwani B., and Herbordt M., 2008. Acceleration of a production rigid molecule docking code. In

Proceedings of the IEEE Conference on Field Programmable Logic and Applications, pp. 341–346.
[66] Swartzlander E., 1987. Systolic Signal Processing Systems. Marcel Dekker, Inc.New York, NY.

[67] Urban K., June 2008. In-socket accelerators: When to use them. HPC Wire, http://www.hpcwire.com.

[68] VanCourt T., 2006. LAMP: Tools for Creating Application-Specific FPGA Coprocessors. Ph.D.

Thesis, Department of Electrical and Computer Engineering, Boston University.

[69] VanCourt T., and Herbordt M., 2005. LAMP: A tool suite for families of FPGA-based application

accelerators. In Proceedings of the IEEE Conference on Field Programmable Logic and Applications.

[70] VanCourt T., and Herbordt M., 2006. Application-dependent memory interleaving enables high

performance in FPGA-based grid computations. In Proceedings of the IEEE Conference on Field

Programmable Logic and Applications, pp. 395–401.

[71] VanCourt T., and Herbordt M., 2006. Rigid molecule docking: FPGA reconfiguration for alternative

force laws. Journal on Applied Signal Processing, v2006, 1–10.
[72] VanCourt T., and Herbordt M., 2006. Sizing of processing arrays for FPGA-based computation.

In Proceedings of the IEEE Conference on Field Programmable Logic and Applications, pp. 755–760.

[73] VanCourt T., and Herbordt M., 2007. Families of FPGA-based accelerators for approximate string

matching. Microprocessors and Microsystems, 31(2): 135–145.
[74] VanCourt T., Gu Y., and Herbordt M., 2004. FPGA acceleration of rigid molecule interactions.

In Proceedings of the IEEE Conference on Field Programmable Logic and Applications.

[75] VanCourt T., Herbordt M., and Barton R., 2004. Microarray data analysis using an FPGA-based

coprocessor. Microprocessors and Microsystems, 28(4): 213–222.
[76] Villareal J., Cortes J., and Najjar W., 2007. Compiled code acceleration of NAMD on FPGAs.

In Proceedings of the Reconfigurable Systems Summer Institute.

[77] Wit E., and McClure J., 2004. Statistics for Microarrays. Wiley, New York.

[78] XtremeData, Inc., 2007. XD1000 Development System. http://www.xtremedata.com.

[79] Yavneh I., 2006. Why multigrid methods are so efficient. Computing in Science & Engineering, 8,

12–22.

[80] Yu C., Kwong K., Lee K., and Leong P., 2003. A Smith–Waterman systolic cell. In Proceedings of
the IEEE Conference on Field Programmable Logic and Applications, pp. 375–384.

ELEMENTS OF HPRC 157

Author's personal copy

