
BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

ACCELERATING MOLECULAR DYNAMICS SIMULATIONS

WITH HIGH PERFORMANCE RECONFIGURABLE SYSTEMS

by

SHIHCHIN CHIU

M.S., University of Southern California, 2001

B.S., National Chung-Hsing University, 1997

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2011

 © Copyright by
 SHIHCHIN CHIU
 2011

Approved by

First Reader _
 Martin C. Herbordt, Ph.D.
 Professor of Electrical and Computer Engineering

Second Reader _
 Allyn Hubbard, Ph.D.
 Professor of Electrical and Computer Engineering
 Professor of Biomedical Engineering

Third Reader _
 Roscoe Giles, Ph.D.
 Professor of Electrical and Computer Engineering

Fourth Reader _
 Ayse Coskun, Ph.D.
 Assistant Professor of Electrical and Computer Engineering

iv

ACCELERATING MOLECULAR DYNAMICS SIMULATIONS

WITH HIGH PERFORMANCE RECONFIGURABLE SYSTEMS

(Order No.)

SHIHCHIN CHIU

Boston University, College of Engineering, 2011

Major Professor: Martin C. Herbordt, Ph.D.,

 Professor of Electrical and Computer Engineering

ABSTRACT

Molecular Dynamics (MD) simulation plays an important role in understanding

functionally important phenomena of biological processes. Many of such events,

however, occur on time scales beyond the capabilities of modern computers.

Hence, accelerating MD simulations becomes one of critical challenges in the

current study of Computational Biology and Chemistry.

 For the past several years, various implementations and efficient algorithms

have been developed toward this goal. Of these, accelerating MD with Field

Programmable Gate Arrays (FPGAs) has been shown to be a viable candidate

for improved MD cost/performance. Given the intense competition from multi-

core and GPUs, there is now a question whether MD on High Performance

Reconfigurable Computing (HPRC) can be competitive. The goal of this research

is to create an FPGA-based MD system to achieve substantial speedup over

v

production MD software without compromising simulation quality.

 In one part of the study, we systematically explore and evaluate the design

space of the force pipeline with respect to arithmetic algorithm, arithmetic mode,

precision, equation complexity, and various other optimizations. We find that the

FPGAs’ Block RAM (BRAM) architecture makes them well suited to support

unusually fine-grained intervals. This leads to a reduction in other logic and a

proportional increase in performance.

 In the other part, we present the first FPGA study of the filtering of particle

pairs having nearly zero mutual force, a standard optimization in MD codes.

There are several innovations, including a novel partitioning of the particle space,

and new methods for filtering and mapping work onto the pipelines. As a

consequence, highly efficient filtering can be implemented with only a small

fraction of the FPGA’s resources. Overall, we find that, for an Altera Stratix-III

EP3ES260, six force pipelines running at nearly 200 MHz can fit on the FPGA.

This results in a 26x per core speedup for the nonbonded short-range force. The

resulting integrated system is likely to make FPGAs highly competitive for MD.

vi

CONTENTS

Chapter 1 Introduction ... 1

1.1 The Problem .. 1

1.2 Molecular Dynamics .. 3

1.3 High Performance Computing with Accelerators 4

1.4 High Performance Reconfigurable Computing with MD 8

1.5 Summary of Contributions ... 12

1.5.1 Acceleration of Molecular Dynamics Simulations............................ 12

1.5.2 General Computational Model and Algorithms 14

1.6 Organization of the Rest of this Thesis .. 15

Chapter 2 High Performance Reconfiguration Computing 17

2.1 Field Programmable Gate Arrays .. 18

2.1.1 Overview ... 18

2.1.2 FPGA Architecture .. 19

2.1.3 Support for FPGA-based Design .. 22

2.2 HPC with FPGAs ... 26

2.3 FPGA Computing Model .. 30

2.4 HPRC FPGA Systems ... 32

2.4.1 Annapolis Micro Systems .. 32

2.4.2 Gidel PROCStar III Board ... 33

2.4.3 XtremeData XD1000 ... 35

Chapter 3 Molecular Dynamics .. 37

vii

3.1 MD Introduction ... 37

3.1.1 Periodic Boundary Condition .. 43

3.1.2 Energy Conservation .. 45

3.2 Fast Algorithms for Computing Non-Bonded Interactions 46

3.2.1 Optimizing the Computation of Short-range Interactions 47

3.2.2 Computing Long-Range Interactions .. 50

3.3 MD Software Packages ... 55

3.3.1 NAMD ... 56

3.3.2 GROMACS ... 57

3.3.3 Desmond .. 58

3.3.4 ProtoMol ... 60

3.4 MD Accelerators .. 60

3.4.1 Application-Specific Integrated Circuits (ASICs) 61

3.4.2 Graphics Processing Units .. 63

3.4.3 FPGAs .. 66

3.4.4 Previous Implementations ... 70

Chapter 4 Force Pipeline Design and Optimization ... 74

4.1 Overview ... 74

4.2 Pairwise Nonbonded Force Computation .. 77

4.2.1 Force Pipeline Design ... 79

4.2.2 Table Look-up with Interpolation ... 83

4.3 Performance Comparison of Design Alternatives 87

viii

4.4 Quality Comparison of Design Alternatives ... 96

4.5 Summary ... 102

Chapter 5 Filter Pipeline Design and Optimization .. 103

5.1 Overview ... 103

5.2 Coprocessor Considerations ... 107

5.3 Filtering Algorithms .. 112

5.4 Balancing Neighboring List Sizes .. 116

5.5 Mapping Particle Pairs to Filter Pipelines .. 121

5.6 Queueing and Routing Particle Pairs... 124

5.6.1 Queuing Whole Neighboring List .. 124

5.6.2 Continuous Queuing ... 126

5.7 Pipeline Throughput Analysis .. 134

5.8 SUMMARY .. 136

Chapter 6 System Design and Integration ... 138

6.1 System Architecture .. 138

6.2 Integration into the MD code ... 140

6.2.1 Control Flow .. 140

6.2.2 Cell Lists ... 142

6.2.3 Particle Exclusion .. 145

6.3 Memory Management and Data Transfer .. 147

6.3.1 Accumulating and Combining Accelerations 147

6.3.2 FPGA-Board Data Transfer .. 150

ix

6.3.3 Host-Accelerator Data Transfers ... 153

6.4 Summary ... 154

Chapter 7 Results .. 155

7.1 Experiment Platforms .. 155

7.2 Performance Experiments ... 157

7.3 Simulation Quality Experiments ... 164

7.4 Scalability and Extensions ... 167

7.5 Power Performance Analysis .. 168

7.6 Development Cost and Portability ... 170

7.7 Summary ... 171

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 173

8.1 Summary ... 173

8.2 Lessons learned .. 174

8.3 Future Directions ... 175

8.3.1 Design Node Optimization .. 175

8.3.2 System Level Parallelization ... 177

References ... 179

Vita ... 192

x

LIST OF TABLES

Table 2-1: PROCStarIII memory performance .. 35

Table 4-1: Sample implementations of table look-up interpolation 87

Table 5-1: Comparison of three filtering schemes for quality and resource usage.

A force pipeline is shown for reference. Percent utilization is for the Altera Stratix-

III EP3SE260. ... 115

Table 5-2: Queue size requirement and utilization are show for various

configurations with no throttling. ... 132

Table 7-1: Resource utilization and performance of various pipeline

configurations on Stratix III SE260 (bin/segment = 256, running @ 200MHz) .. 158

Table 7-2: Resource utilization and performance of various pipeline

configurations on the Stratix IV SE530 (bin/segment = 256; Post Place-and-

Route results reported by Altera Quartus 9.1) .. 158

Table 7-3: Altera Stratix FPGA resource overview ... 160

Table 7-4: Time profiling of FPGA design (Stratix III ES3SE260, ~200MHz) ... 161

xi

LIST OF FIGURES

Figure 1-1: Satellite tobacco mosaic virus [116] ... 2

Figure 2-1: A typical FPGA structure [103] ... 20

Figure 2-2: Altera Adaptive Logic Module (ALM) block diagram [6] 21

Figure 2-3: An example of local cluster scheme ... 25

Figure 2-4: Wild-Star II Pro board block diagram [132] 33

Figure 2-5: PROCStar III system overview [39] .. 34

Figure 2-6: XD1000 system level block diagram [134] 36

Figure 3-1: MD phase transaction .. 38

Figure 3-2: MD force field diagram ... 39

Figure 3-3: Lennard-Jones potential ... 41

Figure 3-4: 2D schematic representation of periodic boundary conditions 44

Figure 3-5: 2D representation of particles crossing the boundary under PBC ... 45

Figure 3-6: Neighboring list sphere ... 48

Figure 3-7: Illustration of cell-linked list algorithm ... 49

Figure 3-8: PME computational steps ... 53

Figure 3-9: NVIDIA GeForce 8800 GTX architecture (diagram courtesy of NVIDIA)

 ... 65

Figure 3-10: Logarithmic intervals for r-x interpolation ... 72

Figure 4-1: Smooth function (a) Left is the original 1/r and the smoothing

function)(rga . (b) Right is 1/r -)(rga ... 76

Figure 4-2: Data flow of nonbonded short-range force pipeline 79

xii

Figure 4-3: Force pipeline template .. 83

Figure 4-4: Table look-up varies in precision across r-x interpolation. Each section

has a fixed number of intervals. .. 85

Figure 4-5: Arithmetic flow of a function evaluated with table lookup and 3rd order

Interpolation. ... 86

Figure 4-6: Resource utilization of various precision implementations for Stratix III.

 ... 89

Figure 4-7: Resource utilization in logic and hard multipliers for Altera Stratix III

(single pipeline, hybrid-single precision for LUT implementation). 91

Figure 4-8: Effect of using the Altera FPC on logic utilization for Altera Stratix III

(single pipeline, hybrid-single precision). .. 92

Figure 4-9: Van der Waals potential with switching smooth function 93

Figure 4-10: Relative average force error of the particle-particle force for various

implementation and precision. DC is direct computation, LUTn refer to Look-UP

of various orders. .. 98

Figure 4-11: Graphs of relative RMS force error versus interpolation density per

section for interpolation orders 0, 1, and 2. .. 99

Figure 4-12: Graphs of energy for various designs run for 20,000 timesteps. .. 100

Figure 4-13: Graphs of energy for selected designs run for 100,000 timesteps 101

Figure 5-1: P’s two dimensional cell neighborhood is shown in white; cells have

edge size equal to the cut-off radius. Particles within the P’s cut-off circle are in

P’s neighbor list [16]. .. 104

xiii

Figure 5-2: Neighborlists are often computed for a larger radius than the force

cutoff. .. 106

Figure 5-3: Schematic of the HPRC MD system ... 112

Figure 5-4: Filtering with planes rather than a sphere - 2D analogue 115

Figure 5-5: Shown is the standard partitioning scheme with Newton’s 3rd law. 1-4

plus home cell are examined with a full sphere. ... 118

Figure 5-6: Distribution of neighborlist sizes for standard partition as derived from

Monte Carlo simulations. .. 119

Figure 5-7: Shown is half-moon partitioning scheme for using Newton's 3rd law.

1-5 plus home cell are examined, but with a hemi-sphere (blue-shaded part of

circle). ... 120

Figure 5-8: Two mappings of particle pairs onto filters. (a) Particle Mapping:

Filters each hold a different reference particle. Particles in cell set are broadcast

one per cycle. (b) Cell Mapping: Same reference particle held by all filters in a

bank. Each filter is responsible for 2-3 cells. .. 124

Figure 5-9: Concentrator in normal mode. Pair is dispatched from non-empty

queues in round-robin fashion. ... 129

Figure 5-10: Concentrator in priority mode. Queue which is full has high priority to

dispatch pairs (only one queue is full). ... 130

Figure 5-11: Concentrator in throttling mode. Stall signal is asserted and priority

is given to any queue that is full. ... 131

xiv

Figure 5-12: Graph shows the effect of queue size on utilization for various

numbers of filters (queues) and mappings of particles onto filters. PM is particle-

mapping and CM is cell-mapping. .. 133

Figure 6-1: System architecture of the FPGA-based MD accelerator. 139

Figure 6-2: Control flow of non-bonded short-range force kernel on the FPGA-

based system. .. 141

Figure 6-3: Cell list representation in FPGA-based implementation. 144

Figure 6-4: Graph shows van der Waals interaction with cutoff check with

saturation force. .. 146

Figure 6-5: Mechanism for accumulating per-particle force. The logic of a single

pipeline for both reference and partner particles is shown. 148

Figure 6-6: The approach of how forces are accumulated across multiple

pipelines is illustrated. .. 150

Figure 6-7: Datapaths between off-chip memories, on-chip caches and force

pipelines. .. 152

Figure 7-1: Component resources of various FPGAs 160

Figure 7-2: Performance speedups of various implementations 163

Figure 7-3: Graph of energy plot for various Implementations 165

Figure 7-4: Performance speedups of multiple FPGAs (nonbonded short-range

force only) ... 168

Figure 7-5: Energy-efficient performance comparison 169

xv

List of Abbreviations

ALM Adaptive Logic Modules

ALUT Adaptive Look Up Table

API Application Programming Interface

ASIC ……………. Application Specific Integrated Circuit

b ……………. Bit

B ……………. Byte

BRAM ……………. Block Random Access Memory

CLB ……………. Configurable Logic Block

CPU ……………. Central Processing Unit

COTS ……………. Commercial off-the-shelf

CUDA ……………. Compute Unified Device Architecture

DDR ……………. Double Data Rate

DMA ……………. Direct Memory Access

DRAM ……………. Dynamic Random Memory Access

DSP ……………. Digital Signal Processor

FFT ……………. Fast Fourier Transform

FIFO ……………. First In First Out

FLOPs ……………. Floating point operations per second

FP ……………. Floating Point

FPC ……………. Floating Point Compiler

FPGA ……………. Field Programmable Gate Array

xvi

Gb ……………. Gigabits, 230 (109) bits

GB ……………. Gigabytes, 230 (109) bytes

GFLOPs ……………. Giga FLOPS, 109 floating point operation per second

GHz ……………. Giga Hertz, 109 cycles per second

GPP ……………. General Purpose Processor

GPU ……………. Graphics Processing Unit

GROMACS ……………. Groningen Machine for Chemical Simulations,

 an open-source molecular modeling program

HDL ……………. High Description Language

HLL ……………. High Level Language

HPC ……………. High Performance Computing

HPRC ……………. High Performance Reconfigurable Computing

IP ……………. Intellectual Property

Kb ……………. Kilobits, 210 (103) bits

KB ……………. Kilobytes, 210 (103) bytes

LE ……………. Logic Element

LJ ……………. Lennard-Jones

LSB ……………. Least Significant Bit

LUT ……………. Look Up Table

Mb ……………. Megabits, 220 (106) bits

MB ……………. Megabytes, 220 (106) bytes

MD ……………. Molecular Dynamics

xvii

MHz ……………. Mega Hertz, 106 cycles per second

MPP ……………. Massively Parallel Processor

MSB ……………. Most Significant Bit

MW ……………. Mega Watt

PAL ……………. Programmable Array Logic

NAMD ……………. NAnoscale Molecular Dynamics

PAR ……………. Place And Route

PC ……………. Personal Computer

PCI ……………. Peripheral Component Interconnect

PCIe ……………. Peripheral Component Interconnect Express

PE ……………. Processing Element

PME ……………. Particle Mesh Ewald

RAM ……………. Random Access Memory

RTL ……………. Register Transfer Level

SDRAM ……………. Synchronous Dynamic Random Access Memory

SIMD ……………. Single Instruction Multiple Data

SODIMM ……………. Small Outline Dual Inline Memory Module

SRAM ……………. Static Random Access Memory

TB ……………. Terabytes, 240 (1012) bytes

TDP ……………. Thermal Design Power

VHDL ……………. VHSIC Hardware Description Language

VLIW ……………. Very Long Instruction Word

 1

Chapter 1 Introduction

1.1 The Problem

Driven by the rapid increase of computer power over the last 60 years, advances

in computational methods have made a dramatic impact in traditional sciences.

Computer simulations are now regularly used to verify theoretical assumptions,

as well as to predict experimental outcomes and hence bridge the gap between

theory and experiment. Simulations act as a complement to laboratory

experiments, enabling us to learn something new, to understand something that

cannot be found out in other ways, and to discover something difficult to observe

in the laboratory [2].

 Molecular Dynamics (MD) simulation is central to Computational Biology and

Chemistry and commonly used in the study of biomolecules, proteins, and

generally in material modeling. MD helps us understand the properties of a

molecular systems in terms of the structure and microscopic molecular

interactions [2, 67]. We recall a famous sentiment [28]:

 Certainly no subject or field is making more progress on so many fronts at the

present moment than biology, and if we were to name the most powerful

assumption of all, which leads one on and on in an attempt to understand life, it

is that all things are made of atoms, and that everything that living things do can

be understood in terms of the jiggling and wiggling of atoms.

 Richard Feynman, Lecture on Physics, vol. 1, p. 3-6 (1963)

 2

Figure 1-1: Satellite tobacco mosaic virusi [116]

 Many important biochemical phenomena, however, usually occur on time

scales that are beyond the reach of current technology [109]. Figure 1-1

illustrates a million-atom MD system consisting of a small, icosahedra plant virus,

standing for satellite tobacco mosaic virus (STMV) [33, 116]. It would take a

single 2006-era desktop computer over 35 years to perform 50ns simulation

using NAMD, highly optimized MD package [30, 33].

 Moreover, the dramatic increases of application demands have greatly

outpaced the technology curve as postulated by Moore’s law, which the growth of

i This figure was made with VMD and is owned by the Theoretical and Computational Biophysics Group, an NIH

Resource for Macromolecular Modeling and Bioinformatics, at the Beckman Institute, University of Illinois at

Urbana-Champaign.

 3

new technologies still struggle to follow. Accelerating MD simulation has become

a critical challenge for scientific research. As such, it has obtained much attention

from various perspectives such as supercomputers, multi-cores, ASICs, and

coprocessing technology using GPUs, Cell, and FPGAs. The last of these is what

we focus in this work.

 The problem that this dissertation explores is how to improve the

computational performance and efficiency of molecular modeling

applications. In particular, we address this problem by accelerating

molecular dynamics simulation with the use of Field Programmable Gate

Arrays or FPGAs.

1.2 Molecular Dynamics

Molecular dynamics simulation is a technique that models motions of molecular

particles by applying known classical mechanics. It is an iterative process

comprised of two phases: force calculation and motion update. Forces applied on

each particle are computed using classical equations of motion and then the

state of each particle is updated accordingly. MD simulation can serve as a

computational “microscope” to observe functionally important biological

processes such as folding of proteins and various types of interactions between

proteins that are difficult to be observed in experiments [14]. Several open

questions in the areas of biology and chemistry could be answered with aid of

such simulations [109]. Many of such important events, however, usually occur

on long time scales beyond the reach of modern computer capabilities.

 4

Therefore, how to perform effective acceleration of MD simulations becomes a

crucial subject in the current research of computational biology and chemistry.

 Among all computations in MD, force evaluation consumes the majority of

computational powers. In general, the forces depend on the physical system

being simulated and may include van der Waals (approximated with the Lennard-

Jones or LJ potential), electrostatic, hydrogen bond, and various covalent bond

terms:

bondednonhydrogentorsionanglebondtotal FFFFFF (1-1)

Because the hydrogen bond and covalent terms (bond, angle, and torsion) affect

only neighboring atoms, computing their effect is O(N) in the number of particles

N being simulated. The motion integration computation is also O(N). The

complexity of non-bonded force evaluation is)(2NO initially and comprises the

bulk of computations [46]. Several algorithms and techniques have been

developed (over multiple decades) to limit the computational cost of the

nonbonded forces. Each of those has its specialty and advantage for different

computational platforms.

1.3 High Performance Computing with Accelerators

Since the 1970s, microprocessors have formed the backbone of all computing,

and dominating high performance computing (HPC) since the early 1990s.

During that time, performance of microprocessors has improved steadily and

 5

exponentially. There have been three primary axes of improvement: increased

efficiency through architectural advances, increased operating frequency, and

increased number of devices per chip. The first of these appears to have topped

out around 2000 when increases in Instruction Level Parallelism (ILP) began to

stagnate. The second peaked in around 2004 at 4GHz and has remained steady

or diminished slightly. This is due to the well-known power wall [13] that, among

other problems, makes it challenging to cool devices at higher frequencies. The

third component, however, continues to increase and projects to continue to do

so for at least 5 more years. The focus of HPC, therefore has shifted from

improving single-thread performance to increasing the number of cores for

overall performance enhancement.

 In November 2010, the TOP500 project confirmed that the top spot indicative

of the world’s fastest supercomputer had been taken by a Chinese

supercomputer, the Tianhe-1A at the National Supercomputer Center in Tianjin.

It demonstrated performance of 2.57 petaflop/s [124]. It consists of 14,336 multi-

core CPUs and 7,168 GPUs and illustrates a good example of accelerated-based

computing. The Tianhe-1A outpaces the former number one (and now number

two), the Cray XT5 “Jaguar” system at the Oak Ridge National Laboratory.

Jaguar contains 224,256 CPU cores and can achieve 1.75 petaflop/s [65, 124].

 Besides performance, another critical issue is the energy efficiency. Although

microprocessor-based clusters provide massive computational, they usually

dissipate from hundreds of kilowatts to a few megawatts of power and require

 6

cooling infrastructure. In contrast, a high-ended FPGA typically consumes just

20-30 watts. Although GPUs have high power consumption (100 - 300 watts),

GPU-accelerated systems often have better performance-per-watt ratios than

those with only CPUs. According to the recent release of the Green500 list on

November 2010, eight of top ten slots were occupied by accelerated-based

supercomputers [43]. The metric used is million floating point operations per

second per watt. The potential for energy efficiency should spur the continued

growth and popularity of accelerator-based computing.

 As a result, high performance accelerated-computing is getting much attention

from the HPC community. Some examples of accelerators are:

 Graphics Processing Units (GPUs)

GPUs are commodity hardware that were initially designed to perform fast

graphics rendering. Since CUDA was introduced to provide developers

access to immense parallel computing elements in GPUs, GPUs have

become a popular computing alternative for scientific applications,

especially for those requiring massive numbers of floating point

computations.

 Field Programmable Gate Arrays (FPGAs)

Because of its flexible programmability and application specific

characteristic, FPGAs have been used widely in design prototyping, digital

signal processing, and network switches. Recent advances in FPGA

 7

architecture such as incorporating hard multipliers and embedded

processors have attracted attention and interest from other areas such as

scientific computing and bioinformatics. HPC with FPGAs is often referred

to as High Performance Reconfigurable Computing (HPRC).

 IBM Cell Processor

Cell was originally designed for gaming, but its effective multi-core

configuration, together with internal high speed interconnects, makes it

popular and powerful for various applications and computations, including

3D FFT, video processing and cluster computing.

 Application Specific Integrated Circuits (ASICs)

An ASIC is an integrated circuit that is customized to tackle a specific

application and can be optimized to provide the best performance in terms

of speed, chip density, and power. ASICs, however, often require high

development costs, long time-to-market, and lack of flexibility.

 Although each of these differs from the others in term of its own features and

limitations, many of them share all or at least several of the following common

characteristics [13]:

 Communication between the host and accelerator becomes a

performance bottleneck

 High performance comes from high parallelism and utilization

 8

 High performance requires much data reuse

 Meeting peak performance is hard

 Integer or single precision arithmetic is more favorable for achieving high

performance

 Lack of software tool support

 Restructuring of algorithms and data structures is the key to success

Finding what applications are most cost-effective on which architecture is a

critical problem and the answers vary with applications and problems.

1.4 High Performance Reconfigurable Computing with MD

Since firstly introduced in 1960 [26], field program gate arrays (FPGAs) have

been popularly adopted for exploring new algorithms. Their tremendous flexibility

and power efficiency have made them a great success in digital signal

processing (DSP) where multiple small kernels are executed in parallel. Recent

advances in semiconductor technology and enhanced features such as hard

multipliers and individually accessible BRAMs have made FPGAs an attractive

candidate for high performance computing [41]. For example, HPC using FPGAs

has been extended the reach of bioinformatics and computational chemistry in

such areas as biological sequence alignment analysis [50, 57, 64], molecular

docking [118], and molecular dynamics simulation [11, 16, 46, 69, 105].

 9

 MD simulation is a central method in high performance computing (HPC) with

applications throughout engineering and natural science. Acceleration of MD is a

critical problem—there is a many order-of-magnitude gap between the largest

current simulations and the potential physical systems to be studied. As such it

has received attention as a target for supercomputers [29], clusters [14], and

dedicated hardware [71, 109, 123], as well as coprocessing using GPUs [96,

101], Cell [111], and FPGAs [1, 11, 46, 52, 69, 105, 128]. The last of these, MD

with HPRC, is our focus here. In particular, we demonstrate that MD with HPRC

is not only cost-effective, but in fact, an excellent fit. This result is surprising given

the FPGA’s reputation for having difficulty with floating point intensive

computations.

 In this research, we re-examine the short-range force computation that

dominates MD. Although this problem has been addressed by many groups in

the last few years, much of the design space has remained unexplored. In

addition, recent advances in FPGA hardware and in compiler technology appear

to have shifted some basic trade-offs.

 Our study has three parts. The first part considers the force pipeline. Our goal

here is to maximize throughput—operating frequency and the number of

pipelines that fit on the FPGA—while maintaining simulation quality. To do this,

we explore various ways to perform the arithmetic, the modes in which to

execute the operations, the levels of precision, and other optimizations. Some of

the choices are as follows.

 10

 Direct computation (Direct) versus table lookup with interpolation (LUT)

 Interpolation order and the interval resolution (for LUT)

 Precision: single, double, custom

 Mode: floating point, hybrid fixed/floating point, custom

 Implementation: synthesized components, vendor cores, vendor compiler

(Alter floating point datapath compiler)

 Various simulation configurations and complexity of target functions

We find that the LUT method is now preferred, and that single-precision floating

point combined with higher precision fixed point leads to both excellent

performance and high-quality simulations.

 The second part considers filtering particle pairs. This issue emerges from the

geometric mismatch between two shapes: (i) the cubes (or other polyhedrons)

into which it is convenient to partition the simulation space and (ii) the spheres

around each particle in which the short-range force is non-zero. If this mismatch

is not addressed (e.g., only the standard cell-list method is used), then 85.5% of

the particle pairs that are run through the force pipelines will be superfluous.

While filtering is a critical issue, we believe that the only previously published

results related to hardware implementations are from D.E. Shaw; these are with

respect to their Anton processor [109]. Here, we find filtering implementation on

FPGAs to provide a rich design space. Its primary components are as follows.

 11

 Filter algorithm and precision

 Method of partitioning the cell neighborhood to balance load with respect

to the Newton’s 3rd law optimization

 Method of mapping particle pairs to filter pipelines

 Queuing and routing between filters and force pipelines

We present new algorithms or methods for filtering, load balancing, and mapping,

and find that nearly perfect filtering can be achieved with only a fraction of the

FPGA’s logic.

 The third part considers the integration of the new features specified by the

other two parts. The particle mapping to the filter pipelines leads to changes in

how cell lists are swapped on/off chip. In addition, the filter pipelines generate

neighbor lists that must be fed into the force pipelines. And having multiple force

pipelines (6 or more) requires accumulation of forces on the other end. We find

solutions to all of these issues that have simple control, match FPGA resources,

and add only little overhead.

 Our basic result is that for the Stratix-III EP3SE260, and for the best (as yet

un-optimized) designs, 6 force pipelines running at nearly 200 MHz can fit on the

FPGA. Moreover, the force pipelines can be run at high efficiency with 90% of

cycles providing payload. As a result, the short-range force for the standard 92K

ApoA1 NAMD benchmark can be computed in less than 70 ms, or about a factor

 12

of 26 faster than its per-core execution time that makes our MD design

competitive and attractive.

1.5 Summary of Contributions

The contributions of this work can be classified into four main categories: (i)

acceleration of MD simulation, (ii) demonstration of FPGA viability for MD (iii) the

algorithms and scheme developed for MD, and (iii) the extension of the proposed

algorithms and methods to other computations and applications.

 The first is straightforward and immediate. Our FPGA-based accelerator

shows that significant speedup can be obtained over the production software

implementation while still maintaining acceptable simulation quality.

 The second ensues from the outcome of the first. Given the intense

competition from multi-core and GPUs, there has been a question whether MD

on HPRC can be competitive. We illustrate FPGA-based computing is still a

viable and highly competitive technology with our results and experiences. It,

indeed, requires application-specific algorithms and schemes to map the problem

well on the underlying hardware and demands careful hardware-aware

implementation. We now describe those algorithms and methods in details as

follows.

1.5.1 Acceleration of Molecular Dynamics Simulation

Many critically important molecular processes occur on a millisecond time scale

that is beyond the reach of MD simulations with current technology capabilities

 13

[109]. The main goal of this research is to shorten this gap by accelerating MD

simulation and hence advance the progress in science and engineering. We

have designed an MD accelerator that enables a significant increase in

computational power and efficiency without compromising simulation accuracy.

Our MD accelerator can compute the nonbonded short-range force for the ApoA1

benchmark in less than 70 ms. This represents a 26-fold per core speedup for

the computational kernel. Several features of our MD accelerator include:

 Exploration of various design implementations: We substantially

expand the exploration of the MD force-pipeline design space with respect

to arithmetic algorithm, arithmetic mode, precision, and various

optimizations with the goal of finding the performance limits under current

technology and methods. We find that FPGAs’ BRAM architecture makes

them well suited to support unusually fine-grained intervals. This leads to

a reduction in other logic and a proportional increase in performance.

 Throughput enhancement of non-bonded force pipelines: We present

the first study of particle-particle filtering on FPGAs and with it a number of

innovations. We find that high quality filtering can be achieved with only a

small amount of logic. We present a geometric filtering scheme that is

preferable for some FPGA implementations. And finally, the particle-

mapping variation for mapping particle pairs to filter pipelines also appears

to be new. We also describe methods for sizing components and for

integrating sections of the overall processing pipeline.

 14

 Novel partitioning scheme: We present a new domain partitioning

method for optimizing with respect to Newton’s 3rd law. It helps minimize

the impact of load imbalance among filters and improves filtering efficiency.

This is essential for the design presented here, but could also find

application in other hardware implementations.

 Hybrid numerical precision manipulation: Floating-point computation

was long beyond the reach of FPGAs. Recent advancements of FPGAs’

architecture and processing technology now make FPGAs competitive

compared to standard microprocessors [118]. The computational cost of

floating point, however, is still high and the large dynamic numerical range

supported by floating point arithmetic may not be necessary for all type of

computations. By carefully analyzing numerical operation and accuracy

and evaluating resource costs, we present a novel force pipeline that uses

mixed-precision (called hybrid) arithmetic to evaluate the nonbonded

short-range force. This results in performance improvement while still

maintaining acceptable simulation quality.

1.5.2 General Computational Model and Algorithms

Although the algorithms and techniques developed in this work are with respect

to MD simulations, they can be generalized and extended to other HPC

applications. MD shares many features with those in N-body simulation and other

molecular modeling applications. The data restructure and cell-list scheme

 15

presented in this work are generic and can be applied to other parallel

architecture and hardware platforms. The novel partitioning scheme that removes

load imbalance from the critical path could find useful in other domain or spatially

partitioned applications. Moreover, the system architecture that supports large

simulations, with the management of off-chip data access, provides a generic

framework for those that require off-chip memory access.

 Other generic techniques include the findings of the design space exploration

and the scheme of hybrid precision arithmetic. These are generic and can be

extended to other computations or applications.

1.6 Organization of the Rest of this Thesis

The rest of this thesis is organized as follows. Chapter 2 describes the potential

of high performance computing with FPGAs and provides a brief introduction to

the target FPGA-based platforms.

 Chapter 3 presents an overview of MD, including various techniques that help

reduce MD computational complexity, and of several popular MD software

packages and well-known hardware accelerators. A review of previous FPGA-

MD work done in the CAAD Lab of Boston University is also presented.

 In chapter 4, we present the work of design space exploration, specifically of

examining various short-range force pipelines and determining their performance

bounds and design limitations. Several design considerations and challenges are

also addressed.

 16

 Chapter 5 describes the first FPGA study on the filtering of particle pairs with

nearly zero mutual force, a standard optimization in MD codes. There are several

innovations, including a novel partitioning of the particle space, and new methods

for filtering and mapping work onto the pipelines.

 In chapter 6, we describe the details of integrating our MD design into FPGA

accelerated board and MD software codes. We present an overview of system

architecture and flow of control. The techniques of making efficient data transfer

among various components (FPGA, on-board memory, and host) are also

discussed.

 Chapter 7 describes the results of our FPGA accelerating system from two

perspectives, performance improvement and simulation quality. We then present

a preliminary study of our design on multiple FPGA scalability to demonstrate the

performance potential. We also describe status of the overall implementation

and implications for MD on HPRC.

 Chapter 8 summarizes this thesis and provides some future directions to

further extend and improve our design.

 17

Chapter 2 High Performance Reconfiguration Computing

A common configuration of high performance computing (HPC) systems consists

of a large array of conventional microprocessors that are interconnected together

in a symmetrical way via high bandwidth communication channels [83]. This

approach can provide good scalability that is relatively easy to manage. This

generic configuration, however, may not be the best solution for various

applications.

 One alternative, high performance reconfigurable computing (HPRC) systems,

consisting of microprocessors and field-programmable gate arrays (FPGAs),

have been shown to deliver significant performance gains in terms of speed,

power, and cost efficiency for different algorithmic applications [11, 46, 55, 118].

With the FPGAs’ flexible programmability, an HPRC system can be tailored to fit

many specific algorithms and applications. Accelerating HPC applications with

FPGAs, however, still faces several serious shortcomings and challenges, such

as low operating frequency and bounded hardware resources.

 In this chapter, an overview of FPGA features and HPRC design

considerations is presented, including recent trends in FPGA architecture and

tool support. Computing models suitable for FPGA-based acceleration are

suggested. In the end, several FPGA-based HPC systems are introduced briefly

to illustrate various configurations of FPGA-based implementations.

 18

2.1 Field Programmable Gate Arrays

2.1.1 Overview

A Field Programmable Gate Array (FPGA) is a semiconductor device that

consists of an array of configurable logic blocks (CLBs) and interconnects. Unlike

ASICs where the functionality remains unchanged during the entire lifetime,

FPGAs can be programmed to perform various dedicated tasks after

manufacturing [5]. Since its first introduction in 1985 [135], the FPGAs’ flexible

programmability together with other features, e.g. low power consumption and

highly cost-effective computing, makes them attractive for many applications

such as prototyping CPU designs, networking and communications, digital signal

processing, embedded systems, and, more recently, in bio-informatics [11, 46,

118].

 Traditionally FPGAs are best suitable for applications that contains intense

integer arithmetic or streaming-type computations. FPGAs continue to evolve

with the advance of semiconductor processing technology: recent FPGAs often

contain built-in hard Intellectual property (IP) cores, including thousands of

independent addressable memory blocks and arithmetic circuits. These enable

FPGAs to meet the diverse needs of algorithms and applications while still

maintaining low power and cost [5]. It is worth to note that recent FPGAs have

demonstrated outstanding performance in floating point arithmetic [58, 126],

which make FPGAs highly competitive for HPC applications.

 19

 Nowadays, FPGAs have been integrated to offer systems-on-a-chip (SOC)

solutions. In 2010 Intel Developer Forum (IDF), Intel introduced their first

configurable Atom-based processor, Stellarton, which features an Intel Atom

E600 processor (formerly codenamed “Tunnel Creek”) paired with an Altera

FPGA in a single multi-chip package [63, 113]. The FPGA contains more than

60,000 logic elements and can support six high-speed transceivers running up to

3.125Gbits/s. It aims to provide developers more options in their products with

greater differentiation and competition, shorter time-to-market and lower cost of

design prototyping.

2.1.2 FPGA Architecture

A typical FPGA architecture consists of a two-dimensional array of

programmable logic blocks embedded in a network of configurable interconnects

and interface I/O ports as shown in Figure 2-1 [22, 99, 103]. The logic blocks can

be programmed to implement various combinational and sequential functions

and are connected together via configurable interconnects. Most of the logic

blocks also contain adders and flip-flops to support sequential implementations.

 The basic element in and FPGA is variously called the Logic Element or LE,

Adaptive Logic Module or ALM, or Slice. In general it contains 4- to 6-input Look-

Up Tables (LUTs), adders, and registers [6, 136]. A LUT is commonly

implemented with 2k:1 multiplexers and 2k configurable memory cells, where k is

the number of inputs to the lookup table [103]. All possible logic values of K-input

 20

variables are programmed and stored in memory cells and the output is selected

via multiplexers to provide dedicated functionality.

Figure 2-1: A typical FPGA structure [103]

 As an example, see the block diagram of the Altera ALM shown in

Figure 2-2 [6]. An ALM consists of combinational logic, adders, multiplexers, and

registers. The combinational logic has eight inputs and includes a LUT that can

be divided into two adaptive LUTs (ALUTs). It can support various configurations,

e.g., 2 independent 4-input function, or a 5-input and a 3-input function with

independent inputs, or an arbitrary six-input function [6]. Other components, i.e.

 21

adders and registers, increase arithmetic capability and provide an option to latch

LUT outputs for the support of sequential implementations and higher frequency.

Figure 2-2: Altera Adaptive Logic Module (ALM) block diagram [6]

 As described earlier, FPGAs have been successfully used in many application

domains. Their success can be attributed to the following reasons [56, 118]:

 High Parallelism

Millions of equivalent logic elements and hundreds of hardware

components (memory blocks and arithmetic units) can be used to explore

different levels of parallelism, including deep pipelining and design

replication.

 22

 Configurable Memory Interface

In contrast with microprocessors where the memory interface is fixed,

configurable memory blocks can be tailored to meet application-specific

needs. In addition, thousands of independent addressable BRAMs enable

FPGA to offer parallel single-cycle data access [118].

 Efficient Computing

Since most of control logic has been embedded in designs, little or no

overhead is required and high throughput can be achieved.

 The great flexibility of FPGAs, however, comes at a price: diminished effective

chip area and operating frequency [22]. In order to be configurable, compared to

conventional ASICs with the same processing technology, the FPGA fabric is

less dense and a huge amount of its resources must be preserved for routing

channels. This also results in operating frequencies that are often 5 or 6 times

slower than conventional ASICs.

2.1.3 Support for FPGA-based Design

Hardware Description Languages (HDLs), such as VHDL and Verilog, have been

widely used in the traditional FPGA/ASIC design flow. They provide precise

control over hardware implementations and synthesis results. Users can define

high-level algorithms and perform low-level optimizations (gate or switch) via the

same language. Productivity has been a concern, however, especially for

meeting current rapid time-to-market period since highly optimized designs can

 23

take several hours or days to synthesize. In addition, it is difficult to validate with

the original software model directly, and writing testbenches to ensure the full

correctness of results is very timing-consuming [61].

 In the past decade, various supports from FPGA and third party tool vendors

have enhanced design quality as well as development efficiency. This includes

highly optimized Intellectual Property (IP) blocks and high-level programming

language tools and suites, which we now briefly describe.

 Intellectual Property (IP) Core

To simplify and shorten FPGA design process, highly optimized IP cores

are often offered in FPGA design suites, e.g., highly efficient floating point

cores such as FFT and inverse square root. Users only have to connect

each component together rather than implement and optimize their own

cells. This helps reduce development cycles and improve performance; at

the same time, however, it reduces the design portability since those IP

cores are specialized for certain FPGA architecture and devices.

 Software Tool Support

In the past years, tool vendors have focused on improving design

efficiency, including both core implementation and system integration. A

variety of C-to-gates or C-to-FPGA compilers have been developed to

convert high-level C-like software codes to gate-level HDL

implementations. This enables embedded designers and software

 24

programmers to create HPRC applications from system-level perspective

without knowing the details of hardware knowledge.

 Some examples are Impulse-C from Impulse Accelerated Technologies

[62], MitrionC from Mitrionics [81], AutoPilot FPGA from AutoESL Design

Technologies [10], and Altera Floating Point Compiler [4]. In our

experience, although high-level compilers help shorten design cycles, the

performance of auto-generated design is often inadequate, especially for

control logic and fine-grained implementations.

 In our MD work, we used the Altera Floating Point Compiler (FPC) to

implement the nonbonded short-range force pipeline. We have found that

this tool is effective for resource reduction and rapid design. The FPC is

now described.

 Altera Floating Point Compiler

The FPC takes C-language description of a function and translates

it to a parallel datapath implementation [4, 73]. It analyzes

functional expressions, determines inputs and outputs, creates a

dataflow graph of the internal operations, and maps a design to

FPGAs. The efficiency of the FPC gains comes from two main

principles employed: a change of number representation and

formats and a reduction of redundant normalizations across a

group of operators [73].

 25

Figure 2-3: An example of local cluster scheme

 An example of the local cluster scheme is shown in Figure 2-3 [4].

The FPC groups identical operations into a local cluster. Within a

cluster, all intermediate results are kept unnormalized, if possible.

The FPC employs several schemes to perform normalization,

depending on the types of operations. In most cases, normalization

is only required on the way out of a local cluster or datapath. If

floating point operations can be clustered efficiently, a significant

reduction of logic resources can be obtained.

 As described above, although the inputs and outputs of FPC follow the

IEEE 754 floating point format, the internal format of FPC are not

compliant. Integer formats are used in some steps internally to improve

efficiency. Together with the property of non-associativity of floating point

 26

arithmetic, it often results in differences between FPC and serial C codes.

This difference could be compounded for applications that involve iterative

and high precision computations [19, 118].

2.2 HPC with FPGAs

FPGA-based systems have demonstrated great successes in digital signal

processing (DSP) where multiple small kernels are executed in parallel. Recently,

FPGAs have been used to accelerate biological and medical applications such

as biological sequence alignment analysis [50, 57, 64], molecular dynamics

simulations [11, 46, 69, 105, 106], protein docking [118, 119, 120], and positron

emission tomography (PET) scanning [55].

 A great example illustrating the promise of HPRC systems is the Novo-G

supercomputer at the University of Florida. The Novo-G system consists of 24

computing nodes, each housing two Gidel quad-FPGA boards. Nodes

communicate with one another via Gigabit Ethernet and non-blocking fabric of 20

Gb/s InfiniBnad [90]. In other words, the system contains in all 48 Gidel

PROCStar III boards and 192 Altera Stratix III FPGAs. 4.25 GBs of dedicated

memory is attached to each FPGA for a total of nearly 1TB. Perhaps most

remarkably, it consumes just 8,000 watts, compared with conventional

microprocessor-based clusters that can dissipate megawatts, e.g., Jaguar (6.95

MW) and Roadrunner (2.35 MW) [124]. In addition, Novo-G has successfully

demonstrated significant performance on various applications, especially for

bioinformatics research [90].

 27

 Some of the driving forces that make FPGAs plausible for HPC applications

can be summarized as follows.

 Advancing Technology

As with modern microprocessors, FPGAs still ride the technology curve as

stated by Moore’s law [46]. There are also continuing architectural

advances. Current generation high-end FPGAs contain not only millions

of configurable gate-equivalent logic elements but also hundreds of

optimized ASIC components such as individual block RAMs (BRAMs),

hard multipliers, and embedded microprocessors. Also, recent logic

designs map more favorably to floating point applications.

 Power Consumption

Due to its inherent low operating frequency, high-end FPGAs usually

consume at most 20-30 watt; modern microprocessors consume 100-200

watts [118].

 Flexibility

One of most attractive FPGA features is its reconfigurability that enables

users to explore the design space to find optimal solutions for a specific

target problem. FPGAs can be reprogrammed quickly, while it can take

several weeks (at least) to make the same changes in an ASIC.

 28

 Time to Market

Compared with ASIC design, which usually takes several months or even

more than a year, FPGAs offer much shorter design cycles. Users can

implement a prototype design and verify ideas in hardware without going

through the long and costly fabrication process. Incremental changes can

be made and iterated on an FPGA within hours rather than weeks.

 Although significant advances in FPGA chip development offer tremendous

computing power, achieving a performance gain is not straightforward. It is

governed by several critical factors such as:

 Resource Limitations

Although modern FPGAs provide plenty of gate-equivalent logic elements

and a large number of hard multipliers and BRAMs, resources are still

limited. This bounds the number of processing units that can fit on a chip

and thus the resulting throughput. How to efficiently utilize available

resources often involves reconstruction of underlying algorithms, partition

of tasks, and numerical methods.

 Amdahl’s Law

Efforts must be paid to accelerate the kernels that dominate the entire

computation in order to improve the overall speedup. But even so, latency

of serial parts, such as interaction with the host, must be minimized and

hidden altogether if possible.

 29

 Design Expertise

Not all of tasks are viable candidates for FPGA acceleration. Thus,

identifying algorithms that can exploit fine-grained parallelism and codes

that contain intensive calculations such as excessive inner looping

becomes a critical job. In order to efficiently map applications to FPGAs,

certain levels of knowledge of algorithms and design expertise are often

extremely helpful.

 Programming Language

A common way to implement designs on FPGAs is to use a hardware-

description-language (HDL) such as Verilog and VHDL. This often

requires users to have understanding of logic designs and hardware

behaviors. Recently, several software packages (e.g., Impulse-C and

AutoPilot FPGA) and higher-level programming languages such as

System-C and System Verilog have been developed to lower this barrier.

This ease-of-use, however, sometimes compromises the resulting

performance.

 Arithmetic Mode

Numerical precision and computational mode are often related to the

quality of implementations and achievable throughput. Most HPC codes

are implemented with floating point arithmetic, usually double precision.

The cost of performing floating point computations with FPGAs, however,

 30

is relatively expensive compared to fixed point operations. Though

vendors have made floating point computation more straightforward and

cost-efficient by providing floating point IP cores and compiler tools,

careful analyses of required precision and arithmetic mode are critical

factors that have a direct impact on the resulting performance and quality.

 Hardware/Software integration

FPGAs usually serve as coprocessors to accelerate compute intensive

tasks and so cooperate with the programs executing on the host. The

FPGA coprocessor also interacts with peripherals on board such as high-

bandwidth interconnects and device memory. Efficiently bridging those

components is another issue that designers must consider.

2.3 FPGA Computing Model

Although FPGAs have demonstrated enormous potential performance in many

areas, getting tremendous speedup, however, is challenging. In particular, not all

applications (or algorithms) are suitable. Therefore, identifying the appropriate

computing model that can be well mapped to FPGAs becomes essential in

HPRC design. In our previous work, several computing models were proposed

[56, 57]:

 Streaming

As its name implies, “streaming” is to pass data through arithmetic units.

Streaming computing fits well for FPGAs because of their natural

 31

properties such as multiple parallel streams, high I/O bandwidth, and

flexibility of connecting different streams. Applications of streaming

computing include signal and image processing, systolic array algorithms,

sequence alignment, and protein docking [77, 118].

 Associative Computing

This model is basic to computing with massively parallel SIMD arrays and

can be characterized by the following properties: (1) broadcast, (2) parallel

tag checking, (3) collective response, and (4) reduction of responses. The

performance gains come from the support of hardware broadcast and

reduction and fast single-cycle data access.

 Functional Parallelism

Functions that take a long time in software but relatively few hardware

resources would be the best candidate to be off-loaded to FPGAs, e.g., a

high-quality frequently used random number generator. It only takes little

chip area on an FPGA and can be fully pipelined so that the latency can

be hidden.

 32

2.4 HPRC FPGA Systems

Various Commercial Off-The-Shelf (COTS) FPGA systems have been offered by

many vendors. Although each has its own goals and design considerations, it

has to work with other peripherals and components such as memory modules

and communication interfaces. Many of them have been used to deliver

significant performance improvement in applications such as Molecular

Dynamics simulations [16, 46, 69, 106], Protein Docking [118], BLAST, medical

image processing and financial applications. A brief introduction of selected

FPGA platforms is given in this section to illustrate different common

configurations of FPGA-based coprocessor implementations.

2.4.1 Annapolis Micro Systems

The first example is a PCI-based system, the WILDSTAR-II PRO board from

Annapolis Micro Systems, Inc [9]. This was used to implement our prior

FPGA/MD work done by Dr. Gu [46]. Its schematic block diagram is shown in

Figure 2-4 [132]. The system consists of two Xilinx Virtex-II-Pro FPGAs, either

the XC2VP70 or the XC2VP1000. Each FPGA is connected to up to 48 MB off-

chip SRAM and a 128 MB DRAM. The FPGAs communicate with a host via a

PCI bus interface. Two FPGA chips are connected to each other by differential

and Rocket I/O pairs.

 33

Figure 2-4: Wild-Star II Pro board block diagram [132]

2.4.2 Gidel PROCStar III Board

Our MD acceleration solution has been successfully implemented and is

currently running on one FPGA of a Gidel PROCStar III board [40], a single node

of Novo-G. PROCStarIII is also a PCI based system with 8-lane PCI Express

(PCIe x 8) host interface and its block diagram is shown in Figure 2-5 [39].

 34

Figure 2-5: PROCStar III system overview [39]

 The system consists of four processing units, Altera Stratix III SE260 FPGAs,

and is capable of running at system speeds of up to 300 MHz. They

communicate with a host via a PCI Express bus interface [38, 39]. Each

processing unit contains the following components:

 Altera Stratix III SE260 FPGAs

 256 MB on-board DDR II SDRAM (bank A)

 2 x 2 GB DDR II memory (bank B and bank C) via SODIMM sockets

 2 PSDB (PROCStar III Daughterboard) connection

 35

 The system is able to deliver high-performance FPGA solution with massive

capability and throughput memory. Its memory performance is summarized in

Table 2-1.

Table 2-1: PROCStarIII memory performance

 Bank A
 (on-board)

Bank B
(SODIMM)

Bank C
(SODIMM)

Capability 256 MB x 4 2 GB x 4 2 GB x 4
Performance (DDR) 667 MHz 667MHz 360 MHz

Throughput 16 GB/s 16 GB/s 8.5 GB/s

2.4.3 XtremeData XD1000

The XD1000, an FPGA coprocessor offered by XtremeData, Inc., is socket-

compatible with an AMD Opteron processor [134, 137]. The XD1000 module can

be directly inserted into an Opteron 940 socket by replacing a CPU and using all

existing CPU peripherals on a motherboard. Such a configuration can integrate

FPGA technology into a multiple-processor based system with minimum effort.

 An example of applying the XD1000 module is the XD1000 development

system that contains an Altera Stratix II EP2S180, 4MB off-chip SRAM and up to

four 4GB DRAMs with 5.4 GB/s interface, as shown in Figure 2-6 [134]. Through

the Opteron 940 socket, the FPGA can communicate with an Opteron

microprocessor via HyperTransport (HT) bus that can provide up to 3.2 GB/s

bandwidth. In addition, four 8MB programmable flash memory modules are

available to be used for FPGA configuration files.

 36

Figure 2-6: XD1000 system level block diagram [134]

 37

Chapter 3 Molecular Dynamics

Molecular Dynamics (MD) is a type of computer simulation, which uses classical

mechanics to model ensembles of atoms and molecules. It provides a projection

of the laboratory experiment and acts like a “virtual experiment” [98]. MD is an

example of N-body problem and inherits many of its characteristics, including the

intensive computational complexity [139]. Still, it is different enough so that the

basic flow of an FPGA algorithm may be very different for MD from it would be,

say, for computing stellar dynamics (another classic N-body application).

 Several efficient algorithms and techniques have been developed in the past

decades to reduce MD computational cost. This chapter provides a brief

overview of MD and those fast algorithms and techniques. Then well-known MD

software packages are briefly reviewed, as well as several hardware accelerators.

Lastly, FPGA works done by our and other groups are described.

3.1 MD Introduction

MD simulation is an iterative process in which the atoms and molecules interact

with each other using the classical equation of Newtonian mechanics. During a

simulation process, the force calculations and updates of particles’ displacement

and velocity are performed. It can be simply divided into two phases, i.e., force

calculation and motion update, as illustrated in Figure 3-1 [46].

 38

Figure 3-1: MD phase transaction

 In each timestep, for a given position, the forces upon a particle are evaluated

and the acceleration is calculated with Newtonian equations. This constitutes the

first phase. In the second phase, the position and velocity of each particle are

computed and updated and serve as inputs for the next iteration.

 The forces of MD simulation come in two main categories: bonded forces and

non-bonded. There are given in Equation 3-1, 3-2 and 3-3. Bonded forces

contain various bonded types (bond, angle, and torsion) while non-bonded forces

include Lennard-Jones (LJ), Coulomb, and hydrogen bond forces.

bondednonbonded FFF

 (3-1)

torsionanglebondbonded FFFF

 (3-2)

hydrogenCoulombLJbondnon FFFF

 (3-3)

 Force
Evaluation

Motion
Integration

 39

Figure 3-2: MD force field diagram

 The simplified diagram of different force fields is shown in

Figure 3-2 [122]. Bonded covalent and hydrogen forces affect only neighboring

particles while non-bonded forces evaluation involves interactions between all

pairs of particles in the system, except those separated by covalent bonds.

During a simulation, the number of bonded force evaluations scales linearly with

the number of particles N. The number of non-bonded interactions, however,

scales quadratically. This makes the computational complexity of non-bonded

interactions)(2NO in Big O notation while the one of the bonded term is)(NO .

 A common way to reduce the computational complexity of non-bonded forces

is applying a cut-off. The Lennard-Jones (LJ) force vanishes quickly with the

distance of a particle pair and is usually ignored when two particles are

Bond + -
Coulomb

 Lennard-Jones

Angle

Torsion

 40

separated beyond some cut-off distance, usually chosen between 8 to 12 Å [139].

The LJ force equation is given in Equation 3-4 and its potential graph is shown in

Figure 3-3 [3].

ji
ij ji

ab

ji

ab

ab

abLJ
i r

rr
F

814

2
612

 (3-4)

 41

where εab and σad are parameters related to particle types and ijr is the relative

distance between particle i and j.

Figure 3-3: Lennard-Jones potential

 When two atoms interact with each other, Pauli repulsion occurs, if the

distance between interacting atoms becomes even slightly less than the sum of

their contact distance. Van der Waals attraction occurs at short range, and

rapidly dies off as the interacting atoms move apart. Thus, LJ force here is

characterized as a type of non-bonded short-range forces. The electrostatic force,

however, dies out slowly and it can affect atoms residing quite far apart. Thus

Attractive zone Optimal zone

Repulsion zone

i ij i j j

Distance Potential

 42

neglecting the electrostatic (Coulomb) force beyond a cut-off distance sometimes

introduces serious artifacts into a simulation. The Coulomb force equation is

given in Equation 3-5.

ij

ji

ji

j
i

CL
i r

r

q
qF

)(

3 (3-5)

where iq and jq are the particle charges and ijr is the relative distance between

particle i and j.

 Although the equation itself is not complex, the computation process is time-

consuming since all the particle pairs of the simulation domain must be evaluated.

Several efficient algorithms have been developed to account for this non-bonded

long-range force without actually interacting with all pairs of particles in the

system [12, 21, 25, 112]. Those methods will be presented in the next section.

 The second phase of MD simulation is motion integration which applies the

computed forces to update the particle coordinates and velocities [30]. Various

numerical schemes (such as the Verlet and leap-frog algorithms) are used, each

with its own characteristics in terms of computational efficiency, numerical

accuracy, energy conservation, and the ability to be used in long timestep

integration. With regard to the last point -- it is often the case that all types of

forces as well as particle coordinates and velocities are evaluated at the same

frequency, say 1 femtosecond. Some advanced integrators, however, evaluate

certain types of forces less frequently resulting in performance improvement.

 43

Compared to force calculation, the motion update only occupies small amount of

MD computational time. Thus it is not accelerated in this work.

3.1.1 Periodic Boundary Condition

Boundary conditions play an important role in MD simulation since they define

the surroundings of the simulation system. Without any constraint upon the

simulation boundary (free boundary), atoms near the boundary would have fewer

neighboring atoms than those in the middle of the simulation system. In other

words, those atoms surrounded by the surfaces would behave differently from

the ones residing inside the simulation domain.

 For a typical MD simulation, no matter how large the simulated system is, the

particles N it contains would be negligible compared with the number of particles

contained in a bulk system (of the order of 1023 particles) [100]. A common way

to simulate the bulk phases and minimize the surface effect is employing periodic

boundary conditions (PBC). This scheme enables an MD simulation to be

performed using a relatively small number of particles in such a way that the

particles experience forces as though they were in a bulk solution. A system with

PBC is modeled by replicating the unit cell in all dimensions to form an infinite

lattice. Thus, for a given particle, it not only interacts with the particles within the

same cell but also other particles at its image cells. A two-dimension (2D)

schematic representation of PBC is shown in Figure 3-4.

 44

 As a particle moves in the original unit cell, all of its images move in a

consistent manner by the same amount. Since all of the images are replicants of

the original unit cell with shifted coordinates, keeping only the original unit cell

(the central one with shaded color in Figure 3-4) is enough to represent the entire

MD system. When one particle leaves the unit cell by crossing the boundary,

another cell (its image) enters the central unit cell as illustrated in Figure 3-5.

Figure 3-4: 2D schematic representation of periodic boundary conditions

 45

Figure 3-5: 2D representation of particles crossing the boundary under
PBC

3.1.2 Energy Conservation

According to the laws of mechanics, the total energy (potential and kinetic) of an

isolated biomolecular system should remain constant during a simulation. In

practice, energy fluctuates on a short time period and drifts on a very long time

scale because of the finite time step, t , used in numerical integrations. The

longer the time step is chosen, the more physical time would be simulated as

well as the better performance could be achieved for each computation. The time

step, t , is determined by the fastest degrees of motion in a system (usually

bond vibrations) and must be chosen short enough so that the system is stable

and energy is conserved [44].

 Energy conversation could also be violated because of the imperfect force

evaluations performed in simulations to achieve better performance. For example,

 46

with the cutoff scheme, an error is introduced when particles move back and forth

across the cutoff radius if a perfectly smooth function is not used. Numerical

errors (e.g., round-off errors or subtracting large forces in floating point arithmetic)

are another source of energy drift.

 Energy conservation often serves as one of quality metrics of measuring MD

simulation stability. This alone is not sufficient to guarantee a realistic simulation

and does not necessarily ensure the accuracy of MD simulation in reproducing

physical phenomena. Even an ill-parameterized force field can still result in

stable but unphysical trajectories [82].

3.2 Fast Algorithms for Computing Non-Bonded Interactions

Due to the intensive computation required, several efficient algorithms [3, 12, 21,

25, 112, 127] have been developed to accelerate the MD simulation, especially

for non-bonded force calculation. In this section, we introduce two techniques to

reduce the computational complexity of the non-bonded short-range force

evaluation. This is followed by algorithms that improve the efficiency of the non-

bonded long-range force computation. Brief descriptions of those algorithms are

given in the following subsections. Some graphs in this section are drawn in two-

dimensions (2D) for the convenience of illustration, but the discussions can be

extended to three-dimensional (3D) systems without loss of generality.

 47

3.2.1 Optimizing the Computation of Short-range Interactions

Neighbor Lists

For non-bonded short-range force calculations, particles only interact with each

other at nearby distances and inter-particle forces are switched to zero when two

particles are separated beyond some cut-off distance cr . The basic idea of using

neighbor lists is to construct a set of lists that consists of neighboring particles for

each particle in the system [3]. A particle is included in the neighbor list of

another particle when the distance between them is less than mc rr where cr is a

cut-off distance and mr is a margin of safety. mr should be large enough to

ensure that no particle can travel into the cut-off sphere of another particle if it is

not on the list of that particle before the next reconstruction of the neighboring list

happens. Neighbor lists are updated periodically in a fixed time interval, or when

the displacements of particles are larger than a predefined margin mr .

 The cost of constructing neighbor lists for an N-particle system scales as

)(2NO with the system size. But with neighbor lists the computational cost of the

force and potential evaluations can be reduced to)*(MNO where M is the

average length of a neighboring list [127]. M is proportional to the system density

and pairlist radius and independent on the system size. As long as the neighbor

list needs to be updated only rarely, this is a great savings.

 Neighbor lists have proven to be efficient for small systems or those models in

which particles’ mobility is low, i.e., low temperature systems [130, 139]. It greatly

 48

reduces the number of particles to be evaluated for a given particle. As shown in

Figure 3-6, for particle i, all particles within its pairlist sphere are included in its

neighboring list (except red-color particles and itself) and only blue-color particles

residing between cutoff and pairlist sphere are overhead. Although reducing the

frequency of neighbor list updates (or by increasing the margin) could reduce the

computational expense of constructing neighboring lists, this would result in

lower efficiency since more particles than actual need will be added into the list.

Figure 3-6: Neighboring list sphere

Cell Lists

The method of Cell Lists is another technique to improve the efficiency of non-

bonded short-range force calculation [3, 139]. First, a simulation domain is

partitioned into several cubic cells. The conventional length of the cell edge is

equal to or larger than the cutoff distance. Particles are assigned to the

cutoff

margin

pairlist
 i

 49

corresponding cell based on their coordinates. For example, given a particle P, it

is assigned to the cell C, as shown in Figure 3-7 [46]. Thus, for particle P, it

interacts only with particles of the cells to which it belongs and its 8 (for a 2D

domain) or 26 (for a 3D domain) neighboring cells. If Newton’s third law is used

and only two-body interactions are evaluated, then only half of the neighboring

cells need to be checked. This means, only five cells are required for a 2D

system or 14 cells for a 3D system.

Figure 3-7: Illustration of cell-linked list algorithm

 The cost of constructing cell lists scales as)(NO with the number of system

particles by scanning particles in the system and assigning them into the

corresponding cells. Its construction effort is much less for large system

compared to neighboring list method. Many more particles than needed, however,

are included for the force evaluation process. Thus, these unnecessary

interactions result in a negative impact on the system performance.

P

C

 50

3.2.2 Computing Long-Range Interactions

Ewald Summation

Ewald Summation (or Ewald Sums) is an algorithm used to compute electrostatic

forces in a system with periodic boundary conditions [34]. It was originally

developed in 1921 to evaluate the electrostatic energy of ionic crystals [27].

Compared with direct calculation, it reduces the computational complexity from

)(2NO to)(2/3NO where N is the number of particles in a system.

 For an N-particle periodic system, the Coulomb contribution to potential energy

can be expressed as:

N

ji Zn ij

ji
i

nLr

qq
E

1,

'

32

1
 (3-6)

where the prime on the summation means that the sum is over all periodic

images n and over all particles, except i = j if n = 0; L is the length of a unit cell.

 The idea of Ewald Sums is to apply the Gaussian screening charge distribution

with the opposite sign of a point charge into a system such that the total charges

of this screening cloud exactly cancel out point charges [27]. This makes the

electrostatic potential rapidly become zero due to the screening effect. The

screening charge distribution determines how fast the electrostatic potential

decays. The narrower charge distribution is, the more quickly the potential

decays. In order to compensate for this additional screening charge distribution,

 51

the same amount of charge distribution with the opposite of sign is also

introduced into the system.

 Now, the entire calculation is partitioned into two components. The first part,

named the direct or real space sum, is contributed by the point charges screened

by oppositely charged Gaussians distributions. The direct sum is a short-range

term that converges quickly in real space, and its value can be computed with a

cutoff scheme. On the other hand, the second part, named the reciprocal sum,

represents the contribution of charged Gaussians. It is a smoothly varying

periodic function that can be represented by a Fourier series in reciprocal space

(or Fourier space). In addition, a correction term is required to exclude Coulomb

self-interactions.

 Coulomb potential energy Ei can be expressed as [46]:

)()()(skr

i EEEE (3-7)

N

ji Zn ij

ij

ji
r

nLr

nLrerfc
qqE

1,

'
)(

3

)(

2

1
 (3-8)

2

4

)0,0,0(
23

)()(
4

2

1 2

2

ke
kL

E
k

k

k

 ,

N

j

rki
j

jeqk
1

)(

 (3-9)

2)(

i
i

s qE

 (3-10)

 52

where E(r) is the real space term, E(k) is the reciprocal space term, and E(s) is the

self correction term and α is Ewald parameter.

 With an optimal α, both computational costs of real part and reciprocal terms

are)(2

3

NO . The Optimal α can be determined by the following equation:

 (3-11)

where Treal and Treci are time to compute the real space and reciprocal space

term, respectively, and V is the volume of the simulation space. The cutoff of real

space parts is:

 (3-12)

The cutoff of reciprocal space parts is:

 (3-13)

where ε represents the tolerable error.

Particle Mesh Ewald (PME) Method

Particle Mesh Ewald (PME) is an efficient technique that has been widely used to evaluate
the standard Ewald Sums due to its computational efficiency [21]. It approximates the

reciprocal part of the Ewald Sums by a discrete convolution on an interpolation grid, using
the discrete 3D Fast Fourier Transform (FFT) [97]. By choosing an appropriate splitting

parameter α, the computational complexity can be reduced from)(2

3

NO to)log(NNO .

ln

cr

 ln2 ck

6

1

2
)(

V

N

T

T

reci

real

 53

Careful evaluation of the interpolation scheme and mesh size is required to achieve high
simulation accuracy and speed. The basic procedure of is illustrated in

Figure 3-8 [46] and consists of three steps as follows.

1. Assign particles’ charge to mesh points

2. Compute energy with FFT/IFFT

3. Interpolate forces back to particles

The complexity of the first and third steps is)(NO while that of the second step

is)log(NNO which dominates overall computations.

Figure 3-8: PME computational steps

 The Lagrange interpolation scheme for charge assignments and force

interpolation is adopted in the original PME method. However, since the

Lagrangian weight function is only piecewise differentiable, energy and force

1

2

3

 54

have to be evaluated separately. Most importantly, energy conversion cannot be

satisfied. An improved scheme, Smooth PME (SPME), was developed to handle

these difficulties [25]. A B-spline interpolation technique was used to replace the

Lagrange-based method such that force can be obtained by directly

differentiating energy and energy is thus conserved.

Multigrid Method

First introduced in the 1970s by Brandt [15], the multigrid method was originally

used to solve partial differential equations (PDEs) and now has become an

efficient technique to evaluate the electrostatic force. For a system which

contains N particles, the computational cost of multigrid method is)(NO , whereas

the direct calculation, the Ewald Sum, and PME are of order of)(2NO ,)(2

3

NO ,

and)log(NNO , respectively [97]. The general steps of the multigrid method are

described as follows:

1. Interpolate and assign particles’ charge on a grid

2. Apply multigrid method to solve Poisson’s equation on the grid

3. Back Interpolate forces and energy from the grid domain to particle space

 Compared with the standard Ewald Sum method and its variants such as PME

and SPME, the multigrid method not only reduces the cost of force computations

but also offers several advantages. These include no PBC requirement, ease of

 55

parallelization, and no FFT. Therefore, the large communication overhead

associated with the 3D FFT computation can be avoided.

 Although the multigrid method helps reduce the computational complexity of

force evaluation, to achieve a high-quality energy conversion, it consumes more

time compared to Fourier-based schemes such as Ewald sum, PME, and SPME.

For a given accuracy, it was reported that the multigrid method was 1.85 times as

expensive as PME method on single processor [102] although it could become

competitive with and eventually faster than the PME method for a parallel system.

Most of highly tuned MD software packages employ PME or its variants to

compute electrostatic forces. In order to deliver a widely acceptable MD

accelerator, integrating with mainstream packages should also be taken into

account.

3.3 MD Software Packages

A number of MD software packages have been developed and widely used in the

community, each with its own features and goals [14, 59, 66, 76, 78, 94, 115].

Four of the most popularly used packages are briefly reviewed in this section.

 56

3.3.1 NAMD

NAMD (NAnoscale Molecular Dynamics) is an MD simulation package that is

regarded for its high scalability and parallel efficiency [94, 108]. It was written in

C++ with Charm++ parallel objects and can be scaled up to hundreds of

processors on a high-end parallel system [94]. It was developed by the

Theoretical and Computational Biophysics Group (TCBG) of the University of

Illinois, Urbana-Champaign (UIUC) and designed for high-performance

simulation of large biomolecular systems [84]. NAMD uses VMD (Visualization of

Molecular Dynamics) [129], which is a popular molecular graphics program, for

the initial simulation setup and the visualization of trajectory analysis [60].

 NAMD uses a hybrid decomposition scheme, combining the advantages of

spatial and force decompositions, to achieve high scalability [94]. Particles are

grouped together in a patch with the cell-list method. The length of the cell edge

is extended to be slightly larger than a cut-off radius to give a margin, which

allows atoms to move within a cell box between several time intervals and

hydrogen atoms to reside with their parents in the same cell for faster distance

checking. This could reduce the overhead of the cost of updating the cell-list. A

number of computing objects are created and assigned to each processor to

perform the force evaluation between neighboring patches. This allows NAMD to

balance the system by dynamically distributing the computing objects to

processors. The PME method [21] was adopted to compute long-range forces; it

is evaluated every four time steps by default.

 57

NAMD-Lite

Despite of NAMD’s excellent reputation and popularity, extra complications may

be introduced to the development due to its complex parallel structure. NAMD-

Lite [53] was developed by UIUC TCBG group in 2005 to minimize design

complications. It is a prototyping framework whose purpose is to simplify and

smooth the development process and to provide a simpler way to examine and

validate new features before integrating them into NAMD [85].

 Although the performance of NAMD-Lite is not comparable to that of NAMD

because of its serial implementation, it enables the integration of new algorithms

and supports multiple schemes of force and energy evaluations, e.g., multiple

switching and shift functions, PME, and multigrid. Thus, it makes our FPGA

integration work relatively straightforward, allows us to explore new algorithms,

and lessens implementation complications before porting designs into production

NAMD codes.

3.3.2 GROMACS

GROMACS (GROningen MAchine for Chemical Simulations) was designed to

achieve superior performance on a single processor [76]. It was originally

developed at the University of Groningen, The Netherlands, in the early 1990s

and written in ANSI C. It does not have its own force field, but is compatible with

GROMOS, OPLS, AMBER and ENCAD. It also provides high flexibility to allow

 58

users to add new force routines, specify tabulated functions, and customize the

analysis.

 A combination of many efficient algorithms have been embodied in

GROMACS to accelerate its simulation, including optimization of neighbor search

and inverse square root, specialized non-bonded kernels, customized techniques

to avoid conditionals in the loop for PBC and force evaluations, and highly tuned

hand-coded routines [115].

 A new feature, the “eight shell domain decomposition” algorithm, has been

implemented in the latest version (GROMACS 4) to replace the previous particle

decomposition scheme. This minimizes inter-processor communications and

increases scalability [59]. In addition, multiple-program multi-data (MPMD) PME

parallelization, which divides domain tasks to direct and reciprocal spaces, is

supported to reduce 3D FFT communication. Together with those newly added

features, GROMACS now not only has extreme high performance on a single

processor but also achieves high scalability on parallel machines.

3.3.3 Desmond

Desmond [14, 108] is a relatively new MD software package developed by D. E.

Shaw Research (DESRES). It contains several novel features that significantly

accelerate parallel MD simulations. These include a new parallel algorithm of

spatial decomposition and a message passing technique that helps reduce

 59

communication overhead. It has been shown that Desmond can deliver

outstanding simulation throughput and high scalability [14].

 Desmond uses both spatial and force decomposition methods to process the

pairwise interactions in a way similar to other MD codes. In traditional spatial

decomposition methods (Half-Shell as a typical example), the communication

cost scales as)(3RO , where R is a chosen cut-off distance. A new parallel

algorithm specialized for the range-limited N-body problem, Neutral Territory (NT),

is implemented to further reduce the amount of the data each processor has to

import and scales well with the number of processors. The communication

overhead of a given processor scales as)(2/12/3 pRO where p is the number of

processors [108].

 Although Desmond can be configured to use either the single-precision or

double-precision arithmetic mode, it is shown that the single-precision arithmetic

can have much better performance by reducing the usage of memory and

network bandwidth, and by allowing the usage of SIMD extension. Several

numerical techniques have been applied to maintain numerical accuracy while

gaining speed, such as fixed-point arithmetic for particle position updates during

motion integration, and non-associativity via having a unique ordering of particles

and computations.

 Combining the reduction of the communication cost and the feature of single

precision arithmetic computation, Desmond can achieve outstanding

 60

performance in terms of high scalability and throughput for large commodity

clusters.

3.3.4 ProtoMol

ProtoMol (PROTOtyping MOLecular dynamics) was developed by University of

Notre Dame and is a high-performance object-oriented MD software package

written in C++ [78]. One of its main features is the ease with which it allows

prototyping of novel algorithms. This great flexibility has been demonstrated in its

electrostatic force evaluation where several fast algorithms, including Ewald,

PME, and Multigrid (MG) summation, have been implemented. Unlike other MD

packages, where PME is typical used to evaluate the electrostatic force

interaction and only applied for periodic boundary conditions, in ProtoMol MG

summation can be used either in vacuum or periodic boundary conditions. This

reduces the computational complexity to)(NO .

 ProtoMol uses the method of replicated data to parallelize its computations

[78]. Although this method reduces design complications, it does not scale well to

large systems (with hundreds of processors) due to its high communication

overhead.

3.4 MD Accelerators

Several methods have been used to accelerate MD simulation, including well-

known ASIC-based systems such as MD-GRAPE [71], MD Engine [125], and

Anton [109, 110]; graphic processing units (GPUs) [7, 80, 93, 96, 117]; and

 61

FPGAs [11, 46, 47, 48, 49, 51, 69, 75, 104, 105, 106]. In this subsection, a brief

review of various MD accelerators is presented.

3.4.1 Application-Specific Integrated Circuit (ASIC)

 MDGRAPE-3

The MDGRAPE-3 system [23, 36, 37, 68, 71, 86, 87, 88, 121, 122, 123,

125] is a special-purpose hardware accelerator for classical MD

simulations. Its architecture is similar to its predecessors, the GRAPE

(GRAvity PipE) systems [71]. These were originally developed to solve

gravitational N-body simulation and further extended to accelerate

classical MD simulations.

 The MDGRAPE-3 system can achieve petaflops performance in the

normal mode. It consists of a host computer and special-purpose MD

engines. The special-purpose MD engines are only responsible for non-

bonding forces evaluations, including electrostatic and intermolecular

forces, which dominate most of the computations while leaving the

remaining work to the host.

 The MDGRAPE-3 chip, which is able to reach 200 Gflops peak

performance at 300 MHz, has 20 force calculation pipelines and can

accommodate up to 32,768 particles. It uses both floating-point and fixed-

point arithmetic while most of calculations are carried out by single

precision mode. The complete MDGRAPE-3 system contains 4,778

 62

dedicated MDGRAPE-3 chips, each capable of performing 200 Gflops. Its

peak performance can therefore reach one petaflops in total.

 Anton

Anton, a special-purpose massively parallel machine, promises to deliver

the classical MD simulation through the millisecond-scale [109]. This

requires improving on currently available MD simulation packages by the

three orders of magnitude (500x for NAMD, 100x for Blue Matter, and 80-

100x for Desmond) [109]. It was implemented by D. E. Shaw Research

and became operational on late 2008 [110]

 Anton uses the same “Neutral Territory” method as the one in Desmond

to reduce communication overhead and implements special-purpose logic

to greatly accelerate the most time-consuming tasks of MD simulation.

The initial system consists of 512 MD-specific processing nodes. Each

node contains an MD computation engine on a single ASIC. Nodes

interact with one another with a specialized high-speed communication

network organized in an 8 x 8 x 8 toroidal mesh.

 The high throughput interaction subsystem (HTIS) is mainly responsible

for the pairwise interaction as well as the charge distribution and force

interpolation. It has 32 Pair-wise Point Interaction Modules (PPIMs), each

containing a 26-stage force pipeline (running at 800 MHz) to compute the

force between particle-pairs with the fixed-point arithmetic logic. The

 63

flexible subsystem controls the ASIC and handles the remaining tasks,

including the bonded-force computation, the FFT and force correction, and

integration tasks.

3.4.2 Graphics Processing Units

With their tremendous arithmetic performance and wide availability, modern

graphics processing units (GPUs) provide a compelling alternative for

numerically intensive computations. It is well-known that GPUs can perform over

a trillion floating point operations per second, and that they are inherently data

parallel [96, 117]. Recently, with the introduction of high level programming

languages such as CUDA (Compute Unified Device Architecture), GPUs have

become even more appropriate for scientific computations. Another key

advantage of GPUs, compared to other hardware accelerators, is their cost

efficiency due to the high demand and growth of the gaming market.

 With the features of massive data parallelism, high peak arithmetic and

memory bandwidth, GPUs can execute small tasks in parallel to substantially

outpace traditional CPU performance for certain particular applications. MD

simulation is one of these appropriate candidates due to its intensive

computational complexity.

 NAMD-GPU

GPUs have been used in NAMD to perform non-bonded short-range force

(both LJ and short-range part of electrostatic forces) interpolation while the

 64

remaining tasks are left to CPU [96, 117]. Instead of neighbor lists that

were commonly adopted in software codes, cell-lists are implemented and

used in NAMD-GPU to avoid the long latency of GPU on-board memory

access since on-chip caches are too small to accommodate whole

neighbor lists. Piecewise linear interpolation is used to evaluate force and

energy functions. It was demonstrated that four Tesla GPUs could

outperform a cluster with 16 quad-core CPUs on the NCSA Tesla-based

Lincoln cluster for the STMV (virus) benchmark that consists of one-million

particles [91]. A similar technique is also used in Folding@home to

accelerate the LJ force calculation in GROMACS [31, 35]. An overview of

GPU general architecture is shown in Figure 3-9 [92, 93].

 65

Figure 3-9: NVIDIA GeForce 8800 GTX architecture (diagram courtesy from
NVIDIA)

 HOOMD/HOOMD-blue

HOOMD [7] stands for Highly Optimized Object-oriented Many-particle

Dynamics and HOOMD-blue is a direct continuation of HOOMD project.

HOOMD was developed at Ames Laboratory and is able to perform

general-purpose MD simulations by taking advantage of modern GPUs to

attain a level of performance equivalent to dozens of processor cores on a

 66

fast cluster. It was reported that MD simulation was fully implemented on

NVIDIA GeForce 8800GTX. A speedup of up to nearly 60x was reported

for Lennard-Jones liquid simulations with neighbor lists [7].

 In [7], Anderson et al. presented the software re-engineering schemes

of how to map MD CPU codes to GPU implementations in details. In

addition, a particle reordering scheme with Hilbert curve was implemented

to improve the cache-hit rate and thus increase performance.

 The current release of the GPU implementation only supports the

evaluations of bond, angle and non-bonded short-range force (LJ force).

Electrostatic force computation is under active development. Future

enhancements include support of dihedral potential and mixed precision

(single and double) calculations.

3.4.3 FPGAs

FPGAs are a type of programmable logic device. They contain abundant

programmable logic and interconnect fabric. In most FPGAs, the basic logic

element usually contains lookup tables and flip-flops. Customized logic functions

can be performed by configuring and connecting these elements.

 The main advantage of the FPGA is its programming flexibility that allows

users to explore novel algorithms, optimize implementations with various

configurations, and quickly respond to any design change. Recently, FPGAs

have increased their capability with added capacity and several advanced

 67

features. These include hard components such as multipliers and block RAMs,

but also support for a new generation of semi-hard floating point cores. With

these, FPGAs have expanded their application space from traditional domains of

signal and image processing to linear algebra and even scientific computing.

Much work has recently been done accelerating MD simulation on FPGAs. Most

of the prior studies have concentrated on the most computationally intensive

tasks, e.g., the non-bonded short-range force calculation, while only few of them

explored other kernels. We now provide a brief review of this FPGA work.

 In 2004, N. Azizi, et al. [11] implemented a preliminary MD system on

Transmogrifier 3 (TM3) system which contained four Virtex-E 2000E devices and

one 256k x 64 bit external SRAM. The all-to-all LJ forces calculation and velocity

Verlet algorithm were implemented. Numerical computation was carried out by

fixed-point arithmetic with various scaling factors and precisions. The LJ force

was computed with table look-up interpolation and the system was able to

perform up to 8,192-particle simulation. The support of multiple particle types,

however, was not reported. The system was validated with an academic C-based

software MD simulation, MD3DLJ, and on the order of 1% RMS error was

reported for both force and energy evaluations. The details of error analysis

about numerical precision and scaling factors, however, were not given. The

performance was reported to be 0.29 that of the original software code running

on a PC with a 2.4 GHz Pentium 4 due to limited memory bandwidth and low

clock speed. It was reported that a speedup of 20X could be achieved if the

 68

implementation were scaled to more advanced FPGA devices and the memory

system improved.

 Several papers were presented by R. Scrofano, et al. [104, 105, 106]. In [105],

an implementation of direct computation with double precision FP arithmetic was

carried out to calculate LJ force and potential. A throughput of 3.9 GFLOPS was

achieved with two force pipelines placed on a virtual Virtex-II Pro XC2VP125-7

chip.

 In [104], a similar force pipeline with single precision FP arithmetic was

implemented on a SRC 6e MAPstation. The SRC system has two Xilinx Virtex-II

XC2V6000-4 FPGAs of which only one was used. The force pipeline was

responsible for LJ calculations as well as Coulomb force evaluations that were

approximated by the cut-off approach. Compared to more sophisticated methods

like PME, 5% or less difference was estimated due to the shift-force

approximation. A neighbor-list scheme was adopted to reduce the number of

particle pairs that need to be evaluated. A 2x speedup was obtained; only one

pipeline was implemented due to the area and memory constraints.

 A modification was made in 2006 to improve the accuracy of Coulomb force

calculation. Smooth Particle Ewald Sums method [25] was implemented to

replace the previous cut-off shifted-force approximation for electrostatic force

evaluation [106]. Only the real-space part of SPME was accelerated in hardware

while the reciprocal-space part was still executed in software on the host. Direct

evaluations of non-bonded short-range forces were performed with single-

 69

precision floating point arithmetic, except)(xerfc and
2xe which were

approximated by table lookup interpolation. Two testbenches of 52K and 33K

particles were reported and 2.7-2.9x speedup was achieved over software codes.

 Another effort was made by Lee [75] to accelerate the reciprocal part of SPME

on a Xilinx XC2V2000 FPGA. The computation was performed with fixed-point

arithmetic that has various precisions to improve numerical accuracy. Due to the

limited of logic resources and slow speed grade, the performance was sacrificed

by some design choices, such as the sequential executions of the reciprocal

force calculation for x, y, and z directions and slow radix-2 FFT implementation.

The performance was projected to be a factor of 3x to 14x against the software

implementation running in an Intel 2.4GHz Pentium 4 processor.

 In [69], a simplified version of NAMD was accelerated on the SRC-6

MAPstation (MAP) platform. The modified NAMD code eliminated the bonded

force calculation. Only non-bonded short-range forces were evaluated by table

look-up interpolations with single precision FP arithmetic in hardware. Several

design choices were analyzed and implemented. It was reported that a 1.3x

speedup can be achieved against the software by using both FPGAs on a single

SRC-6 MAP and 3x speedup can be obtained with a series-E MAP for a

simulation of 92K particles system.

 H. Guo, et al. [51] presented an FPGA-accelerated MD simulation system that

used cell-list scheme and filter logic to remove extraneous pairwise interactions.

 70

The design was implemented on the system that consisted of a 2.66 GHz

Pentium 4 and Xilinx Virtex-II-Pro FPGA and it was reported that a 12x speedup

was achieved over the software for small benchmarks. The LJ force was

evaluated with Lagrange linear interpolation in fixed-point arithmetic. The

electrostatic force computation, however, was not supported and the analysis of

force accuracy and details of filter design were not presented. Compared to our

filter design presented later, about 50% filter efficiency was reported and the

issues of load balance and particle queuing were not addressed.

3.4.4 Previous Implementations

A high performance FPGA-based MD system was designed and implemented by

Yongfeng Gu in our research group in 2007 [46, 47, 48, 49]. It was reported that

the system obtained substantial (5-9x) speedup over a highly tuned MD package

and supported MD simulations up to 256K particles [46]. The system was

composed of a standard PC with 2004-era COTS FPGA (Xilinx Virtex II Pro

VP70) in which the pipeline accelerator was implemented. Several innovations,

including a novel arithmetic mode, use of cell-lists, off-chip memory management,

and non-bonded force exclusion, were included in the system.

 In this section, several features of the FPGA-based MD system are highlighted

and reviewed briefly.

 71

 Force Computation Schemes

In MD simulation, a common method to compute inter-particle forces is to

use table lookup and interpolation. This method can speed up the

evaluation of forces that are expressed by the formulas containing

transcendental functions and complex operations [133]. A loss of accuracy

in the resulting trajectories of particles, however, is unavoidable. Besides,

due to rapid changes of non-bonded force values, using an integer

representation with fixed scaling is not sufficient to accommodate the

dynamic range of force field. Moreover, the cost of floating point arithmetic

is still expensive (for the 2004-era FPGA chips in which the system was

implemented). A novel arithmetic mode, semi-floating point, and table

lookup interpolation using the third-order orthogonal polynomial are

employed to tackle these challenges.

 Interpolation Methods

Given fixed computational resources, how to optimize a design to meet

various targets is not straightforward. The number of points within each

interval section, the type of polynomial, and the order of interpolation are

the variables that affect computational quality. In addition, the number of

pipelines that fit into a chip should also be taken into account since it

greatly affects resulting acceleration speed.

 72

 In order to improve interpolation accuracy, a non-uniform separation method is used.

This is based on the observation that the curve of xr changes rapidly over the range of
possible interaction radii as shown in

Figure 3-10 [46]. The curve is flatter at well-behaved sections where two

particles are separated much far away. In our FPGA-based system, the

length of each section is twice that of the previous section; however, each

section is partitioned into the same number of interpolation intervals.

 Three interpolation schemes, Taylor, Hermite, and Orthogonal, were

considered. They were evaluated from different perspectives:

interpolation order, number of points within each interval section, and

relative RMS error. Orthogonal polynomial interpolation was found to offer

the best performance under the same combination of interpolation order

and interval numbers [46].

Figure 3-10: Logarithmic intervals for r-x interpolation

r2

r-x

Section

 73

 Semi-Floating Representation

In most MD software packages, force calculation is performed by floating

point (FP) arithmetic. The expensive cost of FP operations, however,

makes use of FP computations difficult. On the other hand, the dynamic

range of the non-bonded force is too big to be represented by a fixed point

numbering system. In order to keep good simulation quality, as well as to

reduce computational costs, an efficient alternative, semi-floating point, is

proposed. This method takes advantage of the characteristics of the MD

force computation.

 For a given input 2r , the scaling factor (exponent) at each stage of

interpolation pipeline can be determined by the position of leading “1” of

2r . In addition, differences in scaling factors of addends are known. The

key observation is that there are only a limited number of combinations of

scaling factor pairs. This can be used to create an efficient numbering

system, the semi-floating point representation. This is a fixed point

numbering system whose data format is 35-bit fixed point number, but with

a dynamic binary point which is able to shift based on the value of the

input data (2r). The efficient precision obtained by using semi-floating

format is based on the considerations of computation resources and

acceptable energy fluctuation [46]. Its use allows designs to take

advantage of low latency and fewer resources of fixed point computations

while yielding acceptable results.

 74

Chapter 4 Force Pipeline Design and Optimization

Accelerating MD simulations using HPRC have been widely explored and studied.

However, delivering cost-effective production applications has proved

challenging. In addition, given the intensive competition from multicore and other

types of hardware accelerators such as GPUs, a question arises as to whether

MD using HPRC can be competitive. In this chapter, we concentrate on the MD

kernel computation: determining the nonbonded short-range force between

particle pairs. We examine it in detail to find the performance limits under current

technology and methods. We systematically explore the design space of the

force pipeline with respect to arithmetic algorithm, arithmetic mode, numerical

precision, and various other optimizations. Moreover, we use Altera floating point

datapath compiler to further optimize the implementations. Various designs are

presented and examined. Several design considerations and challenges are also

addressed.

4.1 Overview

As described in Chapter 3, forces in MD simulations can be classified into two

categories: bonded and nonbonded. For an N-particle MD system, the

computational complexity of nonbonded force evaluations is)(2NO whereas that

of the bonded term is)(NO . A common way to reduce the computational

complexity of nonbonded forces (LJ and Coulomb) is applying a cut-off that

makes a particle interact only with its neighboring particles within the cut-off

 75

radius. This drastically reduces the number of particle pairs that needs to be

evaluated, even given the more complex bookkeeping scheme required to keep

track of cell- or neighbor-lists.

 However, a problem with cut-off is that, while it offers sufficient accuracy for

the evaluation of the rapidly declining Lennard-Jones force, neglecting the slowly

decaying Coulombic force beyond a cut-off radius often introduces intolerable

errors into MD simulations. Lennard-Jones and Coulomb forces for particle i can

be expressed as follows:

ji
ij ji

ab

ji

ab

ab

abLJ
i r

rr
F

814

2
612

 (4-1)

ij

ji

ji

j
i

CL
i r

r

q
qF

)(

3
 (4-2)

where εab and σad are parameters related to particle types and ijr is the relative

distance between particle i and j. iq and qj represent the charges of particle i

and j.

 As described in the Chapter 3, in order to reduce the expensive computational

cost as well as obtain high simulation quality, several numerical schemes have

been developed to solve the Poisson equation that translates charge distribution

into a potential distribution. These schemes usually split the original Coulomb

force curve into two parts with a smooth function)(rga , i.e., a rapidly declining

short-range part, and a flat long-range part. This is shown in Equation (4-3) [46]

 76

)())(
1

(
1

rgrg
rr aa (4-3)

where two components are illustrated in Figure 4-1.

Figure 4-1: Smooth function (a) Left is the original 1/r and the smoothing
function)(rga . (b) Right is 1/r -)(rga

 The short-range part,)(
1

rg
r a , declines quickly enough such that it can be

neglected beyond cutoff radius while)(rga changes slowly with distance. Hence,

the short-range part can be evaluated in the same way as LJ force and the entire

nonbonded short-range force can be expressed as:

)
)(

(
/

3814

r

rg
rQQrBrA

r

F
a

jijiabjiab
ji

short
ji

 (4-4)

where abA and abB are pre-computed coefficients and QQ is the product of

charge of two interacting particles. The selection of the smoothing function

depends on users’ requirement and preference. It can be a Gaussian distribution,

as the one used with Ewald Sums and its variants, or others.

 77

4.2 Pairwise Nonbonded Force Computation

In this section, several FPGA implementations of Equations 4-1 and 4-2 will be

presented. All are fully pipelined and, on every cycle, input pairwise positions and

output the corresponding forces. Numerous design axes are described at the

beginning of this section. The ones that visibly affect the design are follows:

direct computation versus lookup table with interpolation (LUT); for LUT, order of

interpolation; for direct, whether the Altera FP compiler is used or the FP cores

directly; and whether fixed-point arithmetic is used for part of the computation.

 The last two require further explanation. The Altera floating point datapath

compiler (FPC) optimizes floating point datapaths by removing redundancy

among operators and by making trade-offs in using various component types,

e.g., using hard or soft components as available [72].

 The second axis requiring explanation is float versus hybrid fixed/float. The

problem arises from the force accumulation stage at the end of the pipeline.

During force computation, the coordinates of particle i and particle j are read to

compute corresponding forces, and the new partial forces are accumulated with

the running total force if and jf until all neighboring particles of reference particle i

are processed. A floating point addition usually requires more than a single cycle,

although since it is pipelined this does not necessarily change throughput. A

read-after-write hazard occurs if the same particle’s force is referenced on

successive cycles. The hazard caused by force accumulation on particle j can be

 78

removed without applying Newton’s third law, which results in doubling the

number of force evaluations [138]. Such schemes, however, still cannot reduce

the hazard on the reference particle i.

 There are several solutions to solve this problem: (i) stalling the pipeline, (ii)

applying a single pipelined floating point unit [140], (iii) orchestrating particle

processing so that hazards are avoided, (iv) accumulating the forces by using a

more complex structure, such as a reduction tree, or (v) saving the force in

integer format rather than floating point. In the last case, addition can be

completed in a single cycle. Integer operations are also more area efficient than

floating point, and if it done carefully, result in no loss of precision. The

GROMACS code and the Protein Explorer, for example, both use mixed

fixed/floating point [115, 123]. Moreover, another benefit of using fixed point

rather than floating point is to overcome the shortcoming of non-associativity of

floating point arithmetic. During the force accumulation at the end of pipeline, the

range of force values could vary substantially. In the extreme case, a loss of low

order bits occurs and cannot be recovered later for the floating point arithmetic.

 In the rest of this section, we show how these alternatives cause the force

pipeline and performance to vary.

 79

Figure 4-2: Data flow of nonbonded short-range force pipeline

4.2.1 Force Pipeline Design

Figure 4-2 shows the data flow of the nonbonded short-range force pipeline. The

pipeline consists of several functional blocks that are now described.

Forces (32-bit Fixed)

Distance Square Computation
(FP/Fixed)

LJ + Coulomb Force Pipeline (FP)

Particle Force (32/36-bit fixed)

Particle Coordinates (32-bit fixed)

Optional FP/Fixed Converter

Optional Fixed/FP Converter

Force Distribution
(FP/Fixed)

 80

1. Periodic Boundary Condition Logic: The first stage of the force pipeline

calculates the distance between two particles. If periodic boundary

conditions (PBC) are applied, the distance computed must be the shortest

one between any mirror images of each particle. The particle distance is

computed first and tested with the length of the simulation box. The

operation can be performed in either fixed or floating point.

2. Distance Squared Computation logic: This squares the three-

dimensional (3D) components of the distance between two particles. The

operation can be performed in either fixed or floating point.

3. LJ+Coulomb Force Logic: This is the core of force computation. Several

implementations are described and then examined from various

perspectives such as resource utilization and simulation quality. The

computation is performed with floating point arithmetic because of large

dynamic numerical range required for nonbonded short-range forces. The

designs can be implemented either with table lookup (with various

interpolation orders and table densities) or direct computation (DC) (with

the choice of using floating point (FP) cores or the FP compiler).

4. Force Distribution Logic: This applies the computed pseudo force to the

3D components of the distance between two particles. The operation is

processed in either fixed or floating point. At the end, forces are converted

to fixed point for the accumulations.

 81

Figure 4-3 illustrates the major functional units of the force pipelines. The force

function evaluators are the diamonds marked in red; these are the components

that can be implemented with the various schemes. The other units remain

mostly unchanged throughout the designs. The three function evaluators are for

the r-14, r-8, and r-3 components of Equation 4-4, respectively. In particular, the

Coulomb function uses the r-3 term but also includes the smooth function shown

in Equation 4-3.

 82

Add

Subtract Subtract Subtract

Square Square Square

Multiplier

Multiplier Multiplier Multiplier

Compare Compare

Mux

Mux Mux Mux

Coulomb
Function Vdw Function 1 Vdw Function 2

r-14 r-8 r-3 0 0 0

Exclusion Test

Cutoff Test

Threshold Cutoff

X Y Z

X2 Y2 Z2

r2

Particle Pair Position Vectors
Particle Charges

A B

 83

Figure 4-3: Force pipeline template

4.2.2 Table Look-up with Interpolation

Since nonbonded force calculations constitute the “inner loop” of MD,

considerable care is taken in their implementation. A major consideration is

whether to compute them directly or to use table look-up with interpolation.

Interpolated solutions to function computations have been used in computing

since its earliest days. Their application to MD dates at least to 1983 when

Andrea et al. reported using a fifth order polynomial approximation [8]. Wolff and

Rudd studied the idea in more details and proposed using first order interpolation,

but also increasing the table size as necessary to ensure sufficient accuracy

[133].

 We now briefly describe the method. Early versions used a single table for the

entire LJ force as a function of particle separation [11, 48, 133]. The index used

is
2

ijr rather than ijr so as to avoid the costly square-root operation. This

 84

method is efficient for uniform gases where only a single table is required,

because it is not necessary to distinguish atom types, and the lookup table is a

function only of displacement. As the Lennard-Jones force depends on atom

types, however, simulations of T different atom types require T2/2 tables; this is

prohibitive for FPGAs for many classes of simulations.

 A different method, also used in most MD codes, uses multiple tables, one

each for a different part of the computation [46]. For example, Equation 4-4 can

be rewritten as a function of 2
ijr :

)()()(
)),((2

3

2

8

2

14

2

ijbaijabijab
ij

ij
short

ij
rRQQrRBrRA

r

barF
 (4-5)

where ,, 814 RR and 3R are lookup tables indexed with
2

ijr and abab BA , are

parameters related particle types (type “a” and “b”) and aQ and bQ are the particle

charges.

Section

 85

Figure 4-4: Table look-up varies in precision across r-x interpolation. Each
section has a fixed number of intervals.

 The interval scheme used in the tables is shown in

Figure 4-4 [46]. Each curve is divided into several sections along the X-axis such

that the length of each section is twice that of the previous [46]. Each section is

cut into the same number of intervals N. To improve the accuracy, higher order

terms can be used. When the interpolation is order M, each interval needs (M+1)

coefficients and each section needs N * (M + 1) coefficients:

3
3

2
210)(xaxaxaaxF (4-6)

Equation 4-6 shows third order interpolation with coefficients ia . Accuracy increases with

both the number of intervals per section and the interpolation order. The dataflow of a
third order interpolation pipeline is illustrated in

Figure 4-5.

DxCxBxAxf *)*)*(()((4-7)

 86

Figure 4-5: Arithmetic flow of a function evaluated with table lookup and 3rd order
Interpolation.

 We now present a sample of the methods of force computation adopted in

widely used MD packages and systems (see Table 4-1). Clearly, there are a wide

variety of parameter settings that have been chosen with regard to cache size

(CPU), routing and chip area (Anton), and the availability of special features

(GPU texture memory). The parameters also have an effect on simulation quality,

which will be addressed later.

Optional Fixed/FP Convert

_

r2

x (delta) = r2 – x0

*

*

*

+

+

+

x0 (extracted from r2)

B3, B8, B14

C3, C8, C14

D3, D8, D14

A3, A8, A14

x

r-3, r-8 , r-14

x

 87

Table 4-1: Sample implementations of table look-up interpolation

 Order Index Interval density Segment size

NAMD (CPU) [84] 2 r2 768 (total) Exponentially

NAMD (GPU) [117] 1 r-1 512 (total) Exponentially

CHARMM [89] 2 r2 10-25 per Å Uniform (1 Å)

ANTON [74] 2/3* r2 256 (total) Variable

GROMACS [45] 2 r2 500 (2000)** nm Uniform (1nm)

* Anton used cubic polynomial to interpolate energy/force. However, no further details were
specified about the interpolation order of force evaluation.

** 500 per nm for single-point floating and 2000 per nm for double precision floating.

4.3 Performance Comparison of Design Alternatives

We obtain the potential performance by multiplying the number of results

obtained per cycle by the operating frequency. If the same operating frequency

can be retained, fewer resource utilizations consumed by a single force pipeline

represents higher performance. Hence, in the rest of this section, the space of

possible solutions with respect to resource requirements will be explored. All

resource utilizations are post Place and Route (P&R) with respect to the Altera

Stratix III EP3SE260 FPGA.

 88

Numerical Precision

Most of conventional MD software packages perform force evaluations in double-

precision floating point arithmetic, although highly optimized MD packages, e.g.,

GROMACS and Desmond, use single-precision or even fixed-point to gain

performance [14, 108, 115]. In contrast, MD accelerators, including those using

GPUs, ASICs, and FPGAs, are usually implemented in fixed-point or single-

precision. This is because of resource constraints and performance

considerations [11, 46, 109, 117]. The main reason of using double precision is

to avoid cumulative rounding errors in long simulations and minimize the impact

of non-associativity in floating point arithmetic. As long as the divergence from

the “exact” atomic trajectories is not the main concern, a system that uses single-

precision arithmetic would still explore realistic configurations during the

simulations [95].

 As described earlier, a large dynamic range in the numerical format is required

when evaluating the nonbonded short-range force kernel, especially the Lennard-

Jones force. But compared with fixed-point, floating point arithmetic usually

consumes substantially more hardware resources and thus reduces the overall

system performance. In addition, double precision consumes 2-3x more

resources than single precision. But if they are done carefully, some calculations

can be still be performed in fixed-point arithmetic, especially when large dynamic

numerical range is not required, e.g., the distance calculation.

 89

Precision vs. Resource

0

5

10

15

20

25

30

35

40

SP HYB SP DP HYB DP
Implementation

U
ti

liz
a

ti
o

n
 (

%
)

Logic

Multiplier

Figure 4-6: Resource utilization of various precision
implementations for Stratix III.

 Hence, a hybrid (HYB) method was adopted in our design. It uses 32-bit fixed

point for displacement and 32/36-bit fixed point for force accumulation. LJ and

Coulomb forces are evaluated in single-precision arithmetic. Figure 4-6 shows

the performance comparison between direct computation (DC) and hybrid DC

where mixed precision arithmetic is performed. Hybrid DC performs well in logic

utilization. SP and DP refer to single-precision and double-precision floating point

respectively. The reduction mainly comes from the fact that fixed-point arithmetic

is employed in the displacement calculation and the force distribution (as shown

in

 90

Figure 4-2). We observe that the while Stratix-III FPGAs have substantial floating

point support, this does not result in direct scaling from single to double precision.

The increase in resources required is 2.5× - 3× for logic, but 4× - 4.5× for the

multipliers. In addition, the operating frequency is reduced, but the quality

improves.

 Another finding is that more multipliers are required for the double precision

case since Hybrid DC performs 64 x 64 bit multiplication for the distance squared

calculation, which requires more hard-multiplier units, while DC performs 52 x 52

bit multiplication. In the HYB implementation, the square function can be

implemented with either logic elements or multipliers, depending on the

availability of FPGA resource. It provides designers flexibility for the pipeline

implementation.

 91

Method vs. Resource

0

2

4

6

8

10

12

LUT1 LUT2 LUT3 LUT4 HYB SP

Implementation

U
ti

liz
a

ti
o

n
 (

%
)

Logic

Muliplier

Figure 4-7: Resource utilization in logic and hard multipliers for
Altera Stratix III (single pipeline, hybrid-single precision for LUT
implementation).

Arithmetic Mode

Figure 4-7 shows the resource usage of various implementations but this time

emphasizing single precision and the variation in interpolation order in the

LookUp Table method (LUT). Hybrid direct computation uses less than 10% of

the hard-multiplier units and far less of the remaining logic. The 3rd order LookUp

uses a similar fraction of hard-multiplier units, but substantially more logic.

Reducing the interpolation order to 2nd and 1st allows the implementation of

perhaps another pipeline or two, but may result in a decrease in simulation

 92

quality. The simulation quality of LUT interpolation order will be addressed in the

next section.

FPC vs. Non-FPC

0

2

4

6

8

10

12

14

16

18

LUT1 LUT2 LUT3 LUT4 DC

Implementation

L
o

g
ic

 u
ti

liz
a

ti
o

n
 (

%
)

FPC

Non-FPC

Figure 4-8: Effect of using the Altera FPC on logic utilization
for Altera Stratix III (single pipeline, hybrid-single precision).

Component Implementation

The effect of using the Altera Floating Point Compiler is shown in Figure 4-8.

Several LUT Implementations of various interpolation orders are presented.

Force computations are performed in hybrid/single-precision arithmetic. The low-

order LUTs do not take advantage of most of the compiler optimizations because

the numbers of floating point operations are limited, but still result in a substantial

reduction in logic resource. This is especially helpful for saving logic for the filter

pipelines. The FPC does not help result in the reduction of hard-multiplier units.

 93

Extension and Flexibility (equation complexity)

We have described the general methods involved in computing the nonbonded

pairwise force and analyzed the potential performance for various design choices.

Here we describe some issues in their actual implementations.

 While the van der Waals term shown in Equation 4-1 converges quickly, it

must still be modified for high-quality and effective MD simulations. In particular,

a switching function is implemented to truncate the van der Waals force smoothly

at the cutoff distance (see Equations 4-8, 4-9, and 4-10).

denomdistswitchrcutoffrcutoffs *)_*3*2(*)(222222 (4-8)

denomrdistswitchrcutoffdsr *)_(*)(*12 2222 (4-9)

322)_(

1

distswitchcutoff
denom

 (4-10)

Figure 4-9: Van der Waals potential with switching smooth function

Switch distance Cutoff

Energy

Distance

0

 94

 Without a switching function, the energy may not be conserved, as the force would be
truncated abruptly at the cutoff distance and energy fluctuation could be large. The graph

showing the van der Waals potential with the switching function is illustrated in

Figure 4-9. The van der Waals force and energy can be computed directly as

shown here:

1. If)_(22 distswitchr FFUU vdwvdw ,

2. If)&&_(2222 cutoffrdistswitchr

 rvdwvdwvdw dsUsFFsUU **,*

3. If)(22 cutoffr 0,0 vdwvdw FU

The switching function can be either computed directly or embedded in pre-

computed interpolation coefficients.

 We now examine the Coulomb term. The common algorithm supported in

most MD packages of calculating the electrostatic force/energy is the Ewald

method or its variants. Particle Mesh Ewald (PME) is widely used to evaluate the

standard Ewald Sums due to its computational efficiency. It approximates the

long-range part of the Ewald Sums by a discrete convolution on an interpolation

grid; this can be performed using a discrete 3D Fast Fourier Transform (FFT).

The pairwise component is

1

1

)(N

i

N

ij ij

ijji
s r

rerfcqq
E

 (4-11)

 95

where ijr is the distance between particle i and j. erfc(x) is the complementary

error function erfc(x) = 1 – erf(x), and is the Ewald parameter.

 Since the Es computation contains the evaluation of the complementary error

function (erfc), which is expensive in FPGA logic, we use polynomial interpolation

rather than direct computation. The polynomial coefficients were pre-computed

using Matlab by finding the coefficients of a polynomial p(x) of degree n that fits

the data, p(x(i)) to y(i), in terms of least squares.

 The problem addressed here is optimizing the computation of the pairwise

nonbonded force in light of this added equation complexity. In most MD

packages, simulations can be configured to meet user requirements and

preference, e.g., using different switching or smooth functions, or various long-

range algorithms (simple cutoff, PME or multigrid). Some functions can be

evaluated directly in the FPGA; however, some, such as the erfc function, cannot.

Moreover, if there were a conditional branch, e.g., the LJ switching function, extra

resources would be required when evaluating equations directly. With the LUP

method, the switching function can be embedded in the interpolation coefficients

such that no additional resources are required.

 In summary, if the number of numerical operations involved in the direct

computation method is more than that in the LUT method, or if the equation

cannot be evaluated directly (with reasonable costs), then the LUT scheme

would be favorable. If done carefully, high simulation quality is still obtained.

 96

4.4 Quality Comparison of Design Alternatives

Since MD is chaotic, simulation quality must be validated. While statistical error is

likely to be negligible [70], systematic error can be introduced, e.g., as the motion

integration algorithm generally assumes the force is continuous and differentiable

[112]. True validation of simulation quality, such as through wet lab experiments,

is rare: the shortest observable timescales are on the order of microseconds, but

this is rarely achieved in simulation for biologically significant molecules. Another

consideration is that quality required differs by application. For example, when

simulation is an active process with frequent user intervention, then simplified

potentials are sometimes used [70]. Quality measures can be classified as

follows (see, e.g., 89, 24, 107).

1. Arithmetic error in the approximation is the deviation from the ideal (direct)

computation done at high precision (double precision). A frequently used

measure is the relative RMS force error, which is defined as follows:

)
)(

(

,,

2*
,

,,

2*
,,

i zyx
i

i zyx
ii

F

FF

E

 (4-12)

 While this can be computed precisely, it may hide effects of discontinuities

in piecewise approximations [107].

 97

2. Physical invariants should remain so in simulation. Energy can be

monitored through fluctuation (e.g., in the relatively RMS value) and drift.

A highly sensitive method used the shadow Hamiltonian [24]. We use the

following metrics to measure the stability of MD simulation (suggested by

Shan et al. [107]):

tN

i

i

t E

EE

N
E

1 0

01
 (4-13)

where E0 is the initial value, Ni is the total number of time steps in time t,

and Ei is the total energy at step (i). Acceptable numerical accuracy is

achieved when 003.0E .

As just described, direct evaluations of MD simulation quality, such as through

validation with wet lab experiments, are often impractical. Thus, surrogates are

often used. One type measures the errors with respect to a reference

computation. Another type monitors the simulation output to confirm that a

physical invariant, such as the total energy, actually is so.

 The results presented below (for items 2 and 3) are for the NAMD benchmark

NAMD2.6 on ApoA1. It has 92,224 particles, a bounding box of 108 Å × 108 Å ×

78 Å with periodic boundary conditions, and a cut-off radius of 12 Å. The

Coulomb force is evaluated with PME. The switching function is applied to

smooth the LJ force when the intra-distance of particle pairs is between 10 and

12 Å. NAMD-Lite was modified to support the quality measurements.

 98

Relative average force error

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

DC LUT1 LUT2 LUT3 LUT4
Implementation

R
e

la
ti

v
e

 a
v

e
ra

g
e

 e
rr

o
r

Single
Double

Figure 4-10: Relative average force error of the particle-particle force for
various implementation and precision. DC is direct computation, LUTn
refer to Look-UP of various orders.

1. Error per individual particle-particle force computation

Figure 4-10 shows the relative average error of pairwise nonbonded force

computations for various pipeline implementations. The reference is direct

computation using double precision (DC Double, error = 0). We generate

the particle pairs by randomly selecting particle positions between the cut-

off and exclusion radii. For the single precision LUT method, error

becomes worse for higher orders. This is because of the higher precision

required for those tables.

 99

Figure 4-11: Graphs of relative RMS force error versus interpolation
density per section for interpolation orders 0, 1, and 2.

2. Error per total force on a particle per iteration

The simulation was first run for 1000 timesteps using direct computation.

Then in the next timestep, both direct computation and table interpolation

were used to find the relative RMS force error for table interpolation. Two

temporary arrays were used to save the computed forces for the two

methods. Only the range-limited forces (switched vdw and short-range

portion of PME) were considered. All computations were done in double

precision; Equation 4-12 was used to compute the relative RMS. Results

are shown in Figure 4-11. The reference is direct computation using

double precision. All exceed the quality criteria given in Shan, et al. [107].

We note that 1st and 2nd order interpolation have two orders of magnitude

less error than 0th order. We also note that with 256 intervals per segment

 100

(and 12 segments) 1st and 2nd order are virtually identical. Users can

choose the implementation method (1st order with higher interpolation

density or 2nd order with lower interpolation density), depending on the

resource availability (BRAMs versus logic and hard-multipliers) of FPGA

devices.

Energy Plot

-2.24E+05

-2.23E+05

-2.22E+05

-2.21E+05

-2.20E+05

-2.19E+05

-2.18E+05

-2.17E+05

-2.16E+05

0 50 100 150 200
Number of Time Step (x100)

E
n

e
rg

y
 (

k
ca

l/m
o

l)

NAMD-Lite (Ref)

DP_Order2_B64

DP_Order1_B64

DP_Order0_B64

DP_Order2_B256

DP_Order1_B256

DP_Order0_B256

SP_Order2_B64

SP_Order1_B64

SP_Order0_B64

SP_Order2_B256

SP_Order1_B256

SP_Order0_B256

Figure 4-12: Graphs of energy for various designs run for 20,000
timesteps.

3. Energy conservation

The previous analyses examined the model accuracy statically. In order to

evaluate the dynamic impact of various designs on MD simuation, we

must analyze the simulation stablity of the MD system, which can be

measured in term of energy conservation and fluctuation [107]. Results

 101

with respect to energy fluctuation and drift are shown in Figure 4-12. A

number of design alternatives were examined, including the original code

and all combinations of the following parameters: interval density (64 and

256 per segment), interpolation order (0th, 1st, and 2nd), and single and

double precision floating point. We note that all of the 0th order

simulations are unacceptable, but that the others are all indistinguishable

(in both energy fluctuation and drift) from the serial reference code running

direct computation in double precision floating point.

Figure 4-13: Graphs of energy for selected designs run for 100,000
timesteps

 Three implementations were chosen for longer simulations (shown in

Figure 4-13). Using Equation 4-13 to compute E , we find that the value

for the reference code is 1.1E-4 and for both of the FPGA-accelerated

 102

codes is 1.3E-4; all are much smaller than 0.003. After 70,000 timesteps,

the values for E are all less than 1.5E-7.

4.5 Summary

FPGAs lend themselves to a particular rich design space of both opportunities

and constraints. We have explored and evaluated this space with respect to both

resource requirements and simulation quality, including numerical precision,

arithmetic algorithm, datapath optimization, equation complexity and flexibility.

For each design axis, general guidelines were given for implementing highly

competitive MD accelerators. We find that FPGAs’ BRAM architecture makes

them well suited to support unusually fine-grained intervals. This leads to a

reduction in other logic and a proportional increase in performance. Potential

performance and simulation quality for various designs have also been examined

and can serve as a guideline for FPGA MD implementations.

 Although the Altera FPC helps save logic resources and simplifies the design

process, special attention must be paid to how to formulate the target function so

that the maximum numerical precision can be preserved and the resulting design

optimized in terms of both latency and resource utilization.

 In general, more accuracy requires more hardware. Optimization of

performance versus quality, however, is not trivial. Accuracy only affects

simulation quality indirectly and highest quality simulations may not always be

needed. Direct computation (with sufficient precision) usually offers higher

 103

simulation quality although its cost may high, especially when evaluating complex

force equations or when there is a conditional branch. LUT-based methods

provide flexibility and maintain a fixed hardware cost for various force equations;

they are favored when the reduction in accuracy is acceptable. A mix of both

schemes can also be adopted.

Chapter 5 Filter Pipeline Design and Optimization

5.1 Overview

While MD generally involves all-to-all force evaluations among particles, a cut-off

is commonly applied to limit the extent of the short-range force to a fraction of the

simulation space. Two methods are commonly used to take advantage of this

 104

cutoff: cell lists and neighbor lists (as shown in Figure 5-1). With cell lists, the

simulation space is typically partitioned into cubes with edge-length equal to the

cutoff radius, rc. Non-zero forces on the reference particle P can then only be

applied by other particles in its home cell and in the 26 adjacent cells (the 3 x 3 x

3 cell neighborhood). We refer the second particle of the pair as the partner

particle. With neighbor lists, P has associated with it a list of exactly those partner

particles within rc.

Figure 5-1: P’s two dimensional cell neighborhood is shown in white; cells have
edge size equal to the cut-off radius. Particles within the P’s cut-off circle are in
P’s neighbor list [16].

 We now compare these methods.

 Efficiency: Neighbor lists are by construction 100% efficient: only those

particle pairs with non-zero mutual forces are evaluated. Cell lists as just

defined are 15.5% efficient with that number being the ratio of the volumes

of the cutoff sphere and the 27-cell neighborhood.

P

rc

rc

rc

 105

 Storage: With cell lists, each particle is stored in a single cell’s list. With

neighbor lists, each particle is typically stored in 400-1000 neighbor lists,

depending on particle density and cutoff radius.

 List creation complexity: Computing the contents of each cell requires

one pass through the particle array. Computing the contents of each

neighbor list requires, naively, that each particle be examined with respect

to every other particle: the distance between them is then computed and

thresholded. In practice, however, it makes sense to first compute cell lists

anyway. Then the neighbor lists can be computed using only the particles

in each reference particle’s cell neighborhood such that the work of

constructing neighboring list can be reduced [139].

 From the last point, it appears that the creation of neighbor lists involves not

only cell lists, but also a fraction of the force computation itself. At this point, why

not finish computing the forces of those particles that are within the cutoff radius?

Why save the neighbor list?

 Most MD codes reuse the neighbor lists for multiple iterations and so amortize

the work in their creation. However, because particles move during each iterative

step, particles can enter and exit the cutoff region leading to potential error. The

solution is to add some margin into the neighborlist cutoff such that it is larger

than the force cutoff, e.g., 13.5Å neighborlist cutoff versus 12Å force cutoff (see

Figure 5-2). There is a trade-off between the increase in neighborhood size (and

 106

thus the number of particle pairs evaluated) and the number of iterations

between neighbor list updates.

Figure 5-2: Neighborlists are often computed for a larger radius than the force
cutoff.

 Although neighbor lists have been proven to be efficient when particles move

slowly and their construction time can be reduced with the aid of cell-list scheme

[139], the shortingcomings of large storage demand and non-sequential data

transfer between processors and memory still remains and becomes significant

for large systems [32].

 The conventional approach of evaluating pairwise interactions with the cell list

method usually leads to a substantial number of superfluous computations.

Several studies have made improvements on the algorithm and investigated their

efficiency [3, 32, 42, 79, 131]. W. Mattson and B. M. Rice overcame this

Force cutoff

Neighborlist cutoff

 i

Margin

 107

shortcoming by further partitioning the simulation domain into cubes whose edge-

length is smaller than cut-off radius [3, 133]. Another approach, proposed by P.

Gonnet, reduces the number of unnecessary particle-pair calculations by first

sorting the particles along the cell axis and then only evaluating particles whose

inter-distance along the axis is smaller than the cutoff radius [42]. It was shown

that 59.4% of the particle pairs whose inter-distance is computed and tested are

actually within cutoff radius. This is almost four times better than the 16% in the

conventional cell list method and more than double the 27% from using cells with

edge-length equal to 0.5 * rc [32, 42]. U. Welling and G. Guido modified Gonnet’s

variant of the cell list algorithm by using a reordered linked cell, rather than a

plain linked cell, and adding optimal sorting to better fit a broad range of

simulation setups [131].

5.2 Coprocessor Considerations

With MD coprocessing there are additional considerations. The cell list

computation is very fast and the data generated small (both O(N)) so it is

generally done on the host (along with the motion integration): the cell lists are

downloaded to the coprocessor every iteration along with the new particle

positions. The neighbor list computation, however, is much more expensive: if

done on the host it could mitigate any advantage of coprocessing. Moreover, the

size of the aggregate neighbor lists is hundreds of times that of the cell lists,

which makes their transfer impractical. As a consequence, neighbor list

 108

computation, if it is done at all, must be done on the coprocessor. But even on

the coprocessor storage is still a concern.

 We look first at MD with cell lists. For reference and without loss of generality

we examine the NAMD benchmark NAMD2.6 on ApoA1. It has 92,224 particles,

a bounding box of 108 Å × 108 Å × 78 Å, and a cutoff radius of 12 Å. This yields

a simulation space of 9 × 9 × 7 cells with an average of 175 particles per cell with

a uniform distribution. On the FPGA coprocessor, the working set is typically a

single (home) cell and its cell neighborhood for a total of (naively) 27 cells and

about 4,725 particles.

 In actuality, Newton’s 3rd Law (N3L) is used to reduce this number. That is,

since each particle-particle interaction is mutual, it can be calculated once per

particle pair and recorded for both particles. To effect the reduction in work,

home cell particles are only matched with particles of a fraction of the cell

neighborhood, and with, on average, half of the particles in the home cell. We

refer to the subset of cells in the cell neighborhood that are processed together

with (and including) the home cell as the cell set. For the 14- and 18-cell sets

presented below in Chapter 5.5, the average number of particles to be examined

(for each particle in the home cell) is 2,450 and 3,150, respectively. Given current

FPGA technology, any of these cell sets (14, 18, or the original 27 cells) easily

fits in the on-chip BRAMs.

 Neighbor lists for a home cell do not fit on the FPGA. For example, the

aggregate neighbor lists for 175 home cell particles is over 64,000 particles (one

 109

half of 732 for each of the 175 particles; 732 rather than 4,725 because of

increased efficiency of neighbor lists over cell lists).

 The memory requirements are therefore very different for the two methods.

For cell lists, we swap cells onto and off of the FPGA as needed. Because of the

high level of reuse, this is easily done in the background. In contrast, neighbor list

particles must be streamed from off-chip. This has worked when there are one or

two force pipelines operating at 100MHz [69, 106], but is problematic for current

HPRC systems. For example, the Stratix-III/Virtex-5 generation of FPGAs can

support 8 force pipelines operating at 200MHz leading to a bandwidth

requirement of over 20 GB/s. While high-end FPGAs support this easily, memory

interfaces in commercial systems generally do not.

 From this discussion, it follows that use of neighbor lists calls for an “on-FPGA”

solution, but also that this itself appears to be impracticable due to memory and

transfer requirements. At the same time, however, the 6x potential increase in

efficiency cannot be abandoned. One way to improve efficiency is to reduce the

cell size: the smaller the cell size, the finer the granularity, and the larger the

fraction of the cell neighborhood volume guaranteed to be useful. With a cell

edge of rc/2 and a 53 set, efficiency increases to 26.8%. With more aggressive

clipping of the corner cells, efficiency increases a bit more but so does the control

complexity. More important is that reducing cell size also reduces reuse and still

leaves much inefficiency. While reducing cell size is viable, there are better

options.

 110

 The solution we propose is to use neighbor lists, but to compute them every

iteration, generating them continuously and consuming them almost immediately.

In this scenario, the use of neighbor lists can be viewed as filtering out the zero-

force particle pairs: the filter pipelines feed the force pipelines with minimal

buffering in between (see Figure 5-3). Designs and tradeoffs for this solution will

be presented in the next several sections.

 We now describe the execution flow. Processing is built around the home cell.

Position and acceleration data of the particles in the cell set are loaded from

board memory into on-chip caches, POS and ACC, respectively. When the

processing of a home cell has completed, focus shifts and a neighboring cell

becomes the new home cell. Its cell set is now loaded; in our current scheme this

is nine new cells.

 Acceleration data differs from position data in that it is read/write. That is, each

particle’s acceleration accumulates over this and other home cells. It is not

complete for any given home cell until all 27 cells in its cell neighborhood have

also been the home cell. Therefore the nine cells of acceleration data are

swapped rather than just overwritten.

 One design constraint is that each force pipeline should handle at most a small

number of reference particles Pi at a time. This enables the total forces on the Pis

to be accumulated in registers. Accumulating the mutual forces on the Pis’ N3L

partner particles, however, is more complex as their positions span the cell set.

To prevent BRAM access contention, the following strategy is used. Partner

 111

updates are written to BRAMs associated uniquely with each force pipeline.

When processing of a home cell is completed, the partner data from the various

pipeline-specific BRAMs are merged. This operation is performed during

swapping out, so latency is completely hidden.

 The time to process a home cell Tproc is generally greater than the time Ttrans to

swap cell sets with off-chip memory. Assume that a cell has edge length = rc and

contains on average Ncell particles. Then Ttrans = 324 × (Ncell/B) (9 cells, 32-bit

data, 3 dimensions, 2 reads and 1 write, and transfer bandwidth of B bytes per

cycle). To compute Tproc, assume P pipelines and perfect efficiency. Then Tproc is

~ (Ncell)
 2 × (π/2P) cycles. This gives the following bandwidth requirement: B >

206 × P/Ncell. For P = 10 and Ncell = 175, B > 12 bytes per cycle. For many

current FPGA processor boards, B is usually larger than 16. Some factors that

increase the bandwidth requirement are faster processor speeds, more pipelines,

and lower particle density. A factor that reduces the bandwidth requirement is

better cell reuse.

 112

Figure 5-3: Schematic of the HPRC MD system

5.3 Filtering Algorithms

We begin by assuming cell lists with processing concentrating on one home cell

at a time. With no filtering or other optimization, forces are computed between all

pairs of particles i and j, where i must be in the home cell but j can be in any of

the 27 cells of the cell neighborhood, including the home cell. By filtering we

mean the identification of particle pairs where the mutual short-range force is

zero. A perfect filter successfully removes all such pairs. The efficiency of the

filter is the fraction of undesirable particle pairs removed. The extra work due to

imperfection is the ratio of undesirable pairs not removed to the desirable pairs.

 113

 We evaluate three methods, two existing and one new, which trade off

efficiency for hardware resources. As motivated in 0, we store particle positions

in three Cartesian dimensions, each in 32-bit integer. There are two parameters,

precision and geometry.

1. Full Precision: Precision = full, Geometry = sphere

Computes r2 = x2 + y2 + z2 and compares whether r2 < (rc)
2 using full 32-bit

precision. Filtering quality in this case is nearly 100%. Except for the

comparison operation, this is the same computation that is performed in

the force pipeline.

2. Reduced: Precision = reduced, Geometry = sphere

This filter, used by D.E. Shaw [74], also computes r2 = x2 + y2 + z2, r2 < (rc)
2,

but uses fewer bits and so substantially reduces the hardware required.

Lower precision, however, means that the cut-off radius must be

increased (rounded up to the next bit) so filtering efficiency goes down: for

8 bits of precision, it is 99.5%. In our reference example, each particle is

now matched with about 378 particles, rather than the 366 for perfect

filtering, for about 3% extra work.

3. Planar: Precision = reduced, Geometry = planes

A disadvantage of the previous method is its use of multipliers, which are

the critical resource in the force pipeline. This issue can be important

because there are likely to be 6 to 10 filter pipelines per force pipeline. In

 114

this method we avoid multiplication by thresholding with planes rather than

a sphere (see Figure 5-4 for the two-dimensional (2D) analog). With 8 bits,

this method achieves 97.5% efficiency for about 13% extra work. The

formulae are as follows:

 ccc rzryrx ,,

 ccc rzyrzxryx 2,2,2

 crzyx 3

 0x (with Newton’s 3rd law)

 Table 5-1 summarizes the resource cost (LUTs, registers, and multipliers) and

quality (efficiency and extra work) of the three filtering methods. Since multipliers

are a critical resource, we also show the two “sphere” filters implemented entirely

with logic. The cost of a force pipeline (from 0) is shown for scale.

rc

rc

 115

Figure 5-4: Filtering with planes rather than a sphere - 2D analogue

Table 5-1: Comparison of three filtering schemes for quality and resource usage.
A force pipeline is shown for reference. Percent utilization is for the Altera Stratix-
III EP3SE260.

Filtering
Method

LUTs/Registers Multipliers Filtering
Efficiency

Extra Work

Full Precision

(logic only)

341/881 0.43%

2577/2696 1.30%

12 1.6%

 0 0.0%

100%

100%

0%

0%

Reduced

(logic only)

131/266 0.13%

303/436 0.21%

 3 0.4%

 0 0.0%

99.5%

99.5%

3%

3%

Planar 164/279 0.14% 0 0.0% 97.5% 13%

Force Pipeline 5695/7678 5.00% 70 9.1% NA NA

 The most important result is the relative cost of the filters to the force pipeline.

Depending on implementation, each force pipeline needs between 6 and 10

filters to keep it running at full utilization. We refer to that set of filters as a filter

bank. Table 5-1 shows that a full precision filter bank takes from 105% and 160%

of the resources of its force pipeline. The reduced (logic only) and planar filter

banks, however, require only a small fraction: between 17% and 40% of the logic

of the force pipeline and no multipliers at all. Since the latter is the critical

resource, the conclusion is that the filtering logic itself (not including interfaces)

has negligible effect on the number of force pipelines that can fit on the FPGA.

 116

 We now compare the reduced and planar filters. The “Extra Work” column in

Table 5-1 shows that for a planar filter bank to obtain the same performance as

logic-only-reduced, the overall design must have 13% more throughput. This

translates, e.g., to having 9 force pipelines when using planar rather than 8 for

reduced. The total number of filters remains constant. The choice of filter

therefore depends on the FPGA’s resource mix and force pipeline

implementations.

5.4 Balancing Neighboring List Sizes

For efficient control and particle-memory access, and for smooth interaction

between filter and force pipelines, it is preferred to have each force pipeline

handle the interactions of a single reference particle at a time. This preference

becomes critical when there are a large number of force pipelines and a much

larger number of filter pipelines. Moreover, it is highly desirable for all of the

neighbor lists being created at any one time (by the filter banks) to be transferred

to the force pipelines simultaneously (buffering mechanisms are described in

Chapter 5.6). It follows that each reference particle should have a similar number

of partner particles (neighbor list size).

 117

 The problem addressed in this section is that the standard method of choosing

a reference particle’s partner particles leads to a severe imbalance in neighbor

list sizes. How this arises can be seen in Figure 5-5, which illustrates the

standard method (half-shell) of optimizing for N3L. So that a force between a

particle pair is computed only once, only a “half shell” of the surrounding cells is

examined (in 2D, this is cells 1-4 plus Home). For forces between the reference

particle and other particles in Home, if the particle identification (ID) were used to

break the tie, with, e.g., the force being computed only when the ID of the

reference particle is the higher. Particle B (shown in Figure 5-5b) has a much

smaller neighborlist than A (shown in Figure 5-5a), especially if B has a low ID

and A a high.

 (a) (b)

rc

rc

A

B

Home
Cell

1 2

3

4

rc

rc

A

B

Home
Cell

1 2

3

4

 118

Figure 5-5: Shown is the standard partitioning scheme with Newton’s 3rd law. 1-
4 plus home cell are examined with a full sphere.

 In fact neighborlist sizes vary from 0 to 2L, where L is the average neighborlist

size. The significance is as follows. Let all force pipelines wait for the last pipeline

to finish before starting work on a new reference particle. Then if that (last)

pipeline’s reference particle has a neighborlist of size 2L, then the latency will be

double that if all neighbor lists were size L. This distribution has high variance

(see Figure 5-6) meaning that neighbor list sizes greater than, say,
2

3
L are likely

to occur. A similar situation also occurs in other MD implementations, with

different architectures calling for different solutions [7, 114].

 119

Figure 5-6: Distribution of neighborlist sizes for standard partition as derived
from Monte Carlo simulations.

 One way to deal with this load imbalance is to overlap the force pipelines so

that they work independently. While viable, this leads much more complex

control.

 An alternative is to change the partitioning scheme. Our new N3L partition is

shown in Figure 5-7. There are three new features. The first is that the cell set

has been augmented from a half shell to a prism. In 2D this increases the cell set

from 5 cells to 6; in 3D the increase is from 14 to 18. The second is that, rather

than forming a neighbor list based on a cutoff sphere, a hemisphere is used

instead (the “Half-Moon” in Figure 5-7). The third is that there is now no need to

compare IDs of home cell particles.

rc

1

Home
Cell

2

3

45

rc

 120

Figure 5-7: Shown is half-moon partitioning scheme for using Newton's 3rd law.
1-5 plus home cell are examined, but with a hemi-sphere (blue-shaded part of
circle).

 We now compare the two partitioning schemes. There are two metrics: the

effect on the load imbalance and the extra resources required to prevent it.

 Effect of load imbalance: We assume that all of the force pipelines begin

computing forces on their reference particles at the same time, and that

each force pipeline waits until the last force pipeline has finished before

continuing to the next reference particle. We call the set of neighbor lists

that are thus processed simultaneously a cohort. With perfect load

balancing, all neighbor lists in a cohort would have nearly the same size,

the average. The effect of the variation in neighbor list size is the number

of excess cycles—before a new cohort of reference particles can begin

processing—over the number of cycles if each neighborlist were the same

size. The performance cost is therefore the average number of excess

cycles per cohort. This in turn is the average size of the biggest neighbor

list in a cohort minus the average neighbor list size. We find that, for the

standard N3L method, the average excess is nearly 50%, while for the

“half-moon” method it is less than 5%.

 Extra resources: The extra work required to achieve load balance is

proportional to the extra cells in the partition: 18 versus 14, or an extra

 121

29%. This drops the fraction of neighbor list particles in the cell

neighborhood from 15.5% to 11.6%, which in turns increases the number

of filters needed to keep the force pipelines fully utilized (over-provisioned)

from 7 to 9. For the reduced and planar filters, this is not likely to reduce

the number of force pipelines.

5.5 Mapping Particle Pairs to Filter Pipelines

From the previous sections, we converge on an efficient design for filtering

particle pairs:

 During execution, the working set (data held on the FPGA) consists of the

positions and accelerations of particles in a cell set; i.e., a single home cell

and its 17 neighbors (in the “half moon” scheme);

 Particles from each cell are stored in a set of BRAMs: this is currently one

or two BRAMs per coordinate, depending on the cell size and particle

density, for a total of 108-216;

 The N3L partition specifies 7-9 filters per force pipeline;

 FPGA resources indicate 8-10 force pipelines; and

 122

 Force pipelines handle at most a small number of reference particles at a

time (and their N3L partners).

 We now address the mapping of particle pairs to filter pipelines. There are a large
number of ways to do this; finding the optimal mapping is in some ways analogous to
optimizing loop interchanges with respect to a cost function.

Figure 5-8 shows two possibilities. In particle mapping (a), each filter is

responsible for a different reference particle. Each cycle, a single partner particle

from the cell set is broadcast to all of the filters (in all of the filter banks). In cell

mapping (b), each filter bank is collectively responsible for a different reference

particle. Each filter within a bank processes the reference particle with respect to

partners from its own subset of 2 or 3 cells. The issues are as follows.

 Force pipeline efficiency: Overall performance is proportional to the

efficiency of the force pipelines, i.e., the fraction of cycles that they deliver

“payload” (pairs with non-zero forces). Since there are no stalls, the

efficiency is thus proportional to the fraction of cycles that they input (are

issued) payload particle pairs from their filter banks.

 Payload generation rate: Given sufficient filters, a filter bank will

generate payload pairs at an average rate of greater than one per cycle.

The variance may be high, however, which can substantially degrade

efficiency.

 123

 Distribution of payload particle pairs: While the number of payload

particle pairs from a given cell set—and even from any reference particle

(from Chapter 5.4—has a small variance, the number and distribution of

payload pairs generated by any particular filter can vary wildly. For

example, in Figure 5-7, let two filters (in a bank) each handle the same

reference particle, but let the partner particles be from different cells, say 3

and 5. Each filter examines the same number of pairs, but the first filter

passes most of its input while the second passes almost none.

 Queuing particle pairs: A simple (but costly) solution is to: (i) append a

large queue to each filter and (ii) implement a flexible router from these

queues to the force pipeline. The two mappings lend themselves to

multiple more practical queuing methods, the choice of which depends on

the resources available on the FPGA.

6-9 filters

 Force
pipeline

Home cell

Cell set Home cell
distribution pipe

Filters Buffers

6-9 filters

 Force
pipeline

Home cell

Cell set Home cell
distribution pipe

Filters Buffers

(a) (b)

 124

Figure 5-8: Two mappings of particle pairs onto filters. (a) Particle Mapping:
Filters each hold a different reference particle. Particles in cell set are broadcast
one per cycle. (b) Cell Mapping: Same reference particle held by all filters in a
bank. Each filter is responsible for 2-3 cells.

5.6 Queueing and Routing Particle Pairs

In this section we present two queuing strategies, whole neighbor list and

continuous. We evaluate them with respect to the two particle mapping strategies

for performance (force pipeline efficiency) and hardware cost (queue size and

complexity).

5.6.1 Queuing Whole Neighboring List

If there were sufficient BRAMs, then particle mapping can be used to generate

neighbor lists in their entirety and consumed in the same way. Details are as

follows; we assume particle mapping, but the logic is similar for cell mapping.

 A phase begins with a new and distinct reference particle being

associated with each filter.

 Then, on each cycle, a single particle from the 18-cell set is broadcast to

all of the filters.

 125

 Each filter’s output goes to its own set of BRAMs.

 The output of each filter is exactly the neighborlist for its associated

reference particle.

 Double buffering enables neighborlists to be generated by the filters at the

same time that the previous phase’s neighborlists are being drained by the

force pipelines.

 Advantages of this method include:

 Nearly perfect load balance among the filters (from the “half-moon”

partition);

 Little overhead: each phase consists of over 3000 cycles before a new set

of reference particles must be loaded;

 Nearly perfect load balancing among the force pipelines: each operates

successively on a single reference particle and its neighborlist; and

 Simple queuing and control: neighborlist generation is decoupled from

force computation.

 A disadvantage is that this queuing method requires hundreds of BRAMs.

Although there are a thousand or more on some high-end FPGAs, this is still a

concern.

 126

5.6.2 Continuous Queuing

Figure 5-8 shows the basic queuing used in both mappings: Some number of

filters F in a filter bank feed a single force pipeline. As described in 0, the force

pipelines should be as independent as possible. This is to constrain the

complexity of the routing between filter and force stages and between force stage

and accelerator cache.

 At a high-level, this is a typical queuing problem with F servers where each

has known arrival and departure rates. An arrival is the generation of a particle

pair that has passed the filter criteria; a departure is when a payload pair is

consumed by the force pipeline. Also, the goal is to minimize idle time (when all

queues are empty) and hardware cost. The latter includes queue size, but also

complexity of the control and of the concentrator logic that routes from the filter

queues to the force pipeline.

 There are also a number of differences, however. These restrict the utility of

stochastic analysis, but also point to implementation methods.

1. Execution proceeds in phases: For particle mapping, the filter bank

processes F reference particles in a phase. For cell mapping, it processes

only one.

 127

2. Uniformity: The total number of arrivals per reference particle varies only

slightly within a phase (for particle mapping) and among phases (for both

mappings).

3. Non-uniformities. The F queues can have highly non-uniform departures

and/or high variation in departures during a phase. Depending on the

position of the reference particle in the home cell and on the cell of its

partner, the a priori probability of a departure can be anything from 0 to 1.

 Some design considerations are as follows. To minimize queue size, there are

several mechanisms including under provisioning (by keeping F small) and

throttling (when queues are full). Even if these are used, however, performance

is improved by smoothing and balancing the departure rates (arrivals at the force

pipelines). Here are three ways that help do this.

 Fetch order: Especially for particle mapping, departure rates for each

filter vary widely during a phase. For example, in Figure 5-7, the departure

rate for the filter of the particle shown will be near 0 when cell 4 is

processed, but greater than 0.5 for cell 3. This variation can be smoothed

by randomizing the order in which the partner particles are fetched from

the cell set. A simple way to approximate this is to fetch particles from

cells round-robin, rather than cell-at-a-time.

 Mapping combinations of cells: For cell mapping, different cells in the

cell set vary widely in the probability that their particles will be part of a

 128

neighbor list. For example, in Figure 5-7, the Home cell and cell 3 are

much more likely to provide partner particles than the corner cells (2 and

4). Pairing cells appropriately helps sooth the arrival rates.

 Concentrator logic: No matter which mapping scheme (particle or cell

mapping) is employed, the arrival rate of matching pairs could vary

dramatically among filter queues during the run-time. This property of non-

uniformity affects the size of queues as well as the efficiency of force

pipelines. In order to smooth non-uniformities among filter queue arrivals,

concentrator, logic that can efficiently dispatch particle pairs from queues

to force pipeline, would be desired. Each filter independently enqueues

particle pairs that have passed the selection criteria. An arbiter determines

transfer to the force pipeline based on the following logic.

1. First priority is given to queues that are within one of being full. This

is sufficient to prevent data from being dropped. If multiple queues

are nearly full, then priority is rotated round-robin.

2. Otherwise priority is given to queues that are not empty. Again,

priority is rotated round-robin.

3. If multiple queues are nearly full, then the filters are throttled. Note

that throttling by itself does not reduce efficiency; the key

performance consideration is that the force pipelines always be

active.

 129

 Thus, a concentrator would have the following three modes.

Normal mode: Pairs are dispatched from non-empty queues in round-robin fashion as
shown in

 Figure 5-9.

Figure 5-9: Concentrator in normal mode. Pair is dispatched from non-empty
queues in round-robin fashion.

 Priority mode: When one of filter queues is full, it continuously dispatches

match pairs from this queue until “full” signal is de-asserted as shown in

Normal mode: pairs are
dispatched from non-empty
queues in round-robin fashion

Queue 0 Select
Arbiter

Mux

Filter

Filter

Filter

Filter

Force pipeline

Queue 1

Queue 2

Queue 3
In this example, pairs are
pulled out from queue 0, 1, 2,
3 in order

 130

 Figure 5-10.

Figure 5-10: Concentrator in priority mode. Queue which is full has high
priority to dispatch pairs (only one queue is full).

Throttling mode: When more than one queue is full, stall signal is asserted to halt
filter pipelines and particle distribution. Priority is given to any queue which is full.
An example is illustrated in

 Figure 5-11. The advantage of this scheme is that small amount of

memory resources would be sufficient to maintain high throughput.

However, in order to prevent the over-flow where more than one queue is

full, throttling logic is required to stall filter pipelines.

Priority mode: Only one queue
is full and pairs are dispatched
from a queue which is full.

Queue 0 Select = Queue1
Arbiter

Mux

Filter

Filter

Filter

Filter

Force pipeline

Queue 1(Full)

Queue 2

Queue 3
In this example, priority is
given to queue 1.

 131

Figure 5-11: Concentrator in throttling mode. Stall signal is asserted and
priority is given to any queue that is full.

 Another design consideration is whether to over- or under-provision and

whether to throttle filter pipeline input to reduce the queue size needed to prevent

overflow. Having a smaller or larger number of filters under- or over-provisions

the force pipeline. The advantage of under provisioning is that simple hardware is

adequate for correct execution. The advantage of the over-provisioning is high

utilization of the force pipelines: with nine or more filters in the Perfect/“half-

moon” design option the force pipelines are almost always busy. In this case the

design requires either larger queues or that the filters be throttled.

Table 5-2 shows various configurations with no throttling. The maximum queue

size is that required to prevent overflow with very high probability. The utilization

In this example, priority is
given to either queue 0 or
queue 1.

Throttling mode: stall signal is
asserted when more than one
queue is full and priority is given
to any queue which is full.

Queue 0 (Full) Select = Queue 0 or 1
Arbiter

Mux

Filter

Filter

Filter

Filter

Force pipeline

Queue 1(Full)

Queue 2

Queue 3

Stall

 132

is the average fraction of cycles that the force pipelines are busy. “Cell mapped”

requires smaller queues because it has shorter phases: each filter bank

processes one reference particle at a time rather than F. Even the largest queues

require much less storage than the neighborlist queuing method from the

previous section.

Table 5-2: Queue size requirement and utilization are show for various
configurations with no throttling.

Number of filters Particle mapping Cell mapping

6 7 8 9 6 9

Queue size 10 18 36 80 6 36

Utilization 69.7% 81.2% 92.5% 99.3% 69.6% 98.3%

 We now examine the effect of throttling. In this design, the filters all halt when

any is in danger of overflow. Since the force pipelines consume every cycle, this

happens when multiple queues are within one of full.

 Figure 5-12 shows the effect of queue size, number of filters (queues) per

force pipeline, and mapping on utilization. Even with over provisioning, utilization

can be less than 100% because of non-uniformities in arrivals, and because of

start-up and tear-down effects. The key result is that with slight over provisioning,

i.e., 9 filters, particle mapped yields 99.2% utilization for a (very small) queue

 133

size of 8. Particle mapped is slightly better than cell mapped because of its more

uniform arrivals and longer phase.

Efficiency with throttling

80
82
84
86
88
90
92
94
96
98

100

2 4 8 16 32 64
Queue size (per queue)

E
ff

ic
ie

n
cy

 (
%

)

PM-8

CM-9

PM-9

PM-10

Figure 5-12: Graph shows the effect of queue size on utilization for various
numbers of filters (queues) and mappings of particles onto filters. PM is particle-
mapping and CM is cell-mapping.

 134

5.7 Pipeline Throughput Analysis

Our base design uses reduced filtering, “half-moon” partitioning, and particle

mapping scheme. For other FPGAs, planar filtering may be preferred. For

queuing, the method depends on the balance between BRAMs on the one hand

and logic and DSP units on the other. Queueing full neighbor lists is preferred in

the Stratix-III SL340 (more BRAMs) while using concentrator-based queuing with

throttling is preferred in the Stratix-III SE260 (more DSP blocks).

 With the current implementation, the system performance is determined by the

following factors as follows.

 Pipeline efficiency: Queueing entire neighbor lists with double buffering

would provide almost 100% pipeline efficiency but costly as discussed

earlier in Chapter 5.6.1. If continuous queuing method were used, the

efficiency would be lowered with increased numbers of filters. This is due

to the non-uniformity of match pair arrival during runtime among force

pipelines. Although each force pipeline processes the same amount of

particle pairs for a given reference particle on average and can operate

individually, all pipelines have to be stalled once one of them is required to

do so. Increasing queue size would help reduce the frequency of pipeline

stall and thus improve overall pipeline performance.

 135

 Phase efficiency: The number of phases necessary to process the

particles in a single home cell is

filtersofnumber

cellinparticles
. The

performance does not scale linearly with the number of filters or force

pipelines. For small cells or low-density simulations, the loss of efficiency

can become significant. There are, however, several reasonable solutions.

o Instead of processing one reference cell at one time, two home

cells can be fetched and processed together. This halves the phase

granularity, and so the expected inefficiency, without significantly

changing the amount of logic required for the distribution bus.

o Overlap processing of two home cells. This increases the working

set from 18 to 27 cells for a modest increase in number of BRAMs

required. A second distribution bus may be required.

o Another solution is to over provisioning. Increase the number of

filters and further decouple neighbor list generation from

consumption. However, it may impact pipeline efficiency as

mentioned above if queuing FIFO size is not large enough. The

reasoning is that as long as the force pipelines are busy, some

inefficiency in filtering is acceptable.

 Frequency: Our current implementation on Stratix III runs at ~200MHz

that can be improved in the later FPGA devices. FPGA operating

 136

frequency is strongly correlated to the resource utilization. Higher

resource utilizations often imply lower operating frequency. In order to

achieve the optimal system performance, our goal should focus on the

overall throughput rather than one single factor (e.g., the maximum

number of pipelines implemented).

 In summary, the time required to process all particles per step can be

formulated below.

frequecncy

effpipelineratiofilterparticleapairsphasesofnumbernumbercell _****

where “pairs a particle” means the number of match pairs for a given reference

particle after filtering stage and it is determined by the filtering logic efficiency,

cutoff radius, and particle density. “Filter-ratio” is the number of filters within a

filter bank and “cell-number” is the number of cells in MD simulation space.

“Pipeline_eff” represents the pipeline efficiency, which is correlated to filter queue

size as discussed earlier.

5.8 SUMMARY

We have presented a study of filtering that is the first for FPGA-based

accelerators and one of only very few for hardware implementations of MD. With

only a small amount of logic, high quality filtering can be achieved to improve the

overall system performance. Depending on the configurations of FPGA’s

hardware resources, two low-cost filtering schemes are available. A new

partitioning method for optimizing with respect to Newton’s 3rd Law was also

 137

presented. This is essential for the design presented here, but could also find

application in other hardware implementations of MD. The result is that almost a

6x performance improvement can be achieved over previous FPGA-based

methods.

 An important comparison is with Anton, the ASIC-based MD system from D.E.

Shaw [109] that is designed to support hundreds of MD processor chips. As

discussed earlier in Chapter 5.3, the reduced-precision filtering scheme was

implemented in Anton [74]. There are several design differences. For partitioning,

rather than use either the standard “half shell” method or the “half-moon” method

proposed here, Anton uses a novel “Neutral Territory” scheme. This especially

minimizes interprocessor communication costs. Another consequence is that

fewer filters per force pipeline are needed (normalized for throughput). For

mapping particle pairs onto force pipelines, Anton uses a scheme similar to the

“particle mapping” used here. The design choices in Anton are not all preferred

for single chip FPGA versions (in the current FPGA chip architecture). Some of

the architectural differences that lead to different design choices are as follows:

single chip versus multiple chip; limitations of FPGA routing logic and its

implications in control complexity; and the number and type of the FPGA’s hard

components, especially BRAMs and multipliers.

 138

Chapter 6 System Design and Integration

The primary goal of this study is to accelerate MD simulations without sacrificing

simulation quality. We have presented efficient algorithms and explored the

design space for improving FPGA-based designs. In this Chapter, we will

illustrate how to integrate our coprocessor design into an MD software package.

We will also examine the handing of various integration details, including data

transfers, particle exclusion, and cell-lists.

6.1 System Architecture

Our HPRC system consists of a generic host node (e.g., a PC, workstation, or

server blade) with an accelerator board plugged into a high-speed PCI Express

socket. The host runs the main application program and communicates with the

accelerator through function calls. The accelerator board consists of a high-end

FPGA, memory blocks, and a bus interface. Besides configurable logic, the

FPGA has dedicated components such as independently accessible multiport

memories (e.g., 1000 x 1KB) and a similar number of multipliers. The system-

level diagram is illustrated in

Figure 6-1.

 The FPGA itself is divided into two main components, the user design and the

vendor logic. The vendor logic is dedicated to system (non-application) functions,

such as memory controllers, and occupies about 10%-15% of the FPGA’s logic in

our implementation. The user design contains the computational engine of our

 139

MD accelerator, including control logic, filter banks, and force pipelines. In

addition to the computational logic, the user design also includes BRAMs, to

store particle data and forces, and simulation parameters.

Figure 6-1: System architecture of the FPGA-based MD accelerator.

 We have implemented our MD design using a Gidel PROCStar III board that

has features similar to those described above. In particular, it contains three

memory banks: one is 256MB (Bank A) while the other two (Banks B and C) are

2GB. Particle coordinates and charges are stored in Bank B and particle types

are stored in Bank C. Bank A is used to collect the computed forces for each

particle. Coordinates, charges and forces are 32-bit single precision floating point

numbers. Particle types are represented in reduced precision integer; the

precision required depends on how many particles are supported in the

Accelerator Board

Vendor Logic User Design

FPGA

PCIe Interface

DDR2

Control

FIFO BRAMs

Pipeline Logic

PCIe bus

Host

 140

simulation. One limitation of Bank C is that it only runs at half the frequency

(167MHz) of Banks A and B (333MHz). It is therefore appropriate to store

compact data (e.g., particle types) in Bank C to prevent its slow access from

becoming a critical path. The PCI Express interface is responsible for protocol-

level communication management between the host and accelerator.

6.2 Integration into the MD code

From a programming standpoint, NAMD-Lite integration has been straightforward.

The tasks are as follows: replacement of the short-range force computation with

the appropriate accelerator calls, data conversion from double precision floating

point to single precision and back again, packing and unpacking the data,

handling particle exclusion, and handling cell-lists.

 In the following subsections, we will present the control flow between the MD

software code and our FPGA-accelerated system. We will also describe changes

to the original software code, including supporting particle exclusion and cell lists.

6.2.1 Control Flow

 141

Figure 6-2 shows the control flow between the MD software code and our FPGA-

accelerated system for the non-bonded short-range force kernel. The left side

illustrates the procedures executed by the software, while the right side shows

the steps performed on the accelerator board.

Figure 6-2: Control flow of non-bonded short-range force kernel on the
FPGA-based system.

Initialize FPGA

Data preparation
and conversion

DMA data from host
to on-board memory

Send “start” signal
to FPGA

Listen to “done”
signal from FPGA

DMA data from on-
board memory to host

Data integration
and conversion

Non-bonded short-
range force kernel

Force
evaluation

Particle
Data

Send “done” signal
from FPGA to host

Wait for “start”
signal

Clear caches and setup
simulation parameters

done

start

Overlap with other processes

 142

 When the non-bonded short-range force kernel is invoked, the program first

initializes the coprocessor by clearing on-board memory and on-chip caches. It

then sets up the simulation parameters: numerical precision, cell size, and cutoff.

Particle data are prepared and packed. They are then DMAed to the on-board

memory banks via the PCI Express bus. After the DMA operations have

completed, the host issues a “start” signal to hand over the control to the

accelerator board. Once the “start” signal is received by the FPGA, the controller

on the FPGA initializes the pipelines and loads data from off-chip memory to on-

chip caches. Then follows the force evaluations. After all particles are evaluated,

a “done” signal is sent back to the host and forces are DMAed back to the host.

They are then merged with other force evaluations (e.g., for bonded forces)

already computed on the host. The process of force evaluations on the FPGA

(marked in blue-color) can be overlapped with those executed on the host to

improve performance.

6.2.2 Cell Lists

The method of cell lists has been employed in our MD system to help minimize

the number of force computations. In each timestep, particles are assigned to

cells based on their coordinates. In most MD software packages, cell lists are

implemented with an array of linked lists, where each list corresponds to one cell.

The lists themselves consist of a series of indices pointing to the particles within

the cell. When particles move across cell boundaries, the indices “move” as well

and the lists are updated accordingly. The memory footprint of particle data,

 143

however, i.e. coordinates, type, and charge, remains unchanged. This helps

minimize data movement during simulations because the index is much compact

than the particle data. The disadvantage of this method is that random data

access is required to retrieving a series of particles of one cell: locality in space

is not followed by locality in memory. This technique, there, does not align well

with our FPGA-based implementation.

 Our design requires that the particle data of one cell be fetchable in parallel

such that they can be processed by pipelines to achieve the maximum

throughput. In the worst-case scenario, particles of one cell all reside in the same

memory segment. In that case, particle data must be accessed sequentially. In

any case, the overhead of random data access is such that its latency could not

be completely hidden.

 Fortunately, there is an alternative solution that fits our needs. Instead of using

lists of indices, particles’ are grouped dynamically by cell and stored together in

particle memory. This approach was implemented in Gu’s MD design and

proven to be highly effective [46].

 144

Figure 6-3: Cell list representation in FPGA-based implementation.

 As shown in

Figure 6-3, particles from the same cell (marked in the same color) are grouped

together in a single segment of particle memory. An element (called a word) of

particle memory can contain more than one particle. This is to coincide with the

word size of off-chip memory. In our implementation, the memory word size is

256-bit while that of particle data is 128-bit (coordinates and charge). Thus, two

particles are packed together in the same word. The order of cells in particle

memory is fixed a priori. A two-level index scheme is used to transfer particles

Particle Memory Cell-list

0 2

3

2

2

2

4 5

1024

1026

Cell-list
Address

Cell 0

Cell 1

Cell 2

 145

from on-board memory to on-chip caches and proceeds as follows. Given a

particular cell, the cell-list-address is accessed to acquire the starting address of

that cell in particle memory. The cell-list is also accessed to retrieve the number

of particle words in that particular cell. With the starting address and the number

of words, particles can be accessed and loaded from on-board memory to on-

chip BRAMS for force computations. This also allows multiple particles of one

cell to be fetched simultaneously for higher throughput. Dummy particles are

padded at the end of the cell in the particle memory when the number of particles

in one cell does not align with the word size of off-chip memory. The cell-list and

cell-list address are prepared in the host and then DMAed to the coprocessor.

The size of the cell-list and cell-list-address are small and therefore can be stored

in on-chip BRAMs.

6.2.3 Particle Exclusion

Particle exclusion refers to the necessity of not computing the non-bonded forces

for bonded particles. One common technique used in software codes is to

exclude bonded particle pairs based on exclusion pair lists. That is, each particle

has associated with it a pairlist that contains the particles with which it is bonded.

The “pairlist” scheme is problematic, however, since it requires a fixed particle

layout that our cell-list implementation tries to avoid. In addition, exclusion

pairlists are needed for each particle and the size of the exclusion lists scales

 146

linearly with the number of particles. As with neighbor lists, exclusion pairlists are

not appropriate for large simulations since on-chip caches are usually not large

enough to store all exclusion pairlists.

Figure 6-4: Graph shows van der Waals interaction with cutoff check with
saturation force.

 To support exclusion, our solution is to apply a short cut-off to the non-bonded force
calculations based on the fact that two non-bonded particles generally cannot be too close
to each other (the atomic radius). Therefore, two particles within a certain short distance
must be bonded. The short cut-off distance can be easily calculated by solving the
inequality Fshort < range, where range is the dynamic range with a reasonable force value

[46]. The left-side term of the inequality is dominated by the 14 term,
14r

. Multiple short

cut-off values are required as this value depends on the particle type. A simple graph is
shown in

Figure 6-4 to demonstrate this concept [18].

 If the exclusion cutoff is chosen conservatively, then two particles would be bonded as
long as their intra-distance is smaller than the exclusion distance. For bonded particle
pairs whose intra-distance is larger than the exclusion cutoff, the non bonded force is
subtracted in the host. There is a problem however. The exclusion distance check in the
FPGA is performed in integer arithmetic while it is done in double precision in the host.
An inconsistency may therefore occur when the distance between two particles is very
close to the exclusion cutoff. In order to minimize the impact of this inconsistency, the

Distance

Exclusion distance

Saturation

Energy

 147

exclusion cutoff should be chosen such that it can be represented precisely in both
formats. Then a saturation force is applied if the intra-distance between two particles is
smaller than the exclusion cutoff, as shown by the horizontal blue line in

Figure 6-4. Another enhancement is to scale the saturation forces down with

distance, as shown by the red diagonal dashed line. This can help avoid overflow

in the force accumulation step and improve accuracy.

 The choice of exclusion cutoff influences the precision of force accumulators.

Since saturation forces often have large values, large precision would be

required to avoid overflow. It also affects the simulation quality since large false

forces would overwhelms the real ones. Therefore, multiple exclusion cutoffs

would be required for various particle types and careful evaluation is essential.

6.3 Memory Management and Data Transfer

In this section, we describe how data are transferred between host and

accelerator and between off-chip and on-chip memory. Details of transfers from

stage to stage are presented in the succeeding subsections.

6.3.1 Accumulating and Combining Accelerations

In our current MD implementation, the final processing steps are accumulating

and combining the accelerations generated by the force pipelines. Unlike position

data, which is read-only, acceleration data is read/write. That is, during the

processing of a home cell, each particle’s acceleration accumulates over this and

other cells in the cell set; it is not complete until all 27 cells in the neighborhood

have taken a turn as the home cell. Thus for each new home cell, the running

 148

total of accumulated accelerations of the cell set are read onto the chip in a way

analogous to the position data.

 One design constraint is that each force pipeline handles at most a small

number of reference particles Pi at a time. This enables the total forces on the

Pis to be accumulated in registers. Accumulating the mutual forces on the Pis’

N3L partner particles (the Pj s), however, is more complex as their positions span

the cell set. To prevent BRAM access contention, the following strategy is used.

Partner updates are written to BRAMs that are associated uniquely with each

force pipeline. When processing of a home cell is completed, the partner data

from the various pipeline-specific BRAMs are merged [17].

Figure 6-5: Mechanism for accumulating per-particle force. The logic of a single
pipeline for both reference and partner particles is shown.

 This method is depicted in

Cell-18

Cell-1

Cell-2
force
pipeline n

Force cache n

Accumulated
partial force

New force (i, j)

Updated force

mux

i or j

i

Reference
particle Force

 149

Figure 6-5. The running accumulation for a single pipeline during cell processing

is shown. We describe this for particle mapping; cell mapping is analogous (see

Chapter 5.5). Recall that each of the Nforce force pipelines has Nfilters filters and

that each filter processes a unique reference particle at a time. Also that

reference particles are always from the home cell, but that partner particles come

from the entire cell set. For each force pipeline there are Nfilters accumulators for

the Nfilters reference particles being processed at a time. There are also Nforce

force caches, one for each pipeline. Each force cache has an accumulator for

each particle in the entire cell set.

Summation

Off-Chip Force SRAM

0 1 2 4 5 6 7

Force Caches

3

 150

Figure 6-6: The approach of how forces are accumulated across multiple
pipelines is illustrated.

 Processing proceeds as follows. A new home cell and its accompanying cell

set (positions and accelerations) are loaded. From the home cell, a cohort of

reference particles is loaded into the filters. Forces are now computed with

respect to all of the cell set particles and sent to the accumulators. Each force

(for particle pair i, j) is added to both the register corresponding to reference

particle i and to the jth slot in that force pipeline’s force cache. The accesses to

the force cache BRAMs are pipelined: the js are sent a few cycles ahead so that

the current accumulated values are available “just in time.” When the cohort of

reference particles has been processed, the reference particle accumulators in

the force array are combined with those in the force cache. When the home cell

has been processed, the Nforce force caches are combined. The concept is

illustrated in

Figure 6-6. The basic design was first appeared in Gu’s design [46]. This

operation is performed during swapping out, so its latency is completely hidden.

6.3.2 FPGA-Board Data Transfer

In order to support a large MD simulation where on-chip memory is not sufficient

to accommodate all particle data, off-chip memory utilization is unavoidable.

 151

Dynamic particle data--including coordinates, charges, accelerations, and types--

are updated periodically and can reside in off-chip memory. Static computational

parameters, such as interpolation coefficients, type-related constants, and cell

lists, which are required during an entire process, can be stored in on-chip

memory [46].

0

Coordinates, charges, and types

0 0

Write enable 0 Write enable 1

Write enable 0 Write enable 1

POS SRAM

ACC SRAM

POS
Cache 0

POS
Cache 1

ACC
Cache 0

ACC
Cache 1

Pipeline Logic

FPGA Domain

Off-chip memory

Off-chip memory

mux

mux mux

mux

mux

 152

Figure 6-7: Datapaths between off-chip memories, on-chip caches and force
pipelines.

 The bandwidth of off-chip memory, however, may not be large enough to

directly feed particle data into force pipelines. Fortunately, an efficient technique

has been developed to overcome this lack by taking advantages of spatial and

temporal locality. With the techniques of the cell-lists and cutoff radius, for each

iteration, particles are grouped by cell and only interact with the ones residing in

their neighboring cells. Hence, only small amounts of data need to be loaded into

on-chip memory. Figure 6-7 shows the datapaths between on-board memories,

on-chip caches, and force pipelines. Two sets of caches, cache 0 and cache 1,

enable double buffering. Each set has POS and ACC caches which hold particle

data (coordinates, charges, and types) and acceleration (or force) respectively.

POS caches are read-only whereas ACC caches are both read and write. While

one set of caches is swapping data with on-board memories, the other one is

cooperating with pipeline logic to evaluate pairwise interactions.

 An example is illustrated in Figure 6-7. POS cache1 (marked in orange color)

loads the particle data of the next cell set, while ACC cache1 (marked in orange

color) flushes the computed forces of the previous cell set and merges them with

those stored in ACC on-board memory. After all of the results in ACC cache1 are

 153

flushed, ACC cache1 is reset to zero. POS and ACC cache0 (marked in blue)

work with the force pipelines to compute forces between particles. The computed

forces from the pipelines are accumulated with together with the partial results

stored in ACC cache0.

 Another observation is that for a given system where the average number of

particles per cell is N, the cost of accessing data is)(NO while the cost of

processing them is)(2NO . The relative time ratio is about)(NO . Thus, a “double-

buffering” scheme which overlaps data communications and force computations

can hide the communication overhead and avoid pipeline stalls.

6.3.3 Host-Accelerator Data Transfers

At the highest level, processing is built around the timestep iteration and its two

phases: force calculation and motion update. During each iteration, the host

transfers position, type, and charge data to, and acceleration data from, the

coprocessor’s on-board memory (POS SRAM and ACC SRAM, respectively) via

PCI Express bus. The data transfer between the host and accelerator is done

through vendor DMA function calls.

 The conversion of data format would be required since most of MD software

implementations use double-precision floating point format while single-precision

is used in our coprocessor design. The data conversion is performed in the host

before transferring them to on-board memory. This results in a more compact

data size and thus reduces DMA time. Another alternative method is to perform

 154

data conversion on-the-fly while transferring data to on-board memory. This

helps save the conversion time in the host but is not currently supported by our

board vendor.

 With 32-bit precision, 32 bytes are transferred per particle. While the phases

are necessarily serial, the data transfers require only a small fraction of the

processing time. For example, in Chapter 7 we described how the short-range

force calculation takes about 56ms for a 92K particle benchmark and increases

linearly with particle count through the memory capacity of the board. The

combined data transfers of 3MB take only 6-7ms. Moreover, since simulation

proceeds by cell set, processing of the force calculation phase can begin almost

immediately as the data begin to arrive.

6.4 Summary

In order to impact and benefit MD user community, integrating our FPGA-

accelerated design into MD software codes is essential. Although the tasks of

MD software integration are relatively straightforward from the programmer point

of view, it requires additional design changes to the original software codes and

some detailed design considerations. Care must be taken that efficient and

smooth data transfer between various interfaces can be achieved. Otherwise, the

advantage of accelerator would be lost. Sometimes, design changes are not

trivial and may require elaborate changes to the original code. Our ultimate goal

is to align the application with our accelerator precisely for gaining the best

overall performance.

 155

Chapter 7 Results

In this Chapter, we present the results of our FPGA accelerated system from two

perspectives, performance improvement and simulation quality. For performance,

we concentrate on the nonbonded short-range force kernel. Computation time of

various implementations is measured and compared with that of a serial

reference code: NAMD. For simulation quality, the total energy of the MD system

is plotted and examined to see if there is a significant divergence.

 The rest of this Chapter is organized as follows: First, we evaluate the force

pipelines proposed in Chapter 4. We do this first for resource utilization and then

performance enhancement. Next, the total energy of various MD-FPGA systems

is plotted for quality assurance. We also present a preliminary study on scalability

to demonstrate performance potential of our MD system. We end by providing a

brief discussion of FPGA development cost and portability.

7.1 Experiment Platforms

Our FPGA-MD accelerator has been successfully integrated with NAMD-Lite. As

described in Chapter 3, the main features of NAMD-Lite are its great flexibility

and ease of use for the development of new methods and algorithms. But

although NAMD-Lite is sufficient to be used for examining simulation quality, it is

not a proper candidate for performance comparison due to its serial

implementation. To demonstrating the highly competitive capabilities of our MD

 156

accelerator, the performance was measured by extracting timing data of

nonbonded force kernel via NAMD-Lite and then comparing them with those

reported by highly optimized MD packages, NAMD and NAMD-GPU.

 We refer to the NAMD benchmark, NAMD2.6 on ApoA1. It has 92,224

particles, a bounding box of 108Å × 108 Å × 78 Å, and a cut-off radius of 12 Å.

Coulomb force is evaluated with PME scheme. A switching function is applied to

smooth out LJ force when the intra-distance of particle pairs is between 10 and

12 Å. According to a study by Stone, et al. [117], for nonbonded short-range

force, this benchmark is executed in 1.78 seconds per iteration on a single core

of an Intel core 2 quad-core 2.66 GHz processor.

 Our base design uses reduced filtering, “half-moon” partitioning, particle

mapping, and has eight filters per force pipeline. For other FPGAs, planar filtering

may be preferred. For queuing, the method depends on the balance between

BRAMs on the one hand and logic and DSP units on the other. For the Stratix III

SL340 (more BRAMs), queuing full neighbor lists is preferred. For the Stratix III

SE260, using concentrator-based queuing is preferred.

 Our FPGA design was implemented on the Gidel PROCStar III board, which

has four Altera Stratix III SE260 FPGAs and a total of 18 GB of on-board DDR

memory. The board is housed in a Dell Precision T3400, which has an Intel

Core2 Duo 2.8 GHz microprocessor and 2 GB RAM. Only one core is used to

execute NAMD-Lite program. The interface is a PCIe x 8 slot. All simulations are

performed in a 32-bit Window XP environment.

 157

7.2 Performance Experiments

Resource Utilization

Performance is directly related to resources consumed. Both are shown Table

7-1. LUTn means that both the LJ and short-range part of electrostatic force were

evaluated with Look-Up Table (LUT) interpolation of order n and 256 intervals per

segment. DC indicates that the LJ force was computed directly while the short-

range part of the electrostatic force was computed with third order LUT

interpolation. The latter is due to the expensive “erfc” function as described in

Chapter 4.3.

 All designs have been implemented and run on an FPGA of the Gidel board.

Time is per iteration. We note that the number of pipelines increases from 4 to 5

to 6 to 7 with interpolation order 2, 1, and 0, respectively. According to the quality

analysis in Chapter 4.4, the six-pipeline design with 1st order interpolation is

likely to be preferred. LUT0 timing is not reported since the energy drifts

unacceptably during MD simulation as shown in Figure 4-12. This design

increases performance by almost 50% over direct computation. The resource

utilization results indicate that the limiting factor is the logic. This is used mostly

for registers. An interesting observation is that the number of bins is not a major

concern and could be doubled if needed to achieve better simulation quality

without reducing the number of pipelines [20].

 158

 We have also synthesized the designs with respect to the Stratix IV SE530

(post place-and-route) and the results are shown in Table 7.2. After optimization,

we anticipate achieving an operating frequency similar to that for the Stratix III.

We expect a nearly proportional increase in performance resulting in a time per

iteration of about 30 ms.

Table 7-1: Resource utilization and performance of various pipeline
configurations on Stratix III SE260 (bin/segment = 256, running @ 200MHz)

 LUT0 LUT1 LUT2 DC
Multipliers 67% 63% 66% 68%
Logic (LUT/Register) 87% 88% 85% 94%
BRAM (M9K) 89% 86% 89% 62%
BRAM (M144K) 87.5% 75% 62.5% 50%
Number of Pipeline 7 6 5 4
Timing (ms) NA 54 63 72

Table 7-2: Resource utilization and performance of various pipeline
configurations on the Stratix IV SE530 (bin/segment = 256; Post Place-and-
Route results reported by Altera Quartus 9.1)

LUT0 LUT1 LUT2 DC
Multipliers 76% 87% 98% 100%
Logic (LUT/Register) 69% 75% 78% 86%
BRAM (M9K) 98% 98% 95% 67%
BRAM (M144K) 100% 100% 94% 75%
Number of Pipeline 12 11 10 8

 Hardware resources for various generations of Stratix FPGAs are highlighted

in Table 7-3 as well as plotted in Figure 7-1 for better illustration. For the Stratix

IV, although logic elements and memory double for each process generation, the

performance is limited by the number of available hard multipliers; these have not

scaled with process technology. Compared with the Stratix III and IV, Stratix V

 159

FPGAs have large variations in component resources across the family of chips.

Depending on the critical component of the specific family member, the

performance could vary dramatically. For example, although the Stratix V 5SEEB

has abundant logic and memory resources, the performance is expected to be

the same as that of Stratix III due to the small number of hard multipliers. In

contrast, the Stratix V 5SGSD can fit 3 times as many pipelines as the Stratix III.

 As discussed in Chapter 4, FPGA resources have a crucial influence on our

implementation. One example is that the planar filtering scheme would be

favorable for Stratix V 5SEEB where the performance is mainly limited by

multipliers. Another design consideration is the trade-off between the

interpolation order of the LUTs and the number of interval per segment; this

depends on the availability of logic elements, multipliers, and BRAMs. For a

given numerical precision, a LUT with high interpolation order (more logic and

multipliers required) and few intervals (few BRAMs) may yield the same

simulation quality as one with low order paired with large intervals. By taking

advantage of FPGA BRAM architecture and providing flexible design choices,

our MD design delivers promising performance on various FPGA configurations

and newer chips.

 160

Table 7-3: Altera Stratix FPGA resource overview

 Stratix III
SE260
(65nm)

Stratix IV
SE530
(40nm)

Stratix V
5SEEB
(28nm)

Stratix V
5SGSD8
(28nm)

Equivalent Logic (K) 203 531 950 703
18 x 18 multiplier 768 1024 704 4096
Memory (Mb) 14.7 20..7 52 55

Figure 7-1: Component resources of various FPGAs

Performance Enhancement

A performance profile of our FPGA accelerator is shown in Table 7-4; the details

are now described. Here, we focus on the nonbonded short-range force kernel

and our base design consisting of six force pipelines on a single FPGA, each

with 8 filters, and running at 200 MHz.

 161

Table 7-4: Time profiling of FPGA design (Stratix III ES3SE260, ~200MHz)

 Data
preparation

Host to
FPGA

FPGA
Computation
(6 Pipelines)

FPGA to
Host

Force
Integration

Time (ms) 4.8 5.5 54 1.3 2.2

 Data preparation

Proper data conversion and restructuring are needed before data transfer.

Double precision format is used by many MD software codes, whereas

single precision is used in our FPGA implementation. Thus, data

conversion is required and performed on the host. An alternative is leaving

data conversion to FPGAs. Although it is possible and can shorten data

conversion process, it would double data transfer time and storage

requirements.

 Since our MD implementation uses cell-lists, particles are grouped

together based on their cell index before being transferred to the FPGA

board. In addition to particle information (coordinates, charge and type),

the cell-list table is also required for data retrieval.

 Communication

Communication operations include two-way data transfer, upload (from

the host to FPGA board) and download (from FPGA board to the host).

Upload transfers particle data (coordinate, charges, and types) and cell-list

tables to FPGA DDR memory. Download delivers the computed forces

 162

from FPGA to host. In our experiments, download is much faster than

upload for two reasons. One is the less data is required; the other is that a

faster download speed is supported by the vendor.

 FPGA Computation

 This represents the time the FPGA accelerator takes.

 Force integration

Nonbonded short-range forces evaluated by FPGAs have to be integrated

with others computed on the host, i.e., bonded forces and the long-range

part of electrostatic force. Since the computed force by FPGAs is single

precision, data conversion is also required.

 Figure 7-2 shows the performance of various FPGA implementations over

NAMD running on a single core (called NAMD-CPU). The NAMD ApoA1

benchmark is used for performance evaluation. NAMD-GPU was illustrated for

further comparison and its performance speedup is compared to NAMD-CPU as

well. For the nonbonded short-range force kernel, Stone, et al. [117] reported that

this benchmark was executed at 1.78 seconds per iteration on a single core and

0.2 seconds per iteration on a single NVIDIA GeForce 8800 GTX board. It was

reported that GPU performance outpaced CPU by 9x.

 NBF represents the speedups of the nonbonded force (NBF) kernel only. Total

includes communication overheads, data preparation, and force integration as

described above. The number on top of each column bar represents the

 163

speedups over a single-core CPU reference model (NAMD-CPU). For our

preferred MD design (LUT1), an overall speedup of 26x was obtained over single

core NAMD implementation and 3x over a single GPU implementation. If the

computational costs on the host (0.16 second per core) remain fixed, our single

FPGA implementation can execute 0.38ns simulation per day.

Figure 7-2: Performance speedups of various implementations

 As illustrated in Figure 7-2, NBF performance scales almost linearly with the

number of force pipelines. The overall performance does not due to extra

overheads. One way to minimize the negative impact from overhead is to overlap

the short-range force computation with host work. This code must now be

parallelized to keep it off from the critical path. Also essential, as for all

 164

accelerators, is efficient communication between host and coprocessor. For

simulations of less than a few hundred thousand particles, a conventional I/O bus

interfaces should be sufficient.

7.3 Simulation Quality Experiments

In order to validate and measure quality of our FPGA design, energy was plotted

as a function of time (see Figure 7-3). In particular, we observe how energy is

conserved for various implementations. The result labeled NAMD-Lite is from

code running on the processor only and used here as a reference. The other

results have the short-range forces computed on the accelerator using table look-

up with polynomial interpolation with the order as shown. The time scale is in

increments of 100fs. The time step is 1fs.

 The main goal of examining energy over time is to ensure that there are no

significant errors existed in our algorithms and implementations. As shown in

Figure 7-3, there is no noticeable drift. Using Equation 4-13 to compute E we

find that the values for all of the FPGA-accelerated codes are smaller than1.0E-4,

which is much smaller than the suggested value, 0.003 [107].

 These results are preliminary and the time scale may be too short to establish

final conclusions. Still we find these results promising: an implementation with 1st

and 2nd order polynomial interpolation could have good energy stability. The

difficulty in generating longer time-scale simulations is that NAMD-Lite is an un-

 165

optimized serial code and so each of these graphs takes several hours or even

days to generate.

Figure 7-3: Graph of energy plot for various Implementations

 Although our focus is energy conservation of various implementations, we

noticed that there is a small divergence (0.02%) between FPGA implementations

and NAMD-Lite as shown in Figure 7-3. We attribute it to the following reasons.

 Numerical Precision and Arithmetic

Double precision is used in NAMD-Lite to avoid cumulative rounding

errors in long simulations and minimize the impact of non-associativity in

 166

floating point arithmetic. In our MD accelerator, mixed-precision

manipulation (fixed-point and single precision) is adopted for resource

constraint and performance. This reduction in precision, however, may

cause variation from the original software.

 Floating Point Compiler

As described in Chapter 4, the Floating Point Compiler may cause

different results from the software codes. This is mainly because of the

integer format used internally for resource reduction and performance

improvement.

 Particle Exclusion

Currently, a saturation force is applied to particles if the intra-distance

between two particles is smaller than the exclusion cutoff. Since the

exclusion cutoff has to be chosen conservatively to guarantee that two

particles are bonded as long as long as their intra-distance is smaller than

the exclusion distance, the saturation forces are sometimes relatively

large compared to the real ones. Those large “false” forces can

overwhelm the real small ones and result in the loss of precision. One

enhancement is to have an accumulator with more precision.

 167

7.4 Scalability and Extensions

The performance results reported above are referred to a single FPGA

implementation. In this section, we present a preliminary study of the scalability

and extensions of our MD FPGA accelerator to demonstrate the potential

performance enhancement.

Scaling to Multiple FPGAs

Figure 7.4 shows the performance numbers of multiple FPGAs implementations.

Our design contains six force pipelines of LUT1 implementation on an FPGA,

each with 8 filters, and runs at nearly 200 MHz. All performance numbers are

compared to NAMD-CPU reference model with NAMD ApoA1 benchmark. As

illustrated in Figure 7.4, the performance scales linearly with the number of

FPGAs. Here we only present the speedup of nonbonded short-range force (NBF)

computation. Overheads are excluded. Although the overall performance

improvement would be reduced when taking overhead into account, it is sufficient

to demonstrate the good scalability of our MD design.

Extensions

For other MD simulations having similar particle density, the FPGA performance

scales linearly with the number of particles up to the memory capacity of the

FPGA board, or several tens of millions particles. For simulations having much

lower density, transfer of cell sets on/off chip becomes the bottleneck. This

limitation, however, is a function of current HPRC systems rather than the

 168

FPGAs themselves. Most current HPRC board designs use only a small fraction

of the FPGA’s available bandwidth.

Figure 7-4: Performance speedups of multiple FPGAs (nonbonded short-
range force only)

7.5 Power Performance Analysis

We have presented the performance enhancements of our MD accelerator over

microprocessors and GPUs. In this section, we examine an additional metric,

energy efficiency.

 FPGAs are commonly regarded to be very power efficient. A high-end FPGA

chip typically consumes at most 20-30 watts. Novo-G reports indicate that each

FPGA of a single node consume less than 20W [90]. With the same benchmark

[117], a single NVIDIA GeForce 8800 GTX dissipates about 185 watts and an

Intel Core 2 Extreme QX6700 quad core CPU dissipates 130-watts.

 169

Figure 7-5: Energy-efficienct performance comparison

 The performance per watt for two implementations is plotted in Figure 7-5. The

performance-per-watt metric is defined as computational time times the power

rating. The reference is the CPU-based model. The computational speedup is

also shown as a comparison. As stated earlier in Chapter 7.2, we only focus on

the non-bonded short-range kernel and omit the bonded force calculation and

motion integration. Those are left to the host and only occupy a small amount of

the entire computation. As illustrated in Figure 7-5, FPGA demonstrated the best

performance in term of computation-to-watt. Although GPUs provide massive

computational power, their comparative power-hunger lessens their advantage.

 170

 Although the results shown above are approximated and preliminary, they

serve as a good indicator of the performance benefits of FPGAs over CPU or

GPU-based implementations.

7.6 Development Cost and Portability

Compared with CPU and GPU implementations where highly efficient and

mature tools are available and the interfaces are well defined, FPGA-based

design often involves the manipulation of cumbersome low-level hardware

description language and management of non-standard IO interfaces and

protocols. Thus, the development cost of FPGA accelerated solution is relatively

high in term of designer hours. It is also worth noting that although CPU-based

implementation is relatively cost effective, developing efficient multi-core version

may not be straightforward for some applications.

 In order to be competitive with multi-core and GPU implementations, the

design models have to be ported into the newer devices every few years. Two

types of tasks, design model replication and board level integration, are involved

during the porting process and are now described.

Design model replication

Porting FPGA design to newer chips mainly involves the task of maximizing the

number of pipeline replications. With pipeline parallelism and multiple design

options, our MD accelerating system provides easy design scaling as well as

maximization of replications.

 171

Board level integration

As long as the board vendor remains unchanged, integrating FPGA designs into

a newer board would be relatively straightforward. Otherwise it is a non-trivial

work. Every board vendor develops different interfaces and protocols that aim to

meet various design goals. This non-standardization of interfaces results in

significant effort. Changes in interface logic and software would be required to

move the FPGA designs from one vendor’s products to another.

 From our experience, board level integration is the most timing consuming

task during the development process. Due to the unfamiliarity of vendor interface

logic and lack of interface simulation models, it makes our integration work

challenging, especially for hardware and interface debugging.

7.7 Summary

We have summarized the results of our MD implementations and validated our

designs with respect to energy conservation and fluctuation. Our MD accelerator

can execute the short-range force for the ApoA1 benchmark in under 70 ms. This

represents a 26-fold per core speedup for the computational kernel. Since NAMD

scales well, this represents 6.5x speed-up on a quad core implementation. While

this benchmark result is a little dated, its microprocessor is comparable in

process technology to the Stratix-III that we use here.

 We validated our designs by inspecting energy fluctuation and drift.

Preliminary analysis showed that the total energy is preserved in our designs.

 172

The development cost and challenges were also addressed briefly to reflect our

views of FPGA-based implementations. Finally, we presented a discussion about

how our design scales to multiple FPGAs and newer devices. Although it is still

preliminary, it shows the potential of scalability and proves that our design

continues being promising as the technology progresses.

 173

CHAPTER 8 CONCLUSIONS AND FUTURE WORK

We conclude this thesis by summarizing the work performed in this study and

presenting a discussion of how we plan to extend our MD-HPRC work. We also

list some lessons we have learned.

8.1 Summary

In this research, we have presented a new implementation of MD for FPGA-

based accelerators. We have thoroughly explored the design space of force

pipeline implementations with respect to both performance and numerous

measures of quality. We have presented a study of filtering that is the first for

FPGAs and one of only very few for hardware implementations of MD. The

results show that FPGAs are highly competitive with respect to the short-range

force computation in MD simulations.

 We summarize the results for the force pipeline. We found that look-up table

interpolation is somewhat favorable to direct computation for supporting various

simulation configurations and complex function implementations. Other results

are a demonstration of the Altera Floating Point Compiler, and numerous

observations with respect to datapath design parameters. The most important of

these is probably that simulation quality of the single precision and hybrid (fixed

point/single precision) implementations is comparable to that of full double

precision.

 174

 In the filtering part of this study, we find that high quality filtering can be

achieved with only a small amount of logic. We present a geometric filtering

scheme that is preferable for FPGA implementation. We also present a new

partitioning method for optimizing with respect to Newton’s 3rd Law. This is

essential for the design presented here, but could also find application in other

hardware implementations of MD. And finally, the scheme of mapping particle

pairs to filter pipelines also appears to be new.

 We have successfully integrated our FPGA design into NAMD-Lite and this is

now running on a workstation containing a single node of the Novo-G, a

supercomputer that consists of 192 Stratix-III ES260 FPGAs and [90]. We also

conducted performance measurement and quality evaluation. Our accelerator

system demonstrated that significant performance enhancement is achieved and

HPRC is promising for MD applications.

8.2 Lessons learned

Some lessons have been learned through the process of accelerating MD

simulations and are summarized as follows.

 Algorithm reconstruction is essential

Direct mapping of software serial codes to FPGAs often results

unoptimized implementations. Application specific optimizations, including

hardware architecture and algorithm restructure, and proper data

 175

formatting and restructuring, is crucial for obtaining competitive

performance.

 Precision management is required for high performance and quality

Although current FPGAs have shown significant floating point

computational capability, proper precision management is crucial for

achieving high performance. It helps reduce hardware resource utilization

and enables more coarse-level parallelism.

 High performance comes from high throughput

Although achieving high utilization of the FPGA resources is important, the

key for high performance computing is the throughput that is measured by

the amount of work completed within a given time. High resource

utilization often reduces the operation frequency due to routing congestion.

Finding the optimal point between the resource utilization and operating

frequency is an important factor in creating successful designs.

8.3 Future Directions

We now list some of possible future work.

8.3.1 Design Node Optimization

We have presented a complete MD accelerator system that delivers outstanding

performance speedups. There is still room for further optimization.

 176

 Performance

The current FPGA system (Stratix III based board) where our system is

implemented is two generations old. Porting our design into a newer

device (Stratix IV or V) allows exploiting more coarse-level parallelism as

well as boosting the operating frequency. For example, from the analysis

shown in Table 7.2, integrating our system to the latest FPGA would

nearly double performance if the same frequency is maintained.

 As described in Chapter 5.7, one potential issue of the current filter

implementation is fragmentation. It will become a performance limit when

the number of force pipelines is more than 12. Several solutions were

proposed in Chapter 5.7 to improve filter phase efficiency.

 Quality

The initial measurements of simulation quality indicated that our FPGA-

based approach is viable, although more testing are needed. Longer

simulations are essential to evaluate the overall design quality and provide

more data for design optimization and turning.

 Extendibility

Our current FPGA accelerator is currently working with NAMD-Lite, a pilot

program of popular MD program, NAMD. In order to benefit the user

community, the integration to NAMD is essential. The tasks mainly involve

 177

the data restructure, generation of cell-list tables, efficient communication

between the host and FPGA board, and exclusion of bonded particle pairs.

8.3.2 System Level Parallelization

We have focused on the short-range non-bonded force computation and

associated overhead. We now examine our work for HPRC MD simulations as a

whole. There are typically three other significant computations in MD simulations:

bonded forces, long-range non-bonded forces, and motion integration. Bonded

forces and motion integration are generally computed every timestep while the

long-range force may be computed every fourth timestep or even less frequently.

According to Amdahl’s law, the overall performance of our MD system will be

constrained by the kernels that are not accelerated. Hence, one reasonable

solution to keep improving performance is outsourcing certain tasks to the

coprocessor such that they can be removed from the critical path. For example,

based on NAMD profiling, the long-range force using PME takes over 200ms [96]

and can be accelerated with either GPUs or FPGAs. Hardy et al. have

demonstrated a GPU version with speed-up of over 20x [54] for electrostatic

energy evaluation.

 Another direction of extending our work is to scale our design to multiple

FPGAs and use them as coprocessors in parallel systems. Our preliminary study

has shown the linear scalability of our MD accelerator for the nonbonded force

kernel. Integrating MD accelerators to parallel systems would be reasonable with

 178

some work necessary for performance tuning and system integration. One

common challenge in creating parallel systems is the communication overhead.

For example, the 3D FFT used in PME requires massive all-to-all data transfers.

A way to overcome this problem is utilizing the overwhelming computational

power of FPGAs [16, 17, 46, 49], which enables to perform large-scale

simulations using relatively smaller number of nodes, resulting in reduced

communication for the 3D FFT. Data transfers can be further minimized by

employing direct communication among FPGAs themselves, bypassing the host

CPUs.

 179

References

[1] S. Alam, P. Agarwal, M. Smith, J. Vetter, and D. Caliga, “Using FPGA
devices to accelerate biomolecular simulations,” Computer, 40, 3, 66-73,
2007.

[2] M. P. Allen, “Introduction to molecular dynamics simulation,” In

Computational Soft Matter - From Synthetic Polymers to Proteins, NIC
Series, 23, John von Neumann Institute for Computing, 1-28, 2004.

[3] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford

University Press, New York, 1989.

[4] Altera Corp., http://www.altera.com/literature/wp/wp-01050-Floating-Point-

Compiler-Increasing-Performance-With-Fewer-Resources.pdf, 2007.

[5] Altera Corp., http://www.altera.com/products/fpga.html, 2011.

[6] Altera Corp., http://www.altera.com/literature/wp/wp-01003.pdf, 2011.

[7] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose

molecular dynamics simulations fully implemented on graphics processing
units,” Journal of Computational Physics, 227, 10, 5342-5359, 2008.

[8] T. A. Andrea, W. C. Swope, and H. C. Anderson, “The role of long ranged

forces in determining the structure and properties of liquid water,” Journal
of Chemical Physics, 79, 9, 4576-4584, 1983.

[9] Annapolis Micro Systems, Inc., http://www.annapmicro.com, 2011.

[10] AutoESL Design Technologies, Inc., http://www.autoesl.com, 2011.

[11] N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P. Chow, “Reconfigurable

molecular dynamics simulator,” In Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines, 197-206, 2004.

[12] J. A. Board, Jr., C. W. Humphres, C. G. Lambert, W. T. Rankin, and A. Y.

Toukmaji, “Ewald and multipole methods for periodic n-body problems,” In
Proceedings of the Eighth SIAM Conference on Parallel Processing for
Scientific Computing, 1997.

 180

[13] J. Bovay, B. Henderson, H. Lin, and K. Wadleigh, “Accelerators for high
performance computing investigation”, High Performance Computing
Division, Hewlett-Packard Company, 2007.

[14] K. J. Bowers , E. Chow , H. Xu , R. O. Dror , M. P. Eastwood , B. A.

Gregersen , J. L. Klepeis , I. Kolossvary , M. A. Moraes , F. D. Sacerdoti, J.
K. Salmon , Y. Shan , and D. E. Shaw, “Scalable algorithms for molecular
dynamics simulations on commodity clusters,” In Proceedings of the
ACM/IEEE Conference on Supercomputing, 2006.

[15] A. Brandt, “Multi-level adaptive solutions to boundary-value problems,”

Mathematics of Computation, 31, 333-390, 1977.

[16] M. Chiu and M. C. Herbordt, “Efficient particle-pair filtering for acceleration

of molecular dynamics simulation,” In Proceedings of the International
Conference on Field Programmable Logic and Applications, 2009.

[17] M. Chiu and M. C. Herbordt, “Molecular dynamics simulations on high

performance reconfigurable computing systems,” ACM Transactions on
Reconfigurable Technology and Systems (ACM-TRETS), 3, 4, 23:1-23:37,
2010.

[18] M. Chiu and M. C. Herbordt, “Towards production FPGA-accelerated

molecular dynamics: Progress and challenges,” In Proceedings of the
International Workshop on High-Performance Reconfigurable Computing
Technology and Applications, 2010.

[19] M. Chiu, M. C. Herbordt, and M. Langhammer, “Performance potential of

molecular dynamics simulations on high performance reconfigurable
computing systems,” In Proceedings of the International Workshop on
High-Performance Reconfigurable Computing Technology and
Applications, 2008.

[20] M. Chiu, M. A. Khan, and M. C. Herbordt, “Efficient calculation of pairwise

nonbonded forces,” In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 2011.

[21] T. A. Darden, D. M. York, and L. G. Pedersen, “Particle mesh Ewald: An N

log N method for Ewald sums in large systems,” Journal of Chemical
Physics, 98, 10089-10092, 1993.

[22] F. de Dinechin, “The price of routing in FPGAs,” Journal of Universal

Computer Science, 6, 227-239, 2000.

 181

[23] T. Ebisuzaki, J. Makino, T. Fukushige, M. Taiji, D. Sugimoto, T. Ito, and S.
K. Okumura, “Grape project: An overview,” Publications of the
Astronomical Society of Japan, 45, 269-278, 1993.

[24] R. D. Engle, R. D. Skeel, and M. Drees, “Monitoring energy drift with

shadow Hamiltonians,” Journal of Computational Physics, 206, 432-452,
2005.

[25] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L.G.

Pedersen, “A smooth particle mesh Ewald method,” Journal of Chemical
Physics, 103, 19, 8577-8593, 1995.

[26] G. Estrin, “Organization of computer systems - the fixed plus variable

structure computer,” In Proceedings of the Western Joint Computer
Conference, 33-40, 1960.

[27] P. P. Ewald, “Die Berechnung optischer und elektrostatischer

Gitterpotentiale,“ Annalen der Physik, 369, 3, 253-287, 1921.

[28] R. P. Feynman, R.B. Leighton, and M. Sands. In The Feynman Lectures

on Physics, I, 3-6, 1963.

[29] B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward, M. Giampapa,

and M. C. Pitman, “Blue matter: Approaching the limits of concurrency for
classical molecular dynamics,” In Proceedings of the ACM/IEEE
Conference on Supercomputing, 2006.

[30] D. R. Flower, K. Phadwal, I. K. Macdonald, P. V. Coveney, M. N. Davies,

and S. Wan, “T-cell epitope prediction and immune complex simulation
using molecular dynamics: State of the art and persisting challenges,”
Immunome Research, 6, S4, 2010.

[31] Folding@home, http://folding.stanford.edu, 2011

[32] E. S. Fomin, “Comparison of the Verlet table and cell-linked list algorithms

for sequential, vectorized and multithreaded implementations,” Electronic
Journal of Numerical Methods and Programming, 11, 299-305, 2010.

[33] P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, and K.

Schulten, “Molecular dynamics simulation of the complete satellite tobacco
mosaic virus,” Structure, 14, 3, 437-449, 2006.

[34] D. Frenkel and B. Smit, Understanding Molecular Simulation: from

Algorithms to Applications, Academic Press, San Diego, California, 2002.

 182

 [35] M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A.
L. Beberg, D. L. Ensign, C. M. Bruns, and V. S. Pande, “Accelerating
molecular dynamic simulation on graphics processing units,” Journal of
Computational Chemistry, 30, 6, 864-872, 2009.

[36] T. Fukushige, J. Makino, T. Ito, S. K. Okumura, T. Ebisuzaki, and D.

Sugimoto, “WINE-1: Special-purpose computer for n-body simulations with
a periodic boundary condition,” Publications of the Astronomical Society of
Japan, 45, 361-375, 1993

[37] T. Fukushige, M. Taiji, J. Makino, T. Ebisuzaki, and D. Sugimoto, “A highly

parallelized special-purpose computer for many-body simulations with an
arbitrary central force: MD-GRAPE,” The Astrophysical Journal, 468, 51-
61, 1996.

[38] Gidel, PROCStar III Data Book Version 1.0, 2009.

[39] Gidel, PROCWizard User’s Manual, 2009.

[40] Gidel, http://www.gidel.com, 2011.

[41] M. B. Gokhale, C. D. Rickett, J. L. Tripp, C. H. Hsu, and R. Scrofano,

“Promises and pitfalls of reconfigurable supercomputing,” In Proceedings
of the International Conference on Engineering of Reconfigurable Systems
and Algorithms, 2006.

[42] P. Gonnet, “A simple algorithm to accelerate the computation of non-

bonded interactions in cell-based molecular dynamics simulations,”
Journal of Computational Chemistry, 28, 570-573, 2007.

[43] GREEN500, http://www.green500.org/home.php, 2011.

[44] GROMACS, http://www.gromacs.org, 2011.

[45] GROMACS Manual 4.5.3., 148, http://www.gromacs.org, 2011.

[46] Y. Gu, “FPGA acceleration of molecular dynamics simulations,” In PhD

Dissertation, Boston University, 2008.

[47] Y. Gu, T. VanCourt, and M. C. Herbordt, “Accelerating molecular

dynamics simulations with configurable circuits,” IEE Proceedings on
Computers and Digital Technology, 153, 3, 189-195, 2006.

 183

[48] Y. Gu, T. VanCourt, and M. C. Herbordt, “Improved interpolation and
system integration for FPGA-based molecular dynamics simulations,” In
Proceedings of the International Conference on Field Programmable Logic
and Applications, 21-28, 2006.

[49] Y. Gu, T. VanCourt, and M. C. Herbordt, “Explicit design of FPGA-based

coprocessors for short-range force computation in molecular dynamics
simulations,” Parallel Computing, 34, 4-5, 261-271, 2008.

[50] S. A. Guccione and E. Keller, “Gene matching using JBits,” In

Proceedings of the International Conference on Field Programmable Logic
and Applications, 1168-1171, 2002.

[51] H. Guo, L. Su, Y. Wang, and Z. Long, “FPGA-accelerated molecular

dynamics simulations system,” In Proceedings of the Eighth International
Conference on Embedded Computing, 2009.

[52] T. Hamada and N. Nakasato, “Massively parallel processors generator for

reconfigurable system,” In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 2005.

[53] D. J. Hardy, NAMD-Lite, http://www.ks.uiuc.edu/Development/

MDTools/namdlite, University of Illinois at Urbana-Champaign, 2007.

[54] D. J. Hardy, J. E. Stone, and K. Schulten, “Multilevel summation of

electrostatic potentials using graphics processing units,” Journal of
Parallel Computing, 35, 3, 164-177, 2009.

[55] M. Haselman, R. Miyaoka, T. K. Lewellen, and S. Hauck, “FPGA-based

data acquisition system for a positron emission tomography (PET)
scanner,” In Proceedings of the international Symposium on Field
Programmable Gate Arrays, 2008.

[56] M.C. Herbordt, Y. Gu, T. VanCourt, J. Model, B. Sukhwani, and M. Chiu,

“Computing models for FPGA-based accelerators with case studies in
molecular modeling,” In Proceedings of the Reconfigurable Systems
Summer Institute, 2008.

[57] M. C. Herbordt, J. Model, B. Sukhwani, Y. Gu, and T. VanCourt, “Single

pass streaming BLAST on FPGAs,” Parallel Computing, 33, 10-11, 741-
756, 2007.

 184

[58] M. C. Herbordt, B. Sukhwani, M. Chiu, and M.A. Khan, “Production
floating point applications on FPGAs,” In Proceedings of Symposium on
Application Accelerators in High Performance Computing, 2009.

[59] B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, “GROMACS 4:

Algorithms for highly efficient, load-balanced, and scalable molecular
simulation,” Journal of Chemical Theory and Computation, 4, 3, 435-447,
2008.

[60] W. Humphrey, A. Dalke and K. Schulten, “VMD - Visual molecular

dynamics,” Journal of Molecular Graphics, 14, 33-38, 1996.

[61] Impulse Accelerated Technologies, http://rssi.ncsa.illinois.edu/proceed-

ings/tutorial/Impulse.pdf, 2008.

[62] Impulse Accelerated Technologies, http://www.impulseaccelerated.com,

2011.

[63] Intel Corp., http://newsroom.intel.com/community/intel_newsroom/blog/t-

ags/e600c, 2010.

[64] A. Jacob, J. Lancaster, J. Buhler, and R. D. Chamberlain, “FPGA-

accelerated seed generation in Mercury BLASTP,” In Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines,
2007

[65] Jaguar, http://www.nccs.gov/computing-resources/jaguar/, 2011.

[66] L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar, “Scaling applications to

massively parallel machines using projections performance analysis tool,”
Future Generation Computer Systems, 22, 3, 347-358, 2006.

[67] M. Karplus and J. A. McCammon, “Molecular dynamics simulations of

biomolecules,” Nature Structural Biology, 9, 9, 2002.

[68] A. Kawai, T. Fukushige, and J. Makino, “$7.0/Mflops astrophysical n-body

simulation with treecode on GRAPE-5,” In Processing of Supercomputing,
1999.

[69] V. Kindratenko and D. Pointer, “A case study in porting a production

scientific supercomputing application to a reconfigurable computer,” In
Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines, 2006

 185

[70] M. G. Kiselev, B. G. Abrosimov, I. I. Vaisman, and Y. M. Kessler, “Error
estimation in molecular dynamics experiments with a tabulated
intermolecular interaction potential,” Molecular Simulation, 1, 5, 321–326,
1988.

[71] Y. Komeiji, M. Uebayasi, R. Takata, A. Shimizu, K. Itsukashi, and M. Taiji,

“Fast and accurate molecular dynamics simulation of a protein using a
special-purpose computer,” Journal of Computational Chemistry, 18, 12,
1546-1563, 1997.

[72] M. Langhammer, “Floating point datapath synthesis for FPGAs,” In

Proceedings of the IEEE Conference on Field Programmable Logic and
Applications, 355-360, 2008.

[73] M. Langhammer and T. VanCourt, “FPGA floating point datapath

compiler,” In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 259-262, 2009.

[74] R. H. Larson, J. K. Salmon, R. O. Dror, M. M. Deneroff, C. Young, J. P.

Grossman, Y. Shan, J. L. Klepeis, and D. E. Shaw, “High-throughput
pairwise point interactions in Anton, a specialized machine for molecular
dynamics simulation,” In Proceedings of the International Symposium on
High Performance Computer Architecture, 331–342, 2008.

[75] S. Lee, “An FPGA implementation of the smooth particle mesh Ewald

reciprocal sum compute engine (RSCE),”In Master's thesis, University of
Toronto, 2005.

[76] E. Lindahl, B. Hess and D. van der Spoel, “GROMACS 3.0: A package for

molecular simulation and trajectory analysis,” Journal of Molecular
Modeling, 7, 8, 306-317, 2001.

[77] A. Mahram and M. C. Herbordt, “Fast and accurate NCBI BLASTP:

Acceleration with multiphase FPGA-based prefiltering,” In Proceedings of
the International Conference on Supercomputing, 2010.

[78] T. Matthey, T. Cickovski, S. S. Hampton, A. Ko, Q. Ma, M. Nyerges, T.

Raeder, T. Slabach, and J. A. Izaguirre, “ProtoMol: An object-oriented
framework for prototyping novel algorithms for molecular dynamics,” ACM
Transactions on Mathematical Software, 30, 3, 237-265, 2004.

[79] W. Mattson and B. M. Rice, “Near-neighbor calculations using a modified

cell-linked list method,” Computer Physics Communications, 119, 135-148,
1999.

 186

[80] J. A. van Meel, A. Arnold, D. Frenkel, S. F. P. Zwart, and R.G. Belleman,
“Harvesting graphics power for MD simulations,” Molecular Simulation, 34,
3, 259-266, 2008.

[81] Mitrionics, http://www.mitrionics.com, 2011.

[82] S. E. Murdock, K. Tai, M. H. Ng, S. Johnston, B. Wu, H. Fangohr, C. A.

Laughton, J. W. Essex, and M. S. P. Sansom, “Quality assurance for
biomolecular simulations,” Journal of Chemical Theory Computation, 2, 6,
1477-1481, 2006.

[83] Nallatech, http://www.nallatech.com, 2011.

[84] NAMD, http://www.ks.uiuc.edu/Research/namd, 2011.

[85] NAMD-lite, http://www.ks.uiuc.edu/Development/MDTools/namdlite, 2011.

[86] T. Narumi, R. Susukita, T. Ebisuzaki, G. McNiven, and B. Elmegreen,

“Molecular dynamics machine: Special-purpose computer for molecular
dynamics simulations,” Molecular Simulation, 21, 401 - 415, 1999.

[87] T. Narumi, R. Susukita, H. Furusawa, and T. Ebisuzaki, “46 tflops special-

purpose computer for molecular dynamics simulations: Wine-2,” In
Proceedings of the International Conference on Signal Processing, 575-
582, 2000.

[88] T. Narumi, R. Susukita, T. Koishi, K. Yasuoka, H. Furusawa, A. Kawai,

and T. Ebisuzaki, “1.34 tflops molecular dynamics simulation for NaCl with
a special purpose computer: MDM,” In Proceedings of the ACM/IEEE
International Conference on Supercomputing, 2000.

[89] L. Nilsson, “Efficient table lookup without inverse square roots for

calculation of pair wise atomic interactions in classical simulations,”
Journal of Computational Chemistry, 30, 9, 1490-1498, 2009.

[90] Novo-G, http://www.chrec.org/~george/Novo-G.pdf, 2010.

[91] NVIDIA, http://www.nvidia.com/object/namd_on_tesla.html, 2011.

[92] NVIDIA, http://www.nvidia.com/page/8800_tech_briefs.html, 2011.

[93] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.

Phillips, “GPU Computing,” In Proceedings of the IEEE, 96, 5, 879-899,
2008.

 187

[94] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C.
Chipot, R. D. Skeel, L. Kale, and K. Schulten, “Scalable molecular
dynamics with NAMD,” Journal of Computational Chemistry, 26, 1781-
1802, 2005.

[95] L. Phillips, R. S. Sinkovits, E. S. Oran, and J. P. Boris, “The Interaction of

shocks and defects in Lennard-Jones crystals,” Journal of Physics:
Condensed Matter, 5, 35, 6357-6376, 1993.

[96] J. C. Phillips, J. E. Stone, and K. Schulten, “Adapting a message-driven

parallel application to GPU-accelerated clusters,” In Proceedings of the
ACM/IEEE Conference on Supercomputing, 2008.

[97] ProtoMol, http://protomol.sourceforge.net, 2011.

[98] B. Quentrec and C. Brot, Journal of Computational Physics, 13, 1975.

[99] B. Radunovic and V. M. Milutinovic, “A survey of reconfigurable computing

architectures,” In Proceedings of the International Workshop on Field-
Programmable Logic and Applications, 1998.

[100] D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge

University Press, 2004.

[101] C. I. Rodrigues, D. J. Hardy, J. E. Stone, K. Schulten, and W.-M. W. Hwu,

“GPU acceleration of cutoff pair potentials for molecular modeling
applications,” In Proceedings of the 5th conference on Computing
Frontiers, 2008.

[102] C. Sagui and T. A. Darden, “Molecular dynamics simulations of

biomolecules: Long-range electrostatic effects,” Annual Review of
Biophysical and Biomolecular Structures, 28, 155-179, 1999.

[103] S, Samir, “Field Programmable Gate Arrays FPGAs [Internet]”, version 18.

Knol. http://knol.google.com/k/samir-s/field-programmable-gate-arrays-
fpga-s/2cnzhswl7e31n/7, 2010.

[104] R. Scrofano, M. Gokhale, F. Trouw, and V. K. Prasanna, “A

hardware/software approach to molecular dynamics on reconfigurable
computers,” In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 2006.

 188

[105] R. Scrofano and V. K. Prasanna, “Computing Lennard-Jones potentials
and forces with reconfigurable hardware,” In Proceedings of the
International Conference on Engineering of Reconfigurable Systems and
Algorithms, 2004.

[106] R. Scrofano, and V. K. Prasanna, “Preliminary investigation of advanced

electrostatics in molecular dynamics on reconfigurable computers,” In
Proceedings of the ACM/IEEE Conference on Supercomputing, 2006.

[107] Y. Shan, J. L. Klepeis, M. P. Eastwood, R. O. Dror, and D. E. Shaw,

“Gaussian split Ewald: A fast Ewald mesh method for molecular
simulation,” Journal of Chemical Physics, 122, 5, 054101:1-13, 2005.

[108] D. E. Shaw, “A fast, scalable method for the parallel evaluation of

distance-limited pairwise particle interactions,” Journal of Computational
Chemistry, 26, 1318-1328, 2005.

[109] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K.

Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. Eastwood,
J. Gagliardo, J. P. Grossman, C. R. Ho, D. J. Ierardi, I. Kolossváry, J. L.
Klepeis, T. Layman, C. McLeavey, M. A. Moraes, R. Mueller, E. C. Priest,
Y. Shan, J. Spengler, M. Theobald, B. Towles, and S. C. Wang, “Anton, a
special-purpose machine for molecular dynamics simulation,” In
Proceedings of the 34th Annual International Symposium on Computer
Architecture, 2007

[110] D. E. Shaw, R. O. Dror, J. K. Salmon, J. P. Grossman, K. M. Mackenzie, J.

A. Bank, C. Young, M. M. Deneroff, B. Batson, K. J. Bowers, E. Chow, M.
P. Eastwood, D. J. Ierardi, J. L. Klepeis, J. S. Kuskin, R. H. Larson, K.
Lindorff-Larsen, P. Maragakis, M. A. Moraes, S. Piana, Y. Shan, and B.
Towles, “Millisecond-scale molecular dynamics simulations on Anton,” In
Proceedings of the ACM/IEEE Conference on Supercomputing, 2009.

[111] G. Shi and V. Kindratenko, “Implementation of NAMD molecular dynamics

non-bonded force-field on the cell broadband engine processor,” In
Proceedings of the IEEE International Parallel & Distributed Processing
Symposium, 2008.

[112] R. D. Skeel, I. Tezcan, and D. J. Hardy, “Multiple grid methods for

classical molecular dynamics,” Journal of Computational Chemistry, 23,
673-684, 2002.

[113] SLASH GEAR, http://www.slashgear.com/intel-stellarton-atom-e600fpga-

promises-flexible-embedded-devices-14102251, 2010

 189

[114] M. Snir, “A note on n-body computations with cutoffs,” Theory of
Computing Systems, 37, 2, 295-318, 2004.

[115] D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J.

C. Berendsen, “GROMACS: Fast, flexible and free,” Journal of
Computational Chemistry, 26, 16, 1701-1718, 2005.

[116] STMV. http://www.ks.uiuc.edu/Research/STMV

[117] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco,

and K. Schulten, “Accelerating molecular modeling applications with
graphics processors,” Journal of Computational Chemistry, 28, 2618-2640,
2007.

[118] B. Sukhwani, “Accelerating molecular docking and binding site mapping

using FPGAs and GPUs,” In PhD Dissertation, Boston University, 2010.

[119] B. Sukhwani and M.C. Herbordt, “Acceleration of a production rigid

molecule docking code,” In Proceedings of the International Conference
on Field Programmable Logic and Applications, 2008.

[120] B. Sukhwani and M.C. Herbordt, “FPGA-based acceleration of CHARMM-

potential minimization,” In Proceedings of the International Workshop on
High-Performance Reconfigurable Computing Technology and
Applications, 2009.

[121] J. V. Sumanth, D. R. Swanson, and H. Jiang, “Performance and cost

effectiveness of a cluster of workstations and MD-GRAPE 2 for MD
simulation,” In Proceedings of the International Symposium on Parallel
and Distributed Computing, 2003.

[122] M. Taiji, “MDGRAPE-3 chip: A 165-Gflops application-specific LSI for

molecular dynamics simulations,” IEEE Hot Chips Symposium, 2004.
http://www.hotchips.org/archives/hc16.

[123] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, and A.

Konagaya, “Protein explorer: A petaflops special-purpose computer
system for molecular dynamics simulations,” In Proceedings of the
ACM/IEEE Conference on Supercomputing, 2003.

[124] TOP500, http://www.top500.org/lists/2010/11, 2010.

 190

[125] S. Toyoda, H. Miyagawa, K. Kitamura, T. Amisaki, E. Hashimoto, H. Ikeda,
A. Kusumi, and N. Miyakawa, “Development of MD engine: High-speed
accelerator with parallel processor design for molecular dynamics
simulations,” Journal of Computational Chemistry, 20, 2, 185-199, 1999.

[126] K. D. Underwood, “FPGAs vs. CPUs: Trends in peak floating-point

performance,” In Proceedings of the ACM International Symposium on
Field Programmable Gate Arrays, 171-180, 2004.

[127] L. Verlet, “Computer experiments on classical fluids. I. thermodynamical

properties of Lennard-Jones molecules,” Physical Review, 159, 1, 98-103,
1967.

[128] J. Villareal, J. Cortes, and W. Najjar, “Compiled code acceleration of

NAMD on FPGAs,” In Proceedings of Reconfigurable Systems Summer
Institute, 2007.

[129] VMD. http://www.ks.uiuc.edu/Research/vmd, 2011.

[130] D. B. Wang, F. B. Hsiao, C. H. Chuang, and Y. C. Lee, “Algorithm

optimization in molecular dynamics simulation,” Computer Physics
Communications, 177, 7, 551-559, 2007.

[131] U. Welling and G. Germano, “Efficiency of linked cell algorithms,”

Computer Physics Communications, 182, 3, 611-615, 2011.

[132] Wildstar II., Annapolis Micro Systems, Inc. WILDSTAR II Hardware

Reference Manual, 2003.

[133] D. Wolff and W. Rudd, “Tabulated potentials in molecular dynamics

simulations,” Computer Physics Communications, 120, 1, 20-32, 1999.

[134] XD1000 Development System. http://www.xtremedata.com, 2007.

[135] Xilinx, Inc., http://www.xilinx.com/company/history.htm, 2011.

[136] Xilinx, Inc., http://www.xilinx.com/bvdocs/whitepapers/wp245.pdf, 2011.

[137] XtremeData Inc., http://www.xtremedata.com, 2010.

[138] X. Yang, S. Mou, and Y. Dou, “FPGA-accelerated molecular dynamics

simulations: An overview,” In Proceedings of the International Conference
on Reconfigurable Computing: Architectures, Tools and Applications,
4419, 293-301, 2007.

 191

[139] Z. Yao, J. Wang, G. Liu, and M. Cheng, “Improved neighbor list algorithm
in molecular simulations using cell decomposition and data sorting
method,” Computer Physics Communications, 161, 1-2, 27-35, 2004.

[140] L. Zhuo, G. R. Morris, and V. K. Prasanna, “Designing scalable FPGA-

based reduction circuits using pipelined floating-point cores,” In
Proceedings of the 12th Reconfigurable Architectures Workshop, 2005.

 192

Vita

SHIHCHIN MATTHEW CHIU

Electrical and Computer Engineering Cell: (408) 813-3639
Boston University Email:mattchiu@bu.edu
8 Saint Mary’s Street, ECE, Boston, MA, 02215

Education

 PhD, Computer Engineering May, 2011
Boston University, Boston, MA GPA: 4.0/4.0
Dissertation Title:
Accelerating Molecular Dynamics Simulations with High Performance
Reconfigurable Systems

 M.S., Electrical Engineering Dec., 2000
University of Southern California, Los Angeles, CA

 B.S., Physics Jun., 1997
National Chung-Hsing University, Taichung, Taiwan

Professional Experience

 Teaching Fellow Jan. 2011 – May 2011
Department of Electrical and Computer Engineering
Boston University, Boston, MA

 Summer Internship Aug. 2010 – Nov. 2011
Ultra Mobility Group
Intel Corporation, Folsom, CA

 Research Assistant Sep. 2007 – Jul. 2010
Computer Architecture and Automated Design Lab
Boston University, Boston, MA

 Research Assistant Jan. 2007 – Aug. 2007
VLSI and Neural Net Systems Lab
Boston University, Boston, MA

 Teaching Fellow Sep. 2005 – Dec. 2006
Department of Electrical and Computer Engineering
Boston University, Boston, MA

 Integrated Circuit Design Engineer Feb. 2001 – Aug. 2005
Sun Microsystems, Sunnyvale, CA

 193

Awards and Honors (Selected)

 Summer Fellowship, Intel Corporation, 2010.
 Outstanding Paper Award, 19th International Conference on Field

Programmable Logic and Applications (FPL’09), 2009. Selected from 70
full papers and 300 overall submissions.

 ECE Award for outstanding research, Department of Electrical and
Computer Engineering, Boston University, 2007.

 Outstanding Graduate Teaching Fellow Award, College of Engineering,
Boston University, 2006.

 Graduate Teaching Fellow of the Year Award, Department of Electrical
and Computer Engineering, Boston University, 2006.

Publications (Selected)

 M. Chiu, Md. Ashfaquzzaman Khan, and M.C. Herbordt, “Efficient

Calculation of Pairwise Nonbonded Forces,” Proceedings of IEEE
Symposium on Field-Programmable Custom Computing Machines
(FCCM’11), 2011.

 M. Chiu and M.C. Herbordt, “Towards Production FPGA-Accelerated

Molecular Dynamics: Progress and Challenges,” Proceedings of High
Performance Reconfigurable Computing Technology and Applications
(HPRCTA’10), November, 2010.

 M. Chiu and M.C. Herbordt, “Molecular Dynamics Simulations on High

Performance Reconfigurable Computing Systems,” ACM Transactions on
Reconfigurable Technology and Systems, 3, 4, 23:1-37, 2010.

 B. Sukhwani, M. Chiu, Md. Ashfaquzzaman Khan and M.C. Herbordt,

“Effective Floating Point Applications on FPGAs: Examples from Molecular
Modeling,” Proceedings of High Performance Embedded Computing
(HPEC’09), 2009.

 M. Chiu and M.C. Herbordt, “Efficient Particle-Pair Filtering for

Acceleration of Molecular Dynamics Simulation,” Proceedings of the
International Conference on Field Programmable Logic and Applications
(FPL’09), August 2009 (Winner of the Outstanding Paper Award).

 M.C. Herbordt, B. Sukhwani, M. Chiu and Md. Ashfaquzzaman Khan,

“Production Floating Point Applications on FPGAs,” Proceedings of the
Symposium on Application Accelerators in High Performance Computing
(SAAHPC’09), July 2009.

 194

 M. Chiu, M. C. Herbordt, and M. Langhammer, “Performance Potential of
Molecular Dynamics Simulations on High Performance Reconfigurable
Computing Systems,” Proceedings of the International Workshop on High-
Performance Reconfigurable Computing Technology and Applications
(HPRCTA’08), at Supercomputing ’08, November 2008.

 M. C. Herbordt, Y. Gu, T. VanCourt, J. Model, B. Sukhwani, and M. Chiu,

“Computing Models for FPGA-Based Accelerators,” Computing in Science
& Engineering, 10, 6, 35-45, 2008.

 M.C. Herbordt, Y. Gu, T. VanCourt, J. Model, B. Sukhwani, and M. Chiu,

“Computing Models for FPGA-Based Accelerators with Case Studies in
Molecular Modeling,” Proceedings of the Reconfigurable Systems
Summer Institute (RSSI’08), July 2008.

