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ABSTRACT  

Molecular Dynamics (MD) simulation plays an important role in understanding 

functionally important phenomena of biological processes. Many of such events, 

however, occur on time scales beyond the capabilities of modern computers. 

Hence, accelerating MD simulations becomes one of critical challenges in the 

current study of Computational Biology and Chemistry.  

    For the past several years, various implementations and efficient algorithms 

have been developed toward this goal. Of these, accelerating MD with Field 

Programmable Gate Arrays (FPGAs) has been shown to be a viable candidate 

for improved MD cost/performance. Given the intense competition from multi-

core and GPUs, there is now a question whether MD on High Performance 

Reconfigurable Computing (HPRC) can be competitive. The goal of this research 

is to create an FPGA-based MD system to achieve substantial speedup over 
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production MD software without compromising simulation quality.  

    In one part of the study, we systematically explore and evaluate the design 

space of the force pipeline with respect to arithmetic algorithm, arithmetic mode, 

precision, equation complexity, and various other optimizations. We find that the 

FPGAs’ Block RAM (BRAM) architecture makes them well suited to support 

unusually fine-grained intervals. This leads to a reduction in other logic and a 

proportional increase in performance. 

    In the other part, we present the first FPGA study of the filtering of particle 

pairs having nearly zero mutual force, a standard optimization in MD codes. 

There are several innovations, including a novel partitioning of the particle space, 

and new methods for filtering and mapping work onto the pipelines. As a 

consequence, highly efficient filtering can be implemented with only a small 

fraction of the FPGA’s resources. Overall, we find that, for an Altera Stratix-III 

EP3ES260, six force pipelines running at nearly 200 MHz can fit on the FPGA. 

This results in a 26x per core speedup for the nonbonded short-range force.  The 

resulting integrated system is likely to make FPGAs highly competitive for MD.  
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Chapter 1 Introduction 

1.1 The Problem 

Driven by the rapid increase of computer power over the last 60 years, advances 

in computational methods have made a dramatic impact in traditional sciences. 

Computer simulations are now regularly used to verify theoretical assumptions, 

as well as to predict experimental outcomes and hence bridge the gap between 

theory and experiment. Simulations act as a complement to laboratory 

experiments, enabling us to learn something new, to understand something that 

cannot be found out in other ways, and to discover something difficult to observe 

in the laboratory [2]. 

    Molecular Dynamics (MD) simulation is central to Computational Biology and 

Chemistry and commonly used in the study of biomolecules, proteins, and 

generally in material modeling. MD helps us understand the properties of a 

molecular systems in terms of the structure and microscopic molecular 

interactions [2, 67].  We recall a famous sentiment [28]: 

    Certainly no subject or field is making more progress on so many fronts at the 

present moment than biology, and if we were to name the most powerful 

assumption of all, which leads one on and on in an attempt to understand life, it 

is that all things are made of atoms, and that everything that living things do can 

be understood in terms of the jiggling and wiggling of atoms. 

       Richard Feynman, Lecture on Physics, vol. 1, p. 3-6 (1963) 
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Figure 1-1: Satellite tobacco mosaic virusi [116] 

 

    Many important biochemical phenomena, however, usually occur on time 

scales that are beyond the reach of current technology [109].  Figure 1-1 

illustrates a million-atom MD system consisting of a small, icosahedra plant virus, 

standing for satellite tobacco mosaic virus (STMV) [33, 116]. It would take a 

single 2006-era desktop computer over 35 years to perform 50ns simulation 

using NAMD, highly optimized MD package [30, 33].  

    Moreover, the dramatic increases of application demands have greatly 

outpaced the technology curve as postulated by Moore’s law, which the growth of 

                                                 
i  This figure was made with VMD and is owned by the Theoretical and Computational Biophysics Group, an NIH 

Resource for Macromolecular Modeling and Bioinformatics, at the Beckman Institute, University of Illinois at 

Urbana-Champaign. 
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new technologies still struggle to follow. Accelerating MD simulation has become 

a critical challenge for scientific research. As such, it has obtained much attention 

from various perspectives such as supercomputers, multi-cores, ASICs, and 

coprocessing technology using GPUs, Cell, and FPGAs. The last of these is what 

we focus in this work.  

    The problem that this dissertation explores is how to improve the 

computational performance and efficiency of molecular modeling 

applications. In particular, we address this problem by accelerating 

molecular dynamics simulation with the use of Field Programmable Gate 

Arrays or FPGAs. 

1.2 Molecular Dynamics 

Molecular dynamics simulation is a technique that models motions of molecular 

particles by applying known classical mechanics. It is an iterative process 

comprised of two phases: force calculation and motion update. Forces applied on 

each particle are computed using classical equations of motion and then the 

state of each particle is updated accordingly. MD simulation can serve as a 

computational “microscope” to observe functionally important biological 

processes such as folding of proteins and various types of interactions between 

proteins that are difficult to be observed in experiments [14]. Several open 

questions in the areas of biology and chemistry could be answered with aid of 

such simulations [109]. Many of such important events, however, usually occur 

on long time scales beyond the reach of modern computer capabilities.  
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Therefore, how to perform effective acceleration of MD simulations becomes a 

crucial subject in the current research of computational biology and chemistry.  

    Among all computations in MD, force evaluation consumes the majority of 

computational powers. In general, the forces depend on the physical system 

being simulated and may include van der Waals (approximated with the Lennard-

Jones or LJ potential), electrostatic, hydrogen bond, and various covalent bond 

terms: 

bondednonhydrogentorsionanglebondtotal FFFFFF   (1-1) 

 

Because the hydrogen bond and covalent terms (bond, angle, and torsion) affect 

only neighboring atoms, computing their effect is O(N) in the number of particles 

N being simulated. The motion integration computation is also O(N). The 

complexity of non-bonded force evaluation is )( 2NO  initially and comprises the 

bulk of computations [46]. Several algorithms and techniques have been 

developed (over multiple decades) to limit the computational cost of the 

nonbonded forces. Each of those has its specialty and advantage for different 

computational platforms. 

1.3 High Performance Computing with Accelerators 

Since the 1970s, microprocessors have formed the backbone of all computing, 

and dominating high performance computing (HPC) since the early 1990s.  

During that time, performance of microprocessors has improved steadily and 
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exponentially.  There have been three primary axes of improvement:  increased 

efficiency through architectural advances, increased operating frequency, and 

increased number of devices per chip.  The first of these appears to have topped 

out around 2000 when increases in Instruction Level Parallelism (ILP) began to 

stagnate.  The second peaked in around 2004 at 4GHz and has remained steady 

or diminished slightly.  This is due to the well-known power wall [13] that, among 

other problems, makes it challenging to cool devices at higher frequencies.  The 

third component, however, continues to increase and projects to continue to do 

so for at least 5 more years.  The focus of HPC, therefore has shifted from 

improving single-thread performance to increasing the number of cores for 

overall performance enhancement.  

    In November 2010, the TOP500 project confirmed that the top spot indicative 

of the world’s fastest supercomputer had been taken by a Chinese 

supercomputer, the Tianhe-1A at the National Supercomputer Center in Tianjin.  

It demonstrated performance of 2.57 petaflop/s [124]. It consists of 14,336 multi-

core CPUs and 7,168 GPUs and illustrates a good example of accelerated-based 

computing. The Tianhe-1A outpaces the former number one (and now number 

two), the Cray XT5 “Jaguar” system at the Oak Ridge National Laboratory.  

Jaguar contains 224,256 CPU cores and can achieve 1.75 petaflop/s [65, 124].  

    Besides performance, another critical issue is the energy efficiency. Although 

microprocessor-based clusters provide massive computational, they usually 

dissipate from hundreds of kilowatts to a few megawatts of power and require 
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cooling infrastructure. In contrast, a high-ended FPGA typically consumes just 

20-30 watts. Although GPUs have high power consumption (100 - 300 watts), 

GPU-accelerated systems often have better performance-per-watt ratios than 

those with only CPUs. According to the recent release of the Green500 list on 

November 2010, eight of top ten slots were occupied by accelerated-based 

supercomputers [43]. The metric used is million floating point operations per 

second per watt.  The potential for energy efficiency should spur the continued 

growth and popularity of accelerator-based computing.  

    As a result, high performance accelerated-computing is getting much attention 

from the HPC community.  Some examples of accelerators are: 

 Graphics Processing Units (GPUs) 

GPUs are commodity hardware that were initially designed to perform fast 

graphics rendering. Since CUDA was introduced to provide developers 

access to immense parallel computing elements in GPUs, GPUs have 

become a popular computing alternative for scientific applications, 

especially for those requiring massive numbers of floating point 

computations. 

 Field Programmable Gate Arrays (FPGAs) 

Because of its flexible programmability and application specific 

characteristic, FPGAs have been used widely in design prototyping, digital 

signal processing, and network switches. Recent advances in FPGA 
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architecture such as incorporating hard multipliers and embedded 

processors have attracted attention and interest from other areas such as 

scientific computing and bioinformatics.  HPC with FPGAs is often referred 

to as High Performance Reconfigurable Computing (HPRC). 

 IBM Cell Processor 

Cell was originally designed for gaming, but its effective multi-core 

configuration, together with internal high speed interconnects, makes it 

popular and powerful for various applications and computations, including 

3D FFT, video processing and cluster computing.  

 Application Specific Integrated Circuits (ASICs) 

An ASIC is an integrated circuit that is customized to tackle a specific 

application and can be optimized to provide the best performance in terms 

of speed, chip density, and power. ASICs, however, often require high   

development costs, long time-to-market, and lack of flexibility.   

    Although each of these differs from the others in term of its own features and 

limitations, many of them share all or at least several of the following common 

characteristics [13]: 

 Communication between the host and accelerator becomes a 

performance bottleneck 

 High performance comes from high parallelism and utilization 
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 High performance requires much data reuse 

 Meeting peak performance is hard  

 Integer or single precision arithmetic is more favorable for achieving high 

performance 

 Lack of software tool support 

 Restructuring of algorithms and data structures is the key to success 

Finding what applications are most cost-effective on which architecture is a 

critical problem and the answers vary with applications and problems.  

1.4 High Performance Reconfigurable Computing with MD 

Since firstly introduced in 1960 [26], field program gate arrays (FPGAs) have 

been popularly adopted for exploring new algorithms.  Their tremendous flexibility 

and power efficiency have made them a great success in digital signal 

processing (DSP) where multiple small kernels are executed in parallel. Recent 

advances in semiconductor technology and enhanced features such as hard 

multipliers and individually accessible BRAMs have made FPGAs an attractive 

candidate for high performance computing [41]. For example, HPC using FPGAs 

has been extended the reach of bioinformatics and computational chemistry in 

such areas as biological sequence alignment analysis [50, 57, 64], molecular 

docking [118], and molecular dynamics simulation [11, 16, 46, 69, 105].  
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    MD simulation is a central method in high performance computing (HPC) with 

applications throughout engineering and natural science. Acceleration of MD is a 

critical problem—there is a many order-of-magnitude gap between the largest 

current simulations and the potential physical systems to be studied. As such it 

has received attention as a target for supercomputers [29], clusters [14], and 

dedicated hardware [71, 109, 123], as well as coprocessing using GPUs [96, 

101], Cell [111], and FPGAs [1, 11, 46, 52, 69, 105, 128]. The last of these, MD 

with HPRC, is our focus here. In particular, we demonstrate that MD with HPRC 

is not only cost-effective, but in fact, an excellent fit. This result is surprising given 

the FPGA’s reputation for having difficulty with floating point intensive 

computations. 

    In this research, we re-examine the short-range force computation that 

dominates MD. Although this problem has been addressed by many groups in 

the last few years, much of the design space has remained unexplored. In 

addition, recent advances in FPGA hardware and in compiler technology appear 

to have shifted some basic trade-offs. 

    Our study has three parts. The first part considers the force pipeline. Our goal 

here is to maximize throughput—operating frequency and the number of 

pipelines that fit on the FPGA—while maintaining simulation quality. To do this, 

we explore various ways to perform the arithmetic, the modes in which to 

execute the operations, the levels of precision, and other optimizations. Some of 

the choices are as follows. 



 10

 Direct computation (Direct) versus table lookup with interpolation (LUT) 

 Interpolation order and the interval resolution (for LUT) 

 Precision: single, double, custom 

 Mode: floating point, hybrid fixed/floating point, custom 

 Implementation: synthesized components, vendor cores, vendor compiler 

(Alter floating point datapath compiler) 

 Various simulation configurations and complexity of target functions 

We find that the LUT method is now preferred, and that single-precision floating 

point combined with higher precision fixed point leads to both excellent 

performance and high-quality simulations. 

    The second part considers filtering particle pairs. This issue emerges from the 

geometric mismatch between two shapes: (i) the cubes (or other polyhedrons) 

into which it is convenient to partition the simulation space and (ii) the spheres 

around each particle in which the short-range force is non-zero. If this mismatch 

is not addressed (e.g., only the standard cell-list method is used), then 85.5% of 

the particle pairs that are run through the force pipelines will be superfluous. 

While filtering is a critical issue, we believe that the only previously published 

results related to hardware implementations are from D.E. Shaw; these are with 

respect to their Anton processor [109]. Here, we find filtering implementation on 

FPGAs to provide a rich design space. Its primary components are as follows. 
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 Filter algorithm and precision 

 Method of partitioning the cell neighborhood to balance load with respect 

to the Newton’s 3rd law optimization 

 Method of mapping particle pairs to filter pipelines 

 Queuing and routing between filters and force pipelines 

We present new algorithms or methods for filtering, load balancing, and mapping, 

and find that nearly perfect filtering can be achieved with only a fraction of the 

FPGA’s logic. 

    The third part considers the integration of the new features specified by the 

other two parts. The particle mapping to the filter pipelines leads to changes in 

how cell lists are swapped on/off chip. In addition, the filter pipelines generate 

neighbor lists that must be fed into the force pipelines. And having multiple force 

pipelines (6 or more) requires accumulation of forces on the other end. We find 

solutions to all of these issues that have simple control, match FPGA resources, 

and add only little overhead. 

    Our basic result is that for the Stratix-III EP3SE260, and for the best (as yet 

un-optimized) designs, 6 force pipelines running at nearly 200 MHz can fit on the 

FPGA. Moreover, the force pipelines can be run at high efficiency with 90% of 

cycles providing payload. As a result, the short-range force for the standard 92K 

ApoA1 NAMD benchmark can be computed in less than 70 ms, or about a factor 
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of 26 faster than its per-core execution time that makes our MD design 

competitive and attractive.  

1.5 Summary of Contributions 

The contributions of this work can be classified into four main categories: (i) 

acceleration of MD simulation, (ii) demonstration of FPGA viability for MD (iii) the 

algorithms and scheme developed for MD, and (iii) the extension of the proposed 

algorithms and methods to other computations and applications.  

    The first is straightforward and immediate. Our FPGA-based accelerator 

shows that significant speedup can be obtained over the production software 

implementation while still maintaining acceptable simulation quality.  

    The second ensues from the outcome of the first. Given the intense 

competition from multi-core and GPUs, there has been a question whether MD 

on HPRC can be competitive. We illustrate FPGA-based computing is still a 

viable and highly competitive technology with our results and experiences. It, 

indeed, requires application-specific algorithms and schemes to map the problem 

well on the underlying hardware and demands careful hardware-aware 

implementation.  We now describe those algorithms and methods in details as 

follows. 

1.5.1 Acceleration of Molecular Dynamics Simulation 

Many critically important molecular processes occur on a millisecond time scale 

that is beyond the reach of MD simulations with current technology capabilities 
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[109]. The main goal of this research is to shorten this gap by accelerating MD 

simulation and hence advance the progress in science and engineering. We 

have designed an MD accelerator that enables a significant increase in 

computational power and efficiency without compromising simulation accuracy. 

Our MD accelerator can compute the nonbonded short-range force for the ApoA1 

benchmark in less than 70 ms. This represents a 26-fold per core speedup for 

the computational kernel. Several features of our MD accelerator include: 

 Exploration of various design implementations: We substantially 

expand the exploration of the MD force-pipeline design space with respect 

to arithmetic algorithm, arithmetic mode, precision, and various 

optimizations with the goal of finding the performance limits under current 

technology and methods. We find that FPGAs’ BRAM architecture makes 

them well suited to support unusually fine-grained intervals. This leads to 

a reduction in other logic and a proportional increase in performance. 

 Throughput enhancement of non-bonded force pipelines: We present 

the first study of particle-particle filtering on FPGAs and with it a number of 

innovations. We find that high quality filtering can be achieved with only a 

small amount of logic. We present a geometric filtering scheme that is 

preferable for some FPGA implementations. And finally, the particle-

mapping variation for mapping particle pairs to filter pipelines also appears 

to be new. We also describe methods for sizing components and for 

integrating sections of the overall processing pipeline. 
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 Novel partitioning scheme: We present a new domain partitioning 

method for optimizing with respect to Newton’s 3rd law. It helps minimize 

the impact of load imbalance among filters and improves filtering efficiency. 

This is essential for the design presented here, but could also find 

application in other hardware implementations. 

 Hybrid numerical precision manipulation: Floating-point computation 

was long beyond the reach of FPGAs. Recent advancements of FPGAs’ 

architecture and processing technology now make FPGAs competitive 

compared to standard microprocessors [118]. The computational cost of 

floating point, however, is still high and the large dynamic numerical range 

supported by floating point arithmetic may not be necessary for all type of 

computations. By carefully analyzing numerical operation and accuracy 

and evaluating resource costs, we present a novel force pipeline that uses 

mixed-precision (called hybrid) arithmetic to evaluate the nonbonded 

short-range force. This results in performance improvement while still 

maintaining acceptable simulation quality. 

1.5.2 General Computational Model and Algorithms 

Although the algorithms and techniques developed in this work are with respect 

to MD simulations, they can be generalized and extended to other HPC 

applications. MD shares many features with those in N-body simulation and other 

molecular modeling applications. The data restructure and cell-list scheme 
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presented in this work are generic and can be applied to other parallel 

architecture and hardware platforms. The novel partitioning scheme that removes 

load imbalance from the critical path could find useful in other domain or spatially 

partitioned applications. Moreover, the system architecture that supports large 

simulations, with the management of off-chip data access, provides a generic 

framework for those that require off-chip memory access. 

    Other generic techniques include the findings of the design space exploration 

and the scheme of hybrid precision arithmetic. These are generic and can be 

extended to other computations or applications.    

1.6 Organization of the Rest of this Thesis 

The rest of this thesis is organized as follows.  Chapter 2 describes the potential 

of high performance computing with FPGAs and provides a brief introduction to 

the target FPGA-based platforms. 

    Chapter 3 presents an overview of MD, including various techniques that help 

reduce MD computational complexity, and of several popular MD software 

packages and well-known hardware accelerators. A review of previous FPGA-

MD work done in the CAAD Lab of Boston University is also presented.   

    In chapter 4, we present the work of design space exploration, specifically of 

examining various short-range force pipelines and determining their performance 

bounds and design limitations. Several design considerations and challenges are 

also addressed.  
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    Chapter 5 describes the first FPGA study on the filtering of particle pairs with 

nearly zero mutual force, a standard optimization in MD codes. There are several 

innovations, including a novel partitioning of the particle space, and new methods 

for filtering and mapping work onto the pipelines.  

    In chapter 6, we describe the details of integrating our MD design into FPGA 

accelerated board and MD software codes. We present an overview of system 

architecture and flow of control. The techniques of making efficient data transfer 

among various components (FPGA, on-board memory, and host) are also 

discussed.  

    Chapter 7 describes the results of our FPGA accelerating system from two 

perspectives, performance improvement and simulation quality. We then present 

a preliminary study of our design on multiple FPGA scalability to demonstrate the 

performance potential.  We also describe status of the overall implementation 

and implications for MD on HPRC. 

    Chapter 8 summarizes this thesis and provides some future directions to 

further extend and improve our design.  
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Chapter 2 High Performance Reconfiguration Computing 

A common configuration of high performance computing (HPC) systems consists 

of a large array of conventional microprocessors that are interconnected together 

in a symmetrical way via high bandwidth communication channels [83]. This 

approach can provide good scalability that is relatively easy to manage. This 

generic configuration, however, may not be the best solution for various 

applications. 

    One alternative, high performance reconfigurable computing (HPRC) systems, 

consisting of microprocessors and field-programmable gate arrays (FPGAs), 

have been shown to deliver significant performance gains in terms of speed, 

power, and cost efficiency for different algorithmic applications [11, 46, 55, 118]. 

With the FPGAs’ flexible programmability, an HPRC system can be tailored to fit 

many specific algorithms and applications. Accelerating HPC applications with 

FPGAs, however, still faces several serious shortcomings and challenges, such 

as low operating frequency and bounded hardware resources. 

    In this chapter, an overview of FPGA features and HPRC design 

considerations is presented, including recent trends in FPGA architecture and 

tool support. Computing models suitable for FPGA-based acceleration are 

suggested. In the end, several FPGA-based HPC systems are introduced briefly 

to illustrate various configurations of FPGA-based implementations. 
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2.1 Field Programmable Gate Arrays 

2.1.1 Overview 

A Field Programmable Gate Array (FPGA) is a semiconductor device that 

consists of an array of configurable logic blocks (CLBs) and interconnects. Unlike 

ASICs where the functionality remains unchanged during the entire lifetime, 

FPGAs can be programmed to perform various dedicated tasks after 

manufacturing [5]. Since its first introduction in 1985 [135], the FPGAs’ flexible 

programmability together with other features, e.g. low power consumption and 

highly cost-effective computing, makes them attractive for many applications 

such as prototyping CPU designs, networking and communications, digital signal 

processing, embedded systems, and, more recently, in bio-informatics [11, 46, 

118]. 

    Traditionally FPGAs are best suitable for applications that contains intense 

integer arithmetic or streaming-type computations.  FPGAs continue to evolve 

with the advance of semiconductor processing technology: recent FPGAs often 

contain built-in hard Intellectual property (IP) cores, including thousands of 

independent addressable memory blocks and arithmetic circuits.  These enable 

FPGAs to meet the diverse needs of algorithms and applications while still 

maintaining low power and cost [5]. It is worth to note that recent FPGAs have 

demonstrated outstanding performance in floating point arithmetic [58, 126], 

which make FPGAs highly competitive for HPC applications. 
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    Nowadays, FPGAs have been integrated to offer systems-on-a-chip (SOC) 

solutions. In 2010 Intel Developer Forum (IDF), Intel introduced their first 

configurable Atom-based processor, Stellarton, which features an Intel Atom 

E600 processor (formerly codenamed “Tunnel Creek”) paired with an Altera 

FPGA in a single multi-chip package [63, 113]. The FPGA contains more than 

60,000 logic elements and can support six high-speed transceivers running up to 

3.125Gbits/s. It aims to provide developers more options in their products with 

greater differentiation and competition, shorter time-to-market and lower cost of 

design prototyping.  

2.1.2 FPGA Architecture 

A typical FPGA architecture consists of a two-dimensional array of 

programmable logic blocks embedded in a network of configurable interconnects 

and interface I/O ports as shown in Figure 2-1 [22, 99, 103]. The logic blocks can 

be programmed to implement various combinational and sequential functions 

and are connected together via configurable interconnects.  Most of the logic 

blocks also contain adders and flip-flops to support sequential implementations. 

    The basic element in and FPGA is variously called the Logic Element or LE, 

Adaptive Logic Module or ALM, or Slice.  In general it contains 4- to 6-input Look-

Up Tables (LUTs), adders, and registers [6, 136]. A LUT is commonly 

implemented with 2k:1 multiplexers and 2k configurable memory cells, where k is 

the number of inputs to the lookup table [103]. All possible logic values of K-input 
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variables are programmed and stored in memory cells and the output is selected 

via multiplexers to provide dedicated functionality. 

 

 

Figure 2-1: A typical FPGA structure [103] 

 

    As an example, see the block diagram of the Altera ALM shown in  

Figure 2-2 [6]. An ALM consists of combinational logic, adders, multiplexers, and 

registers. The combinational logic has eight inputs and includes a LUT that can 

be divided into two adaptive LUTs (ALUTs). It can support various configurations, 

e.g., 2 independent 4-input function, or a 5-input and a 3-input function with 

independent inputs, or an arbitrary six-input function [6]. Other components, i.e. 
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adders and registers, increase arithmetic capability and provide an option to latch 

LUT outputs for the support of sequential implementations and higher frequency. 

 

 

Figure 2-2: Altera Adaptive Logic Module (ALM) block diagram [6] 

 
 

    As described earlier, FPGAs have been successfully used in many application 

domains. Their success can be attributed to the following reasons [56, 118]: 

 High Parallelism 

Millions of equivalent logic elements and hundreds of hardware 

components (memory blocks and arithmetic units) can be used to explore 

different levels of parallelism, including deep pipelining and design 

replication. 
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 Configurable Memory Interface 

In contrast with microprocessors where the memory interface is fixed, 

configurable memory blocks can be tailored to meet application-specific 

needs. In addition, thousands of independent addressable BRAMs enable 

FPGA to offer parallel single-cycle data access [118]. 

 Efficient Computing 

Since most of control logic has been embedded in designs, little or no 

overhead is required and high throughput can be achieved. 

    The great flexibility of FPGAs, however, comes at a price: diminished effective 

chip area and operating frequency [22]. In order to be configurable, compared to 

conventional ASICs with the same processing technology, the FPGA fabric is 

less dense and a huge amount of its resources must be preserved for routing 

channels. This also results in operating frequencies that are often 5 or 6 times 

slower than conventional ASICs. 

2.1.3 Support for FPGA-based Design 

Hardware Description Languages (HDLs), such as VHDL and Verilog, have been 

widely used in the traditional FPGA/ASIC design flow. They provide precise 

control over hardware implementations and synthesis results. Users can define 

high-level algorithms and perform low-level optimizations (gate or switch) via the 

same language. Productivity has been a concern, however, especially for 

meeting current rapid time-to-market period since highly optimized designs can 
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take several hours or days to synthesize. In addition, it is difficult to validate with 

the original software model directly, and writing testbenches to ensure the full 

correctness of results is very timing-consuming [61].  

    In the past decade, various supports from FPGA and third party tool vendors 

have enhanced design quality as well as development efficiency.  This includes 

highly optimized Intellectual Property (IP) blocks and high-level programming 

language tools and suites, which we now briefly describe. 

 Intellectual Property (IP) Core 

To simplify and shorten FPGA design process, highly optimized IP cores 

are often offered in FPGA design suites, e.g., highly efficient floating point 

cores such as FFT and inverse square root. Users only have to connect 

each component together rather than implement and optimize their own 

cells. This helps reduce development cycles and improve performance; at 

the same time, however, it reduces the design portability since those IP 

cores are specialized for certain FPGA architecture and devices. 

 Software Tool Support 

In the past years, tool vendors have focused on improving design 

efficiency, including both core implementation and system integration. A 

variety of C-to-gates or C-to-FPGA compilers have been developed to 

convert high-level C-like software codes to gate-level HDL 

implementations. This enables embedded designers and software 
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programmers to create HPRC applications from system-level perspective 

without knowing the details of hardware knowledge.  

    Some examples are Impulse-C from Impulse Accelerated Technologies 

[62], MitrionC from Mitrionics [81], AutoPilot FPGA from AutoESL Design 

Technologies [10], and Altera Floating Point Compiler [4]. In our 

experience, although high-level compilers help shorten design cycles, the 

performance of auto-generated design is often inadequate, especially for 

control logic and fine-grained implementations.  

    In our MD work, we used the Altera Floating Point Compiler (FPC) to 

implement the nonbonded short-range force pipeline.  We have found that 

this tool is effective for resource reduction and rapid design. The FPC is 

now described. 

 Altera Floating Point Compiler 

The FPC takes C-language description of a function and translates 

it to a parallel datapath implementation [4, 73]. It analyzes 

functional expressions, determines inputs and outputs, creates a 

dataflow graph of the internal operations, and maps a design to 

FPGAs. The efficiency of the FPC gains comes from two main 

principles employed: a change of number representation and 

formats and a reduction of redundant normalizations across a 

group of operators [73]. 
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Figure 2-3: An example of local cluster scheme 

 

    An example of the local cluster scheme is shown in Figure 2-3 [4]. 

The FPC groups identical operations into a local cluster. Within a 

cluster, all intermediate results are kept unnormalized, if possible.  

The FPC employs several schemes to perform normalization, 

depending on the types of operations. In most cases, normalization 

is only required on the way out of a local cluster or datapath. If 

floating point operations can be clustered efficiently, a significant 

reduction of logic resources can be obtained. 

    As described above, although the inputs and outputs of FPC follow the 

IEEE 754 floating point format, the internal format of FPC are not 

compliant. Integer formats are used in some steps internally to improve 

efficiency. Together with the property of non-associativity of floating point 
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arithmetic, it often results in differences between FPC and serial C codes. 

This difference could be compounded for applications that involve iterative 

and high precision computations [19, 118].  

2.2 HPC with FPGAs 

FPGA-based systems have demonstrated great successes in digital signal 

processing (DSP) where multiple small kernels are executed in parallel. Recently, 

FPGAs have been used to accelerate biological and medical applications such 

as biological sequence alignment analysis [50, 57, 64], molecular dynamics 

simulations [11, 46, 69, 105, 106], protein docking [118, 119, 120], and positron 

emission tomography (PET) scanning [55].  

    A great example illustrating the promise of HPRC systems is the Novo-G 

supercomputer at the University of Florida. The Novo-G system consists of 24 

computing nodes, each housing two Gidel quad-FPGA boards.  Nodes  

communicate with one another via Gigabit Ethernet and non-blocking fabric of 20 

Gb/s InfiniBnad [90]. In other words, the system contains in all 48 Gidel 

PROCStar III boards and 192 Altera Stratix III FPGAs. 4.25 GBs of dedicated 

memory is attached to each FPGA for a total of nearly 1TB. Perhaps most 

remarkably, it consumes just 8,000 watts, compared with conventional 

microprocessor-based clusters that can dissipate megawatts, e.g., Jaguar (6.95 

MW) and Roadrunner (2.35 MW) [124]. In addition, Novo-G has successfully 

demonstrated significant performance on various applications, especially for 

bioinformatics research [90]. 
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    Some of the driving forces that make FPGAs plausible for HPC applications 

can be summarized as follows. 

 Advancing Technology 

As with modern microprocessors, FPGAs still ride the technology curve as 

stated by Moore’s law [46].  There are also continuing architectural 

advances.  Current generation high-end FPGAs contain not only millions 

of configurable gate-equivalent logic elements but also hundreds of 

optimized ASIC components such as individual block RAMs (BRAMs), 

hard multipliers, and embedded microprocessors. Also, recent logic 

designs map more favorably to floating point applications. 

 Power Consumption 

Due to its inherent low operating frequency, high-end FPGAs usually 

consume at most 20-30 watt; modern microprocessors consume 100-200 

watts [118]. 

 Flexibility 

One of most attractive FPGA features is its reconfigurability that enables 

users to explore the design space to find optimal solutions for a specific 

target problem. FPGAs can be reprogrammed quickly, while it can take 

several weeks (at least) to make the same changes in an ASIC. 
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 Time to Market 

Compared with ASIC design, which usually takes several months or even 

more than a year, FPGAs offer much shorter design cycles. Users can 

implement a prototype design and verify ideas in hardware without going 

through the long and costly fabrication process. Incremental changes can 

be made and iterated on an FPGA within hours rather than weeks. 

    Although significant advances in FPGA chip development offer tremendous 

computing power, achieving a performance gain is not straightforward.  It is 

governed by several critical factors such as: 

 Resource Limitations 

Although modern FPGAs provide plenty of gate-equivalent logic elements 

and a large number of hard multipliers and BRAMs, resources are still 

limited. This bounds the number of processing units that can fit on a chip 

and thus the resulting throughput. How to efficiently utilize available 

resources often involves reconstruction of underlying algorithms, partition 

of tasks, and numerical methods. 

 Amdahl’s Law 

Efforts must be paid to accelerate the kernels that dominate the entire 

computation in order to improve the overall speedup.  But even so, latency 

of serial parts, such as interaction with the host, must be minimized and 

hidden altogether if possible. 
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 Design Expertise 

Not all of tasks are viable candidates for FPGA acceleration. Thus, 

identifying algorithms that can exploit fine-grained parallelism and codes 

that contain intensive calculations such as excessive inner looping 

becomes a critical job. In order to efficiently map applications to FPGAs, 

certain levels of knowledge of algorithms and design expertise are often 

extremely helpful.  

 Programming Language 

A common way to implement designs on FPGAs is to use a hardware-

description-language (HDL) such as Verilog and VHDL. This often 

requires users to have understanding of logic designs and hardware 

behaviors. Recently, several software packages (e.g., Impulse-C and 

AutoPilot FPGA) and higher-level programming languages such as 

System-C and System Verilog have been developed to lower this barrier. 

This ease-of-use, however, sometimes compromises the resulting 

performance. 

 Arithmetic Mode 

Numerical precision and computational mode are often related to the 

quality of implementations and achievable throughput. Most HPC codes 

are implemented with floating point arithmetic, usually double precision. 

The cost of performing floating point computations with FPGAs, however, 
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is relatively expensive compared to fixed point operations. Though 

vendors have made floating point computation more straightforward and 

cost-efficient by providing floating point IP cores and compiler tools, 

careful analyses of required precision and arithmetic mode are critical 

factors that have a direct impact on the resulting performance and quality. 

 Hardware/Software integration 

FPGAs usually serve as coprocessors to accelerate compute intensive 

tasks and so cooperate with the programs executing on the host. The 

FPGA coprocessor also interacts with peripherals on board such as high-

bandwidth interconnects and device memory. Efficiently bridging those 

components is another issue that designers must consider.  

2.3 FPGA Computing Model 

Although FPGAs have demonstrated enormous potential performance in many 

areas, getting tremendous speedup, however, is challenging.  In particular, not all 

applications (or algorithms) are suitable. Therefore, identifying the appropriate 

computing model that can be well mapped to FPGAs becomes essential in 

HPRC design.  In our previous work, several computing models were proposed 

[56, 57]: 

 Streaming 

As its name implies, “streaming” is to pass data through arithmetic units. 

Streaming computing fits well for FPGAs because of their natural 
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properties such as multiple parallel streams, high I/O bandwidth, and 

flexibility of connecting different streams. Applications of streaming 

computing include signal and image processing, systolic array algorithms, 

sequence alignment, and protein docking [77, 118].  

 Associative Computing 

This model is basic to computing with massively parallel SIMD arrays and 

can be characterized by the following properties: (1) broadcast, (2) parallel 

tag checking, (3) collective response, and (4) reduction of responses. The 

performance gains come from the support of hardware broadcast and 

reduction and fast single-cycle data access. 

 Functional Parallelism 

Functions that take a long time in software but relatively few hardware 

resources would be the best candidate to be off-loaded to FPGAs, e.g., a 

high-quality frequently used random number generator. It only takes little 

chip area on an FPGA and can be fully pipelined so that the latency can 

be hidden. 
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2.4 HPRC FPGA Systems 

Various Commercial Off-The-Shelf (COTS) FPGA systems have been offered by 

many vendors. Although each has its own goals and design considerations, it 

has to work with other peripherals and components such as memory modules 

and communication interfaces. Many of them have been used to deliver 

significant performance improvement in applications such as Molecular 

Dynamics simulations [16, 46, 69, 106], Protein Docking [118], BLAST, medical 

image processing and financial applications. A brief introduction of selected 

FPGA platforms is given in this section to illustrate different common 

configurations of FPGA-based coprocessor implementations.  

2.4.1 Annapolis Micro Systems  

The first example is a PCI-based system, the WILDSTAR-II PRO board from 

Annapolis Micro Systems, Inc [9].  This was used to implement our prior 

FPGA/MD work done by Dr. Gu [46]. Its schematic block diagram is shown in  

 

Figure 2-4 [132]. The system consists of two Xilinx Virtex-II-Pro FPGAs, either 

the XC2VP70 or the XC2VP1000. Each FPGA is connected to up to 48 MB off-

chip SRAM and a 128 MB DRAM.  The FPGAs communicate with a host via a 

PCI bus interface. Two FPGA chips are connected to each other by differential 

and Rocket I/O pairs. 
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Figure 2-4: Wild-Star II Pro board block diagram [132] 

 
 
 

2.4.2 Gidel PROCStar III Board 

Our MD acceleration solution has been successfully implemented and is 

currently running on one FPGA of a Gidel PROCStar III board [40], a single node 

of Novo-G. PROCStarIII is also a PCI based system with 8-lane PCI Express 

(PCIe x 8) host interface and its block diagram is shown in Figure 2-5 [39]. 
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Figure 2-5: PROCStar III system overview [39] 

 

    The system consists of four processing units, Altera Stratix III SE260 FPGAs, 

and is capable of running at system speeds of up to 300 MHz. They 

communicate with a host via a PCI Express bus interface [38, 39]. Each 

processing unit contains the following components: 

 Altera Stratix III SE260 FPGAs 

 256 MB on-board DDR II SDRAM (bank A) 

 2 x 2 GB DDR II memory (bank B and bank C) via SODIMM sockets 

 2 PSDB (PROCStar III Daughterboard) connection 
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    The system is able to deliver high-performance FPGA solution with massive 

capability and throughput memory. Its memory performance is summarized in 

Table 2-1. 

Table 2-1: PROCStarIII memory performance 

 Bank A 
 (on-board) 

Bank B  
(SODIMM) 

Bank C 
(SODIMM) 

Capability 256 MB x 4 2 GB x 4 2 GB x 4 
Performance (DDR) 667 MHz 667MHz 360 MHz 

Throughput 16 GB/s 16 GB/s 8.5 GB/s 

 

2.4.3 XtremeData XD1000 

The XD1000, an FPGA coprocessor offered by XtremeData, Inc., is socket-

compatible with an AMD Opteron processor [134, 137]. The XD1000 module can 

be directly inserted into an Opteron 940 socket by replacing a CPU and using all 

existing CPU peripherals on a motherboard. Such a configuration can integrate 

FPGA technology into a multiple-processor based system with minimum effort. 

    An example of applying the XD1000 module is the XD1000 development 

system that contains an Altera Stratix II EP2S180, 4MB off-chip SRAM and up to 

four 4GB DRAMs with 5.4 GB/s interface, as shown in Figure 2-6 [134]. Through 

the Opteron 940 socket, the FPGA can communicate with an Opteron 

microprocessor via HyperTransport (HT) bus that can provide up to 3.2 GB/s 

bandwidth. In addition, four 8MB programmable flash memory modules are 

available to be used for FPGA configuration files.  
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Figure 2-6: XD1000 system level block diagram [134] 
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Chapter 3 Molecular Dynamics 

Molecular Dynamics (MD) is a type of computer simulation, which uses classical 

mechanics to model ensembles of atoms and molecules. It provides a projection 

of the laboratory experiment and acts like a “virtual experiment” [98]. MD is an 

example of N-body problem and inherits many of its characteristics, including the 

intensive computational complexity [139]. Still, it is different enough so that the 

basic flow of an FPGA algorithm may be very different for MD from it would be, 

say, for computing stellar dynamics (another classic N-body application).   

    Several efficient algorithms and techniques have been developed in the past 

decades to reduce MD computational cost.  This chapter provides a brief 

overview of MD and those fast algorithms and techniques. Then well-known MD 

software packages are briefly reviewed, as well as several hardware accelerators. 

Lastly, FPGA works done by our and other groups are described.  

3.1 MD Introduction 

MD simulation is an iterative process in which the atoms and molecules interact 

with each other using the classical equation of Newtonian mechanics. During a 

simulation process, the force calculations and updates of particles’ displacement 

and velocity are performed. It can be simply divided into two phases, i.e., force 

calculation and motion update, as illustrated in Figure 3-1 [46]. 
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Figure 3-1: MD phase transaction 

 
 

    In each timestep, for a given position, the forces upon a particle are evaluated 

and the acceleration is calculated with Newtonian equations. This constitutes the 

first phase. In the second phase, the position and velocity of each particle are 

computed and updated and serve as inputs for the next iteration. 

    The forces of MD simulation come in two main categories: bonded forces and 

non-bonded.  There are given in Equation 3-1, 3-2 and 3-3. Bonded forces 

contain various bonded types (bond, angle, and torsion) while non-bonded forces 

include Lennard-Jones (LJ), Coulomb, and hydrogen bond forces.  

 

bondednonbonded FFF 


     (3-1) 

torsionanglebondbonded FFFF


     (3-2) 

hydrogenCoulombLJbondnon FFFF
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Figure 3-2: MD force field diagram 

 
    The simplified diagram of different force fields is shown in  
 

Figure 3-2 [122]. Bonded covalent and hydrogen forces affect only neighboring 

particles while non-bonded forces evaluation involves interactions between all 

pairs of particles in the system, except those separated by covalent bonds. 

During a simulation, the number of bonded force evaluations scales linearly with 

the number of particles N. The number of non-bonded interactions, however, 

scales quadratically. This makes the computational complexity of non-bonded 

interactions )( 2NO  in Big O notation while the one of the bonded term is )(NO . 

    A common way to reduce the computational complexity of non-bonded forces 

is applying a cut-off. The Lennard-Jones (LJ) force vanishes quickly with the 

distance of a particle pair and is usually ignored when two particles are 

Bond + -
Coulomb 

 Lennard-Jones 

Angle 

Torsion 
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separated beyond some cut-off distance, usually chosen between 8 to 12 Å [139]. 

The LJ force equation is given in Equation 3-4 and its potential graph is shown in  

 

 

 

 
 

Figure 3-3 [3]. 
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where εab and σad are parameters related to particle types and ijr  is the relative 

distance between particle i and j.  

 

 
 
 
 
 
 

Figure 3-3: Lennard-Jones potential 
 

    When two atoms interact with each other, Pauli repulsion occurs, if the 

distance between interacting atoms becomes even slightly less than the sum of 

their contact distance. Van der Waals attraction occurs at short range, and 

rapidly dies off as the interacting atoms move apart. Thus, LJ force here is 

characterized as a type of non-bonded short-range forces. The electrostatic force, 

however, dies out slowly and it can affect atoms residing quite far apart. Thus 
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neglecting the electrostatic (Coulomb) force beyond a cut-off distance sometimes 

introduces serious artifacts into a simulation. The Coulomb force equation is 

given in Equation 3-5. 
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where iq and jq  are the particle charges and ijr  is the relative distance between 

particle i and j.   

    Although the equation itself is not complex, the computation process is time-

consuming since all the particle pairs of the simulation domain must be evaluated. 

Several efficient algorithms have been developed to account for this non-bonded 

long-range force without actually interacting with all pairs of particles in the 

system [12, 21, 25, 112]. Those methods will be presented in the next section.  

    The second phase of MD simulation is motion integration which applies the 

computed forces to update the particle coordinates and velocities [30]. Various 

numerical schemes (such as the Verlet and leap-frog algorithms) are used, each 

with its own characteristics in terms of computational efficiency, numerical 

accuracy, energy conservation, and the ability to be used in long timestep 

integration. With regard to the last point -- it is often the case that all types of 

forces as well as particle coordinates and velocities are evaluated at the same 

frequency, say 1 femtosecond. Some advanced integrators, however, evaluate 

certain types of forces less frequently resulting in performance improvement. 
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Compared to force calculation, the motion update only occupies small amount of 

MD computational time. Thus it is not accelerated in this work. 

3.1.1 Periodic Boundary Condition 

Boundary conditions play an important role in MD simulation since they define 

the surroundings of the simulation system. Without any constraint upon the 

simulation boundary (free boundary), atoms near the boundary would have fewer 

neighboring atoms than those in the middle of the simulation system. In other 

words, those atoms surrounded by the surfaces would behave differently from 

the ones residing inside the simulation domain. 

    For a typical MD simulation, no matter how large the simulated system is, the 

particles N it contains would be negligible compared with the number of particles 

contained in a bulk system (of the order of 1023 particles) [100].  A common way 

to simulate the bulk phases and minimize the surface effect is employing periodic 

boundary conditions (PBC). This scheme enables an MD simulation to be 

performed using a relatively small number of particles in such a way that the 

particles experience forces as though they were in a bulk solution. A system with 

PBC is modeled by replicating the unit cell in all dimensions to form an infinite 

lattice. Thus, for a given particle, it not only interacts with the particles within the 

same cell but also other particles at its image cells. A two-dimension (2D) 

schematic representation of PBC is shown in Figure 3-4. 
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    As a particle moves in the original unit cell, all of its images move in a 

consistent manner by the same amount. Since all of the images are replicants of 

the original unit cell with shifted coordinates, keeping only the original unit cell 

(the central one with shaded color in Figure 3-4) is enough to represent the entire 

MD system. When one particle leaves the unit cell by crossing the boundary, 

another cell (its image) enters the central unit cell as illustrated in Figure 3-5. 

 

 

Figure 3-4:  2D schematic representation of periodic boundary conditions 
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Figure 3-5:  2D representation of particles crossing the boundary under 
PBC 

 
 

3.1.2 Energy Conservation 

According to the laws of mechanics, the total energy (potential and kinetic) of an 

isolated biomolecular system should remain constant during a simulation. In 

practice, energy fluctuates on a short time period and drifts on a very long time 

scale because of the finite time step, t , used in numerical integrations. The 

longer the time step is chosen, the more physical time would be simulated as 

well as the better performance could be achieved for each computation. The time 

step, t , is determined by the fastest degrees of motion in a system (usually 

bond vibrations) and must be chosen short enough so that the system is stable 

and energy is conserved [44]. 

    Energy conversation could also be violated because of the imperfect force 

evaluations performed in simulations to achieve better performance. For example, 
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with the cutoff scheme, an error is introduced when particles move back and forth 

across the cutoff radius if a perfectly smooth function is not used. Numerical 

errors (e.g., round-off errors or subtracting large forces in floating point arithmetic) 

are another source of energy drift.  

    Energy conservation often serves as one of quality metrics of measuring MD 

simulation stability. This alone is not sufficient to guarantee a realistic simulation 

and does not necessarily ensure the accuracy of MD simulation in reproducing 

physical phenomena.  Even an ill-parameterized force field can still result in 

stable but unphysical trajectories [82]. 

3.2 Fast Algorithms for Computing Non-Bonded Interactions 

Due to the intensive computation required, several efficient algorithms [3, 12, 21, 

25, 112, 127] have been developed to accelerate the MD simulation, especially 

for non-bonded force calculation. In this section, we introduce two techniques to 

reduce the computational complexity of the non-bonded short-range force 

evaluation. This is followed by algorithms that improve the efficiency of the non-

bonded long-range force computation. Brief descriptions of those algorithms are 

given in the following subsections. Some graphs in this section are drawn in two-

dimensions (2D) for the convenience of illustration, but the discussions can be 

extended to three-dimensional (3D) systems without loss of generality. 
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3.2.1 Optimizing the Computation of Short-range Interactions 

Neighbor Lists 

For non-bonded short-range force calculations, particles only interact with each 

other at nearby distances and inter-particle forces are switched to zero when two 

particles are separated beyond some cut-off distance cr . The basic idea of using 

neighbor lists is to construct a set of lists that consists of neighboring particles for 

each particle in the system [3]. A particle is included in the neighbor list of 

another particle when the distance between them is less than mc rr   where cr  is a 

cut-off distance and mr  is a margin of safety.  mr  should be large enough to 

ensure that no particle can travel into the cut-off sphere of another particle if it is 

not on the list of that particle before the next reconstruction of the neighboring list 

happens. Neighbor lists are updated periodically in a fixed time interval, or when 

the displacements of particles are larger than a predefined margin mr . 

    The cost of constructing neighbor lists for an N-particle system scales as 

)( 2NO  with the system size. But with neighbor lists the computational cost of the 

force and potential evaluations can be reduced to )*( MNO  where M is the 

average length of a neighboring list [127]. M is proportional to the system density 

and pairlist radius and independent on the system size. As long as the neighbor 

list needs to be updated only rarely, this is a great savings. 

    Neighbor lists have proven to be efficient for small systems or those models in 

which particles’ mobility is low, i.e., low temperature systems [130, 139]. It greatly 
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reduces the number of particles to be evaluated for a given particle. As shown in 

Figure 3-6, for particle i, all particles within its pairlist sphere are included in its 

neighboring list (except red-color particles and itself) and only blue-color particles 

residing between cutoff and pairlist sphere are overhead.  Although reducing the 

frequency of neighbor list updates (or by increasing the margin) could reduce the 

computational expense of constructing neighboring lists, this would result in 

lower efficiency since more particles than actual need will be added into the list. 

 

Figure 3-6: Neighboring list sphere 

Cell Lists 

The method of Cell Lists is another technique to improve the efficiency of non-

bonded short-range force calculation [3, 139]. First, a simulation domain is 

partitioned into several cubic cells.  The conventional length of the cell edge is 

equal to or larger than the cutoff distance. Particles are assigned to the 

cutoff 

margin 

pairlist 
  i
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corresponding cell based on their coordinates. For example, given a particle P, it 

is assigned to the cell C, as shown in Figure 3-7 [46]. Thus, for particle P, it 

interacts only with particles of the cells to which it belongs and its 8 (for a 2D 

domain) or 26 (for a 3D domain) neighboring cells. If Newton’s third law is used 

and only two-body interactions are evaluated, then only half of the neighboring 

cells need to be checked. This means, only five cells are required for a 2D 

system or 14 cells for a 3D system. 

 

Figure 3-7: Illustration of cell-linked list algorithm 

 

    The cost of constructing cell lists scales as )(NO  with the number of system 

particles by scanning particles in the system and assigning them into the 

corresponding cells. Its construction effort is much less for large system 

compared to neighboring list method. Many more particles than needed, however, 

are included for the force evaluation process. Thus, these unnecessary 

interactions result in a negative impact on the system performance. 

P

C
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3.2.2 Computing Long-Range Interactions 

Ewald Summation 

Ewald Summation (or Ewald Sums) is an algorithm used to compute electrostatic 

forces in a system with periodic boundary conditions [34]. It was originally 

developed in 1921 to evaluate the electrostatic energy of ionic crystals [27]. 

Compared with direct calculation, it reduces the computational complexity from 

)( 2NO  to )( 2/3NO  where N is the number of particles in a system. 

    For an N-particle periodic system, the Coulomb contribution to potential energy 

can be expressed as: 
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where the prime on the summation means that the sum is over all periodic 

images n  and over all particles, except i = j if n = 0; L is the length of a unit cell. 

    The idea of Ewald Sums is to apply the Gaussian screening charge distribution 

with the opposite sign of a point charge into a system such that the total charges 

of this screening cloud exactly cancel out point charges [27]. This makes the 

electrostatic potential rapidly become zero due to the screening effect. The 

screening charge distribution determines how fast the electrostatic potential 

decays. The narrower charge distribution is, the more quickly the potential 

decays. In order to compensate for this additional screening charge distribution, 
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the same amount of charge distribution with the opposite of sign is also 

introduced into the system.  

    Now, the entire calculation is partitioned into two components. The first part, 

named the direct or real space sum, is contributed by the point charges screened 

by oppositely charged Gaussians distributions. The direct sum is a short-range 

term that converges quickly in real space, and its value can be computed with a 

cutoff scheme. On the other hand, the second part, named the reciprocal sum, 

represents the contribution of charged Gaussians. It is a smoothly varying 

periodic function that can be represented by a Fourier series in reciprocal space 

(or Fourier space). In addition, a correction term is required to exclude Coulomb 

self-interactions. 

    Coulomb potential energy Ei can be expressed as [46]: 
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where E(r) is the real space term, E(k) is the reciprocal space term, and E(s) is the 

self correction term and α is Ewald parameter. 

    With an optimal α, both computational costs of real part and reciprocal terms 

are )( 2

3

NO . The Optimal α can be determined by the following equation: 

 

                                           (3-11) 

where Treal and Treci are time to compute the real space and reciprocal space 

term, respectively, and V is the volume of the simulation space. The cutoff of real 

space parts is: 

                                                                  

                                                                         (3-12) 

The cutoff of reciprocal space parts is: 

 

                                                              (3-13)           

where ε represents the tolerable error. 

Particle Mesh Ewald (PME) Method 

Particle Mesh Ewald (PME) is an efficient technique that has been widely used to evaluate 
the standard Ewald Sums due to its computational efficiency [21]. It approximates the 

reciprocal part of the Ewald Sums by a discrete convolution on an interpolation grid, using 
the discrete 3D Fast Fourier Transform (FFT) [97]. By choosing an appropriate splitting 

parameter α, the computational complexity can be reduced from )( 2

3

NO  to )log( NNO . 
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Careful evaluation of the interpolation scheme and mesh size is required to achieve high 
simulation accuracy and speed. The basic procedure of is illustrated in  

 

 

Figure 3-8 [46] and consists of three steps as follows. 

1. Assign particles’ charge to mesh points  

2. Compute energy with FFT/IFFT 

3. Interpolate forces back to particles 

The complexity of the first and third steps is )(NO  while that of the second step 

is )log( NNO which dominates overall computations. 

 

 

 

 

Figure 3-8: PME computational steps 

    The Lagrange interpolation scheme for charge assignments and force 

interpolation is adopted in the original PME method. However, since the 

Lagrangian weight function is only piecewise differentiable, energy and force 
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have to be evaluated separately. Most importantly, energy conversion cannot be 

satisfied.  An improved scheme, Smooth PME (SPME), was developed to handle 

these difficulties [25].  A B-spline interpolation technique was used to replace the 

Lagrange-based method such that force can be obtained by directly 

differentiating energy and energy is thus conserved.  

Multigrid Method 

First introduced in the 1970s by Brandt [15], the multigrid method was originally 

used to solve partial differential equations (PDEs) and now has become an 

efficient technique to evaluate the electrostatic force. For a system which 

contains N particles, the computational cost of multigrid method is )(NO , whereas 

the direct calculation, the Ewald Sum, and PME are of order of )( 2NO , )( 2

3

NO , 

and )log( NNO , respectively [97]. The general steps of the multigrid method are 

described as follows: 

1. Interpolate and assign particles’ charge on a grid 

2. Apply multigrid method to solve Poisson’s equation on the grid 

3. Back Interpolate forces and energy from the grid domain to particle space 

    Compared with the standard Ewald Sum method and its variants such as PME 

and SPME, the multigrid method not only reduces the cost of force computations 

but also offers several advantages. These include no PBC requirement, ease of 
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parallelization, and no FFT. Therefore, the large communication overhead 

associated with the 3D FFT computation can be avoided.  

    Although the multigrid method helps reduce the computational complexity of 

force evaluation, to achieve a high-quality energy conversion, it consumes more 

time compared to Fourier-based schemes such as Ewald sum, PME, and SPME. 

For a given accuracy, it was reported that the multigrid method was 1.85 times as 

expensive as PME method on single processor [102] although it could become 

competitive with and eventually faster than the PME method for a parallel system. 

Most of highly tuned MD software packages employ PME or its variants to 

compute electrostatic forces. In order to deliver a widely acceptable MD 

accelerator, integrating with mainstream packages should also be taken into 

account.  

 

 

 

3.3 MD Software Packages 

A number of MD software packages have been developed and widely used in the 

community, each with its own features and goals [14, 59, 66, 76, 78, 94, 115]. 

Four of the most popularly used packages are briefly reviewed in this section.  
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3.3.1 NAMD 

NAMD (NAnoscale Molecular Dynamics) is an MD simulation package that is 

regarded for its high scalability and parallel efficiency [94, 108]. It was written in 

C++ with Charm++ parallel objects and can be scaled up to hundreds of 

processors on a high-end parallel system [94]. It was developed by the 

Theoretical and Computational Biophysics Group (TCBG) of the University of 

Illinois, Urbana-Champaign (UIUC) and designed for high-performance 

simulation of large biomolecular systems [84]. NAMD uses VMD (Visualization of 

Molecular Dynamics) [129], which is a popular molecular graphics program, for 

the initial simulation setup and the visualization of trajectory analysis [60]. 

    NAMD uses a hybrid decomposition scheme, combining the advantages of 

spatial and force decompositions, to achieve high scalability [94]. Particles are 

grouped together in a patch with the cell-list method. The length of the cell edge 

is extended to be slightly larger than a cut-off radius to give a margin, which 

allows atoms to move within a cell box between several time intervals and 

hydrogen atoms to reside with their parents in the same cell for faster distance 

checking. This could reduce the overhead of the cost of updating the cell-list. A 

number of computing objects are created and assigned to each processor to 

perform the force evaluation between neighboring patches. This allows NAMD to 

balance the system by dynamically distributing the computing objects to 

processors. The PME method [21] was adopted to compute long-range forces; it 

is evaluated every four time steps by default.  
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NAMD-Lite 

Despite of NAMD’s excellent reputation and popularity, extra complications may 

be introduced to the development due to its complex parallel structure. NAMD-

Lite [53] was developed by UIUC TCBG group in 2005 to minimize design 

complications. It is a prototyping framework whose purpose is to simplify and 

smooth the development process and to provide a simpler way to examine and 

validate new features before integrating them into NAMD [85]. 

    Although the performance of NAMD-Lite is not comparable to that of NAMD 

because of its serial implementation, it enables the integration of new algorithms 

and supports multiple schemes of force and energy evaluations, e.g., multiple 

switching and shift functions, PME, and multigrid. Thus, it makes our FPGA 

integration work relatively straightforward, allows us to explore new algorithms, 

and lessens implementation complications before porting designs into production 

NAMD codes. 

3.3.2 GROMACS 

GROMACS (GROningen MAchine for Chemical Simulations) was designed to 

achieve superior performance on a single processor [76]. It was originally 

developed at the University of Groningen, The Netherlands, in the early 1990s 

and written in ANSI C. It does not have its own force field, but is compatible with 

GROMOS, OPLS, AMBER and ENCAD. It also provides high flexibility to allow 
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users to add new force routines, specify tabulated functions, and customize the 

analysis. 

    A combination of many efficient algorithms have been embodied in 

GROMACS to accelerate its simulation, including optimization of neighbor search 

and inverse square root, specialized non-bonded kernels, customized techniques 

to avoid conditionals in the loop for PBC and force evaluations, and highly tuned 

hand-coded routines [115]. 

    A new feature, the “eight shell domain decomposition” algorithm, has been 

implemented in the latest version (GROMACS 4) to replace the previous particle 

decomposition scheme. This minimizes inter-processor communications and 

increases scalability [59]. In addition, multiple-program multi-data (MPMD) PME 

parallelization, which divides domain tasks to direct and reciprocal spaces, is 

supported to reduce 3D FFT communication. Together with those newly added 

features, GROMACS now not only has extreme high performance on a single 

processor but also achieves high scalability on parallel machines. 

3.3.3 Desmond 

Desmond [14, 108] is a relatively new MD software package developed by D. E. 

Shaw Research (DESRES).  It contains several novel features that significantly 

accelerate parallel MD simulations. These include a new parallel algorithm of 

spatial decomposition and a message passing technique that helps reduce 
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communication overhead. It has been shown that Desmond can deliver 

outstanding simulation throughput and high scalability [14]. 

    Desmond uses both spatial and force decomposition methods to process the 

pairwise interactions in a way similar to other MD codes. In traditional spatial 

decomposition methods (Half-Shell as a typical example), the communication 

cost scales as )( 3RO , where R is a chosen cut-off distance. A new parallel 

algorithm specialized for the range-limited N-body problem, Neutral Territory (NT), 

is implemented to further reduce the amount of the data each processor has to 

import and scales well with the number of processors. The communication 

overhead of a given processor scales as )( 2/12/3 pRO  where p is the number of 

processors [108]. 

    Although Desmond can be configured to use either the single-precision or 

double-precision arithmetic mode, it is shown that the single-precision arithmetic 

can have much better performance by reducing the usage of memory and 

network bandwidth, and by allowing the usage of SIMD extension. Several 

numerical techniques have been applied to maintain numerical accuracy while 

gaining speed, such as fixed-point arithmetic for particle position updates during 

motion integration, and non-associativity via having a unique ordering of particles 

and computations. 

    Combining the reduction of the communication cost and the feature of single 

precision arithmetic computation, Desmond can achieve outstanding 
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performance in terms of high scalability and throughput for large commodity 

clusters. 

3.3.4 ProtoMol 

ProtoMol (PROTOtyping MOLecular dynamics) was developed by University of 

Notre Dame and is a high-performance object-oriented MD software package 

written in C++ [78]. One of its main features is the ease with which it allows 

prototyping of novel algorithms. This great flexibility has been demonstrated in its 

electrostatic force evaluation where several fast algorithms, including Ewald, 

PME, and Multigrid (MG) summation, have been implemented. Unlike other MD 

packages, where PME is typical used to evaluate the electrostatic force 

interaction and only applied for periodic boundary conditions, in ProtoMol MG 

summation can be used either in vacuum or periodic boundary conditions.  This 

reduces the computational complexity to )(NO .  

    ProtoMol uses the method of replicated data to parallelize its computations 

[78]. Although this method reduces design complications, it does not scale well to 

large systems (with hundreds of processors) due to its high communication 

overhead.  

3.4 MD Accelerators 

Several methods have been used to accelerate MD simulation, including well-

known ASIC-based systems such as MD-GRAPE [71], MD Engine [125], and 

Anton [109, 110]; graphic processing units (GPUs) [7, 80, 93, 96, 117]; and 
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FPGAs [11, 46, 47, 48, 49, 51, 69, 75, 104, 105, 106]. In this subsection, a brief 

review of various MD accelerators is presented.   

3.4.1 Application-Specific Integrated Circuit (ASIC) 

 MDGRAPE-3 

The MDGRAPE-3 system [23, 36, 37, 68, 71, 86, 87, 88, 121, 122, 123, 

125] is a special-purpose hardware accelerator for classical MD 

simulations. Its architecture is similar to its predecessors, the GRAPE 

(GRAvity PipE) systems [71].  These were originally developed to solve 

gravitational N-body simulation and further extended to accelerate 

classical MD simulations. 

    The MDGRAPE-3 system can achieve petaflops performance in the 

normal mode. It consists of a host computer and special-purpose MD 

engines. The special-purpose MD engines are only responsible for non-

bonding forces evaluations, including electrostatic and intermolecular 

forces, which dominate most of the computations while leaving the 

remaining work to the host. 

    The MDGRAPE-3 chip, which is able to reach 200 Gflops peak 

performance at 300 MHz, has 20 force calculation pipelines and can 

accommodate up to 32,768 particles. It uses both floating-point and fixed-

point arithmetic while most of calculations are carried out by single 

precision mode. The complete MDGRAPE-3 system contains 4,778 
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dedicated MDGRAPE-3 chips, each capable of performing 200 Gflops.  Its 

peak performance can therefore reach one petaflops in total. 

 Anton 

Anton, a special-purpose massively parallel machine, promises to deliver 

the classical MD simulation through the millisecond-scale [109]. This 

requires improving on currently available MD simulation packages by the 

three orders of magnitude (500x for NAMD, 100x for Blue Matter, and 80-

100x for Desmond) [109]. It was implemented by D. E. Shaw Research 

and became operational on late 2008 [110]  

    Anton uses the same “Neutral Territory” method as the one in Desmond 

to reduce communication overhead and implements special-purpose logic 

to greatly accelerate the most time-consuming tasks of MD simulation. 

The initial system consists of 512 MD-specific processing nodes. Each 

node contains an MD computation engine on a single ASIC. Nodes 

interact with one another with a specialized high-speed communication 

network organized in an 8 x 8 x 8 toroidal mesh. 

    The high throughput interaction subsystem (HTIS) is mainly responsible 

for the pairwise interaction as well as the charge distribution and force 

interpolation. It has 32 Pair-wise Point Interaction Modules (PPIMs), each 

containing a 26-stage force pipeline (running at 800 MHz) to compute the 

force between particle-pairs with the fixed-point arithmetic logic. The 
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flexible subsystem controls the ASIC and handles the remaining tasks, 

including the bonded-force computation, the FFT and force correction, and 

integration tasks. 

3.4.2 Graphics Processing Units 

With their tremendous arithmetic performance and wide availability, modern 

graphics processing units (GPUs) provide a compelling alternative for 

numerically intensive computations. It is well-known that GPUs can perform over 

a trillion floating point operations per second, and that they are inherently data 

parallel [96, 117]. Recently, with the introduction of high level programming 

languages such as CUDA (Compute Unified Device Architecture), GPUs have 

become even more appropriate for scientific computations. Another key 

advantage of GPUs, compared to other hardware accelerators, is their cost 

efficiency due to the high demand and growth of the gaming market.  

    With the features of massive data parallelism, high peak arithmetic and 

memory bandwidth, GPUs can execute small tasks in parallel to substantially 

outpace traditional CPU performance for certain particular applications. MD 

simulation is one of these appropriate candidates due to its intensive 

computational complexity.  

 NAMD-GPU 

GPUs have been used in NAMD to perform non-bonded short-range force 

(both LJ and short-range part of electrostatic forces) interpolation while the 
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remaining tasks are left to CPU [96, 117]. Instead of neighbor lists that 

were commonly adopted in software codes, cell-lists are implemented and 

used in NAMD-GPU to avoid the long latency of GPU on-board memory 

access since on-chip caches are too small to accommodate whole 

neighbor lists. Piecewise linear interpolation is used to evaluate force and 

energy functions. It was demonstrated that four Tesla GPUs could 

outperform a cluster with 16 quad-core CPUs on the NCSA Tesla-based 

Lincoln cluster for the STMV (virus) benchmark that consists of one-million 

particles [91]. A similar technique is also used in Folding@home to 

accelerate the LJ force calculation in GROMACS [31, 35]. An overview of 

GPU general architecture is shown in Figure 3-9 [92, 93]. 
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Figure 3-9: NVIDIA GeForce 8800 GTX architecture (diagram courtesy from 
NVIDIA) 

 

 HOOMD/HOOMD-blue 

HOOMD [7] stands for Highly Optimized Object-oriented Many-particle 

Dynamics and HOOMD-blue is a direct continuation of HOOMD project. 

HOOMD was developed at Ames Laboratory and is able to perform 

general-purpose MD simulations by taking advantage of modern GPUs to 

attain a level of performance equivalent to dozens of processor cores on a 
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fast cluster. It was reported that MD simulation was fully implemented on 

NVIDIA GeForce 8800GTX. A speedup of up to nearly 60x was reported 

for Lennard-Jones liquid simulations with neighbor lists [7]. 

    In [7], Anderson et al. presented the software re-engineering schemes 

of how to map MD CPU codes to GPU implementations in details. In 

addition, a particle reordering scheme with Hilbert curve was implemented 

to improve the cache-hit rate and thus increase performance. 

     The current release of the GPU implementation only supports the 

evaluations of bond, angle and non-bonded short-range force (LJ force). 

Electrostatic force computation is under active development. Future 

enhancements include support of dihedral potential and mixed precision 

(single and double) calculations. 

3.4.3 FPGAs 

FPGAs are a type of programmable logic device. They contain abundant 

programmable logic and interconnect fabric. In most FPGAs, the basic logic 

element usually contains lookup tables and flip-flops.  Customized logic functions 

can be performed by configuring and connecting these elements. 

    The main advantage of the FPGA is its programming flexibility that allows 

users to explore novel algorithms, optimize implementations with various 

configurations, and quickly respond to any design change. Recently, FPGAs 

have increased their capability with added capacity and several advanced 
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features.  These include hard components such as multipliers and block RAMs, 

but also support for a new generation of semi-hard floating point cores.  With 

these, FPGAs have expanded their application space from traditional domains of 

signal and image processing to linear algebra and even scientific computing. 

Much work has recently been done accelerating MD simulation on FPGAs. Most 

of the prior studies have concentrated on the most computationally intensive 

tasks, e.g., the non-bonded short-range force calculation, while only few of them 

explored other kernels. We now provide a brief review of this FPGA work. 

    In 2004, N. Azizi, et al. [11] implemented a preliminary MD system on 

Transmogrifier 3 (TM3) system which contained four Virtex-E 2000E devices and 

one 256k x 64 bit external SRAM.  The all-to-all LJ forces calculation and velocity 

Verlet algorithm were implemented. Numerical computation was carried out by 

fixed-point arithmetic with various scaling factors and precisions. The LJ force 

was computed with table look-up interpolation and the system was able to 

perform up to 8,192-particle simulation. The support of multiple particle types, 

however, was not reported. The system was validated with an academic C-based 

software MD simulation, MD3DLJ, and on the order of 1% RMS error was 

reported for both force and energy evaluations. The details of error analysis 

about numerical precision and scaling factors, however, were not given. The 

performance was reported to be 0.29 that of the original software code running 

on a PC with a 2.4 GHz Pentium 4 due to limited memory bandwidth and low 

clock speed. It was reported that a speedup of 20X could be achieved if the 
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implementation were scaled to more advanced FPGA devices and the memory 

system improved. 

    Several papers were presented by R. Scrofano, et al. [104, 105, 106]. In [105], 

an implementation of direct computation with double precision FP arithmetic was 

carried out to calculate LJ force and potential.  A throughput of 3.9 GFLOPS was 

achieved with two force pipelines placed on a virtual Virtex-II Pro XC2VP125-7 

chip. 

    In [104], a similar force pipeline with single precision FP arithmetic was 

implemented on a SRC 6e MAPstation.  The SRC system has two Xilinx Virtex-II 

XC2V6000-4 FPGAs of which only one was used. The force pipeline was 

responsible for LJ calculations as well as Coulomb force evaluations that were 

approximated by the cut-off approach. Compared to more sophisticated methods 

like PME, 5% or less difference was estimated due to the shift-force 

approximation. A neighbor-list scheme was adopted to reduce the number of 

particle pairs that need to be evaluated. A 2x speedup was obtained; only one 

pipeline was implemented due to the area and memory constraints.  

    A modification was made in 2006 to improve the accuracy of Coulomb force 

calculation. Smooth Particle Ewald Sums method [25] was implemented to 

replace the previous cut-off shifted-force approximation for electrostatic force 

evaluation [106]. Only the real-space part of SPME was accelerated in hardware 

while the reciprocal-space part was still executed in software on the host. Direct 

evaluations of non-bonded short-range forces were performed with single-
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precision floating point arithmetic, except )(xerfc and 
2xe  which were 

approximated by table lookup interpolation. Two testbenches of 52K and 33K 

particles were reported and 2.7-2.9x speedup was achieved over software codes.  

    Another effort was made by Lee [75] to accelerate the reciprocal part of SPME 

on a Xilinx XC2V2000 FPGA. The computation was performed with fixed-point 

arithmetic that has various precisions to improve numerical accuracy. Due to the 

limited of logic resources and slow speed grade, the performance was sacrificed 

by some design choices, such as the sequential executions of the reciprocal 

force calculation for x, y, and z directions and slow radix-2 FFT implementation. 

The performance was projected to be a factor of 3x to 14x against the software 

implementation running in an Intel 2.4GHz Pentium 4 processor.  

    In [69], a simplified version of NAMD was accelerated on the SRC-6 

MAPstation (MAP) platform. The modified NAMD code eliminated the bonded 

force calculation. Only non-bonded short-range forces were evaluated by table 

look-up interpolations with single precision FP arithmetic in hardware. Several 

design choices were analyzed and implemented. It was reported that a 1.3x 

speedup can be achieved against the software by using both FPGAs on a single 

SRC-6 MAP and 3x speedup can be obtained with a series-E MAP for a 

simulation of 92K particles system. 

    H. Guo, et al. [51] presented an FPGA-accelerated MD simulation system that 

used cell-list scheme and filter logic to remove extraneous pairwise interactions. 
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The design was implemented on the system that consisted of a 2.66 GHz 

Pentium 4 and Xilinx Virtex-II-Pro FPGA and it was reported that a 12x speedup 

was achieved over the software for small benchmarks. The LJ force was 

evaluated with Lagrange linear interpolation in fixed-point arithmetic. The 

electrostatic force computation, however, was not supported and the analysis of 

force accuracy and details of filter design were not presented. Compared to our 

filter design presented later, about 50% filter efficiency was reported and the 

issues of load balance and particle queuing were not addressed. 

3.4.4 Previous Implementations 

A high performance FPGA-based MD system was designed and implemented by 

Yongfeng Gu in our research group in 2007 [46, 47, 48, 49].  It was reported that 

the system obtained substantial (5-9x) speedup over a highly tuned MD package 

and supported MD simulations up to 256K particles [46].  The system was 

composed of a standard PC with 2004-era COTS FPGA (Xilinx Virtex II Pro 

VP70) in which the pipeline accelerator was implemented. Several innovations, 

including a novel arithmetic mode, use of cell-lists, off-chip memory management, 

and non-bonded force exclusion, were included in the system.  

    In this section, several features of the FPGA-based MD system are highlighted 

and reviewed briefly. 
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 Force Computation Schemes 

In MD simulation, a common method to compute inter-particle forces is to 

use table lookup and interpolation. This method can speed up the 

evaluation of forces that are expressed by the formulas containing 

transcendental functions and complex operations [133]. A loss of accuracy 

in the resulting trajectories of particles, however, is unavoidable. Besides, 

due to rapid changes of non-bonded force values, using an integer 

representation with fixed scaling is not sufficient to accommodate the 

dynamic range of force field. Moreover, the cost of floating point arithmetic 

is still expensive (for the 2004-era FPGA chips in which the system was 

implemented). A novel arithmetic mode, semi-floating point, and table 

lookup interpolation using the third-order orthogonal polynomial are 

employed to tackle these challenges. 

 Interpolation Methods 

Given fixed computational resources, how to optimize a design to meet 

various targets is not straightforward. The number of points within each 

interval section, the type of polynomial, and the order of interpolation are 

the variables that affect computational quality. In addition, the number of 

pipelines that fit into a chip should also be taken into account since it 

greatly affects resulting acceleration speed. 
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    In order to improve interpolation accuracy, a non-uniform separation method is used. 

This is based on the observation that the curve of xr   changes rapidly over the range of 
possible interaction radii as shown in  

 

 

Figure 3-10 [46]. The curve is flatter at well-behaved sections where two 

particles are separated much far away. In our FPGA-based system, the 

length of each section is twice that of the previous section; however, each 

section is partitioned into the same number of interpolation intervals.  

    Three interpolation schemes, Taylor, Hermite, and Orthogonal, were 

considered. They were evaluated from different perspectives:  

interpolation order, number of points within each interval section, and 

relative RMS error. Orthogonal polynomial interpolation was found to offer 

the best performance under the same combination of interpolation order 

and interval numbers [46].  

 

 

 

 

Figure 3-10: Logarithmic intervals for r-x interpolation 
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 Semi-Floating Representation 

In most MD software packages, force calculation is performed by floating 

point (FP) arithmetic. The expensive cost of FP operations, however, 

makes use of FP computations difficult. On the other hand, the dynamic 

range of the non-bonded force is too big to be represented by a fixed point 

numbering system. In order to keep good simulation quality, as well as to 

reduce computational costs, an efficient alternative, semi-floating point, is 

proposed.  This method takes advantage of the characteristics of the MD 

force computation.  

    For a given input 2r , the scaling factor (exponent) at each stage of 

interpolation pipeline can be determined by the position of leading “1” of 

2r . In addition, differences in scaling factors of addends are known.  The 

key observation is that there are only a limited number of combinations of 

scaling factor pairs. This can be used to create an efficient numbering 

system, the semi-floating point representation. This is a fixed point 

numbering system whose data format is 35-bit fixed point number, but with 

a dynamic binary point which is able to shift based on the value of the 

input data ( 2r ). The efficient precision obtained by using semi-floating 

format is based on the considerations of computation resources and 

acceptable energy fluctuation [46].  Its use allows designs to take 

advantage of low latency and fewer resources of fixed point computations 

while yielding acceptable results. 
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Chapter 4 Force Pipeline Design and Optimization 

Accelerating MD simulations using HPRC have been widely explored and studied. 

However, delivering cost-effective production applications has proved 

challenging. In addition, given the intensive competition from multicore and other 

types of hardware accelerators such as GPUs, a question arises as to whether 

MD using HPRC can be competitive. In this chapter, we concentrate on the MD 

kernel computation: determining the nonbonded short-range force between 

particle pairs.  We examine it in detail to find the performance limits under current 

technology and methods. We systematically explore the design space of the 

force pipeline with respect to arithmetic algorithm, arithmetic mode, numerical 

precision, and various other optimizations. Moreover, we use Altera floating point 

datapath compiler to further optimize the implementations. Various designs are 

presented and examined. Several design considerations and challenges are also 

addressed.  

4.1 Overview 

As described in Chapter 3, forces in MD simulations can be classified into two 

categories: bonded and nonbonded. For an N-particle MD system, the 

computational complexity of nonbonded force evaluations is )( 2NO  whereas that 

of the bonded term is )(NO . A common way to reduce the computational 

complexity of nonbonded forces (LJ and Coulomb) is applying a cut-off that 

makes a particle interact only with its neighboring particles within the cut-off 
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radius. This drastically reduces the number of particle pairs that needs to be 

evaluated, even given the more complex bookkeeping scheme required to keep 

track of cell- or neighbor-lists.  

    However, a problem with cut-off is that, while it offers sufficient accuracy for 

the evaluation of the rapidly declining Lennard-Jones force, neglecting the slowly 

decaying Coulombic force beyond a cut-off radius often introduces intolerable 

errors into MD simulations. Lennard-Jones and Coulomb forces for particle i can 

be expressed as follows:  
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where εab and σad are parameters related to particle types and ijr  is the relative 

distance between particle i and j. iq  and qj  represent the charges of particle i 

and j. 

    As described in the Chapter 3, in order to reduce the expensive computational 

cost as well as obtain high simulation quality, several numerical schemes have 

been developed to solve the Poisson equation that translates charge distribution 

into a potential distribution. These schemes usually split the original Coulomb 

force curve into two parts with a smooth function )(rga , i.e., a rapidly declining 

short-range part, and a flat long-range part.  This is shown in Equation (4-3) [46] 
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where two components are illustrated in Figure 4-1.  

 

Figure 4-1: Smooth function (a) Left is the original 1/r and the smoothing 
function )(rga . (b) Right is 1/r - )(rga  

 

    The short-range part, )(
1

rg
r a , declines quickly enough such that it can be 

neglected beyond cutoff radius while )(rga changes slowly with distance. Hence, 

the short-range part can be evaluated in the same way as LJ force and the entire 

nonbonded short-range force can be expressed as: 
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where abA  and abB  are pre-computed coefficients and QQ is the product of 

charge of two interacting particles. The selection of the smoothing function 

depends on users’ requirement and preference. It can be a Gaussian distribution, 

as the one used with Ewald Sums and its variants, or others. 
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4.2 Pairwise Nonbonded Force Computation 

In this section, several FPGA implementations of Equations 4-1 and 4-2 will be 

presented. All are fully pipelined and, on every cycle, input pairwise positions and 

output the corresponding forces. Numerous design axes are described at the 

beginning of this section. The ones that visibly affect the design are follows: 

direct computation versus lookup table with interpolation (LUT); for LUT, order of 

interpolation; for direct, whether the Altera FP compiler is used or the FP cores 

directly; and whether fixed-point arithmetic is used for part of the computation.  

    The last two require further explanation. The Altera floating point datapath 

compiler (FPC) optimizes floating point datapaths by removing redundancy 

among operators and by making trade-offs in using various component types, 

e.g., using hard or soft  components as available [72].  

    The second axis requiring explanation is float versus hybrid fixed/float. The 

problem arises from the force accumulation stage at the end of the pipeline. 

During force computation, the coordinates of particle i and particle j are read to 

compute corresponding forces, and the new partial forces are accumulated with 

the running total force if and jf until all neighboring particles of reference particle i 

are processed. A floating point addition usually requires more than a single cycle, 

although since it is pipelined this does not necessarily change throughput. A 

read-after-write hazard occurs if the same particle’s force is referenced on 

successive cycles. The hazard caused by force accumulation on particle j can be 
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removed without applying Newton’s third law, which results in doubling the 

number of force evaluations [138]. Such schemes, however, still cannot reduce 

the hazard on the reference particle i. 

    There are several solutions to solve this problem: (i) stalling the pipeline, (ii) 

applying a single pipelined floating point unit [140], (iii) orchestrating particle 

processing so that hazards are avoided, (iv) accumulating the forces by using a 

more complex structure, such as a reduction tree, or (v) saving the force in 

integer format rather than floating point. In the last case, addition can be 

completed in a single cycle. Integer operations are also more area efficient than 

floating point, and if it done carefully, result in no loss of precision. The 

GROMACS code and the Protein Explorer, for example, both use mixed 

fixed/floating point [115, 123]. Moreover, another benefit of using fixed point 

rather than floating point is to overcome the shortcoming of non-associativity of 

floating point arithmetic. During the force accumulation at the end of pipeline, the 

range of force values could vary substantially. In the extreme case, a loss of low 

order bits occurs and cannot be recovered later for the floating point arithmetic. 

    In the rest of this section, we show how these alternatives cause the force 

pipeline and performance to vary. 
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Figure 4-2: Data flow of nonbonded short-range force pipeline 

 

4.2.1 Force Pipeline Design 

 

 

 

Figure 4-2 shows the data flow of the nonbonded short-range force pipeline. The 

pipeline consists of several functional blocks that are now described. 
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1. Periodic Boundary Condition Logic: The first stage of the force pipeline 

calculates the distance between two particles. If periodic boundary 

conditions (PBC) are applied, the distance computed must be the shortest 

one between any mirror images of each particle. The particle distance is 

computed first and tested with the length of the simulation box. The 

operation can be performed in either fixed or floating point. 

2. Distance Squared Computation logic: This squares the three-

dimensional (3D) components of the distance between two particles.  The 

operation can be performed in either fixed or floating point. 

3. LJ+Coulomb Force Logic: This is the core of force computation. Several 

implementations are described and then examined from various 

perspectives such as resource utilization and simulation quality. The 

computation is performed with floating point arithmetic because of large 

dynamic numerical range required for nonbonded short-range forces. The 

designs can be implemented either with table lookup (with various 

interpolation orders and table densities) or direct computation (DC) (with 

the choice of using floating point (FP) cores or the FP compiler). 

4. Force Distribution Logic: This applies the computed pseudo force to the 

3D components of the distance between two particles. The operation is 

processed in either fixed or floating point. At the end, forces are converted 

to fixed point for the accumulations. 
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Figure 4-3 illustrates the major functional units of the force pipelines. The force 

function evaluators are the diamonds marked in red; these are the components 

that can be implemented with the various schemes. The other units remain 

mostly unchanged throughout the designs. The three function evaluators are for 

the r-14, r-8, and r-3 components of Equation 4-4, respectively. In particular, the 

Coulomb function uses the r-3 term but also includes the smooth function shown 

in Equation 4-3.  
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Figure 4-3: Force pipeline template 

4.2.2 Table Look-up with Interpolation 

Since nonbonded force calculations constitute the “inner loop” of MD, 

considerable care is taken in their implementation. A major consideration is 

whether to compute them directly or to use table look-up with interpolation. 

Interpolated solutions to function computations have been used in computing 

since its earliest days. Their application to MD dates at least to 1983 when 

Andrea et al. reported using a fifth order polynomial approximation [8]. Wolff and 

Rudd studied the idea in more details and proposed using first order interpolation, 

but also increasing the table size as necessary to ensure sufficient accuracy 

[133].  

    We now briefly describe the method. Early versions used a single table for the 

entire LJ force as a function of particle separation [11, 48, 133]. The index used 

is 
2

ijr rather than ijr  so as to avoid the costly square-root operation. This 
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method is efficient for uniform gases where only a single table is required, 

because it is not necessary to distinguish atom types, and the lookup table is a 

function only of displacement. As the Lennard-Jones force depends on atom 

types, however, simulations of T different atom types require T2/2 tables; this is 

prohibitive for FPGAs for many classes of simulations.  

    A different method, also used in most MD codes, uses multiple tables, one 

each for a different part of the computation [46]. For example, Equation 4-4 can 

be rewritten as a function of 2
ijr : 
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where ,, 814 RR  and 3R  are lookup tables indexed with 
2

ijr  and abab BA ,  are 

parameters related particle types (type “a” and “b”) and aQ and bQ are the particle 

charges. 
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Figure 4-4: Table look-up varies in precision across r-x interpolation. Each 
section has a fixed number of intervals. 

 
 

    The interval scheme used in the tables is shown in  

 

 

Figure 4-4 [46]. Each curve is divided into several sections along the X-axis such 

that the length of each section is twice that of the previous [46]. Each section is 

cut into the same number of intervals N. To improve the accuracy, higher order 

terms can be used. When the interpolation is order M, each interval needs (M+1) 

coefficients and each section needs N * (M + 1) coefficients: 

3
3

2
210)( xaxaxaaxF       (4-6) 

Equation 4-6 shows third order interpolation with coefficients ia . Accuracy increases with 

both the number of intervals per section and the interpolation order. The dataflow of a 
third order interpolation pipeline is illustrated in  
 

Figure 4-5. 

DxCxBxAxf  *)*)*(()(    (4-7) 
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Figure 4-5: Arithmetic flow of a function evaluated with table lookup and 3rd order 
Interpolation.  

    We now present a sample of the methods of force computation adopted in 

widely used MD packages and systems (see Table 4-1). Clearly, there are a wide 

variety of parameter settings that have been chosen with regard to cache size 

(CPU), routing and chip area (Anton), and the availability of special features 

(GPU texture memory). The parameters also have an effect on simulation quality, 

which will be addressed later.  
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Table 4-1: Sample implementations of table look-up interpolation 

 Order Index Interval density  Segment size 

NAMD (CPU) [84] 2 r2 768 (total) Exponentially 

NAMD (GPU) [117] 1 r-1 512 (total) Exponentially 

CHARMM [89] 2 r2 10-25 per Å  Uniform (1 Å) 

ANTON [74] 2/3* r2 256 (total) Variable  

GROMACS [45] 2 r2 500 (2000)** nm Uniform (1nm)

*  Anton used cubic polynomial to interpolate energy/force. However, no further details were 
specified about the interpolation order of force evaluation. 

** 500 per nm for single-point floating and 2000 per nm for double precision floating.  

 

 

 

 

 

 

4.3 Performance Comparison of Design Alternatives 

We obtain the potential performance by multiplying the number of results 

obtained per cycle by the operating frequency. If the same operating frequency 

can be retained, fewer resource utilizations consumed by a single force pipeline 

represents higher performance. Hence, in the rest of this section, the space of 

possible solutions with respect to resource requirements will be explored. All 

resource utilizations are post Place and Route (P&R) with respect to the Altera 

Stratix III EP3SE260 FPGA. 
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Numerical Precision 

Most of conventional MD software packages perform force evaluations in double-

precision floating point arithmetic, although highly optimized MD packages, e.g., 

GROMACS and Desmond, use single-precision or even fixed-point to gain 

performance [14, 108, 115]. In contrast, MD accelerators, including those using 

GPUs, ASICs, and FPGAs, are usually implemented in fixed-point or single-

precision. This is because of resource constraints and performance 

considerations [11, 46, 109, 117]. The main reason of using double precision is 

to avoid cumulative rounding errors in long simulations and minimize the impact 

of non-associativity in floating point arithmetic. As long as the divergence from 

the “exact” atomic trajectories is not the main concern, a system that uses single-

precision arithmetic would still explore realistic configurations during the 

simulations [95]. 

    As described earlier, a large dynamic range in the numerical format is required 

when evaluating the nonbonded short-range force kernel, especially the Lennard-

Jones force. But compared with fixed-point, floating point arithmetic usually 

consumes substantially more hardware resources and thus reduces the overall 

system performance. In addition, double precision consumes 2-3x more 

resources than single precision. But if they are done carefully, some calculations 

can be still be performed in fixed-point arithmetic, especially when large dynamic 

numerical range is not required, e.g., the distance calculation.  
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Precision vs. Resource
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Figure 4-6: Resource utilization of various precision 
implementations for Stratix III. 

 
    Hence, a hybrid (HYB) method was adopted in our design. It uses 32-bit fixed 

point for displacement and 32/36-bit fixed point for force accumulation. LJ and 

Coulomb forces are evaluated in single-precision arithmetic. Figure 4-6 shows 

the performance comparison between direct computation (DC) and hybrid DC 

where mixed precision arithmetic is performed. Hybrid DC performs well in logic 

utilization. SP and DP refer to single-precision and double-precision floating point 

respectively. The reduction mainly comes from the fact that fixed-point arithmetic 

is employed in the displacement calculation and the force distribution (as shown 

in  
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Figure 4-2). We observe that the while Stratix-III FPGAs have substantial floating 

point support, this does not result in direct scaling from single to double precision. 

The increase in resources required is 2.5× - 3× for logic, but 4× - 4.5× for the 

multipliers. In addition, the operating frequency is reduced, but the quality 

improves. 

    Another finding is that more multipliers are required for the double precision 

case since Hybrid DC performs 64 x 64 bit multiplication for the distance squared 

calculation, which requires more hard-multiplier units, while DC performs 52 x 52 

bit multiplication. In the HYB implementation, the square function can be 

implemented with either logic elements or multipliers, depending on the 

availability of FPGA resource. It provides designers flexibility for the pipeline 

implementation.  
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Method vs. Resource
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Figure 4-7: Resource utilization in logic and hard multipliers for 
Altera Stratix III (single pipeline, hybrid-single precision for LUT 
implementation). 

 
Arithmetic Mode  

Figure 4-7 shows the resource usage of various implementations but this time 

emphasizing single precision and the variation in interpolation order in the 

LookUp Table method (LUT). Hybrid direct computation uses less than 10% of 

the hard-multiplier units and far less of the remaining logic. The 3rd order LookUp 

uses a similar fraction of hard-multiplier units, but substantially more logic. 

Reducing the interpolation order to 2nd and 1st allows the implementation of 

perhaps another pipeline or two, but may result in a decrease in simulation 
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quality. The simulation quality of LUT interpolation order will be addressed in the 

next section. 

FPC vs. Non-FPC
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Figure 4-8: Effect of using the Altera FPC on logic utilization 
for Altera Stratix III (single pipeline, hybrid-single precision). 

 

Component Implementation 

The effect of using the Altera Floating Point Compiler is shown in Figure 4-8. 

Several LUT Implementations of various interpolation orders are presented. 

Force computations are performed in hybrid/single-precision arithmetic. The low-

order LUTs do not take advantage of most of the compiler optimizations because 

the numbers of floating point operations are limited, but still result in a substantial 

reduction in logic resource. This is especially helpful for saving logic for the filter 

pipelines. The FPC does not help result in the reduction of hard-multiplier units. 
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Extension and Flexibility (equation complexity) 

We have described the general methods involved in computing the nonbonded 

pairwise force and analyzed the potential performance for various design choices. 

Here we describe some issues in their actual implementations. 

    While the van der Waals term shown in Equation 4-1 converges quickly, it 

must still be modified for high-quality and effective MD simulations. In particular, 

a switching function is implemented to truncate the van der Waals force smoothly 

at the cutoff distance (see Equations 4-8, 4-9, and 4-10).   

denomdistswitchrcutoffrcutoffs *)_*3*2(*)( 222222   (4-8) 

denomrdistswitchrcutoffdsr *)_(*)(*12 2222     (4-9) 
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Figure 4-9: Van der Waals potential with switching smooth function 
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    Without a switching function, the energy may not be conserved, as the force would be 
truncated abruptly at the cutoff distance and energy fluctuation could be large. The graph 

showing the van der Waals potential with the switching function is illustrated in  

Figure 4-9. The van der Waals force and energy can be computed directly as 

shown here: 

1. If )_( 22 distswitchr   FFUU vdwvdw  ,     

2. If )&&_( 2222 cutoffrdistswitchr    

 rvdwvdwvdw dsUsFFsUU **,*   

3. If )( 22 cutoffr   0,0  vdwvdw FU  

The switching function can be either computed directly or embedded in pre-

computed interpolation coefficients.   

    We now examine the Coulomb term. The common algorithm supported in 

most MD packages of calculating the electrostatic force/energy is the Ewald 

method or its variants. Particle Mesh Ewald (PME) is widely used to evaluate the 

standard Ewald Sums due to its computational efficiency. It approximates the 

long-range part of the Ewald Sums by a discrete convolution on an interpolation 

grid; this can be performed using a discrete 3D Fast Fourier Transform (FFT). 

The pairwise component is 
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where ijr  is the distance between particle i and j. erfc(x) is the complementary 

error function erfc(x) = 1 – erf(x), and   is the Ewald parameter. 

    Since the Es computation contains the evaluation of the complementary error 

function (erfc), which is expensive in FPGA logic, we use polynomial interpolation 

rather than direct computation. The polynomial coefficients were pre-computed 

using Matlab by finding the coefficients of a polynomial p(x) of degree n that fits 

the data, p(x(i)) to y(i), in terms of least squares. 

    The problem addressed here is optimizing the computation of the pairwise 

nonbonded force in light of this added equation complexity. In most MD 

packages, simulations can be configured to meet user requirements and 

preference, e.g., using different switching or smooth functions, or various long-

range algorithms (simple cutoff, PME or multigrid). Some functions can be 

evaluated directly in the FPGA; however, some, such as the erfc function, cannot. 

Moreover, if there were a conditional branch, e.g., the LJ switching function, extra 

resources would be required when evaluating equations directly. With the LUP 

method, the switching function can be embedded in the interpolation coefficients 

such that no additional resources are required. 

    In summary, if the number of numerical operations involved in the direct 

computation method is more than that in the LUT method, or if the equation 

cannot be evaluated directly (with reasonable costs), then the LUT scheme 

would be favorable. If done carefully, high simulation quality is still obtained.  
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4.4 Quality Comparison of Design Alternatives 

Since MD is chaotic, simulation quality must be validated. While statistical error is 

likely to be negligible [70], systematic error can be introduced, e.g., as the motion 

integration algorithm generally assumes the force is continuous and differentiable 

[112]. True validation of simulation quality, such as through wet lab experiments, 

is rare: the shortest observable timescales are on the order of microseconds, but 

this is rarely achieved in simulation for biologically significant molecules. Another 

consideration is that quality required differs by application. For example, when 

simulation is an active process with frequent user intervention, then simplified 

potentials are sometimes used [70]. Quality measures can be classified as 

follows (see, e.g., 89, 24, 107).  

1. Arithmetic error in the approximation is the deviation from the ideal (direct) 

computation done at high precision (double precision). A frequently used 

measure is the relative RMS force error, which is defined as follows: 
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 While this can be computed precisely, it may hide effects of discontinuities 

in piecewise approximations [107]. 
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2. Physical invariants should remain so in simulation. Energy can be 

monitored through fluctuation (e.g., in the relatively RMS value) and drift. 

A highly sensitive method used the shadow Hamiltonian [24]. We use the 

following metrics to measure the stability of MD simulation (suggested by 

Shan et al. [107]): 
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where E0 is the initial value, Ni is the total number of time steps in time t, 

and Ei is the total energy at step (i). Acceptable numerical accuracy is 

achieved when 003.0E . 

As just described, direct evaluations of MD simulation quality, such as through 

validation with wet lab experiments, are often impractical. Thus, surrogates are 

often used. One type measures the errors with respect to a reference 

computation. Another type monitors the simulation output to confirm that a 

physical invariant, such as the total energy, actually is so.  

    The results presented below (for items 2 and 3) are for the NAMD benchmark 

NAMD2.6 on ApoA1. It has 92,224 particles, a bounding box of 108 Å × 108 Å × 

78 Å with periodic boundary conditions, and a cut-off radius of 12 Å. The 

Coulomb force is evaluated with PME. The switching function is applied to 

smooth the LJ force when the intra-distance of particle pairs is between 10 and 

12 Å. NAMD-Lite was modified to support the quality measurements. 
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Figure 4-10: Relative average force error of the particle-particle force for 
various implementation and precision. DC is direct computation, LUTn 
refer to Look-UP of various orders. 

 

1. Error per individual particle-particle force computation 

Figure 4-10 shows the relative average error of pairwise nonbonded force 

computations for various pipeline implementations. The reference is direct 

computation using double precision (DC Double, error = 0). We generate 

the particle pairs by randomly selecting particle positions between the cut-

off and exclusion radii. For the single precision LUT method, error 

becomes worse for higher orders. This is because of the higher precision 

required for those tables. 
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Figure 4-11: Graphs of relative RMS force error versus interpolation 
density per section for interpolation orders 0, 1, and 2. 

 

2. Error per total force on a particle per iteration 

The simulation was first run for 1000 timesteps using direct computation. 

Then in the next timestep, both direct computation and table interpolation 

were used to find the relative RMS force error for table interpolation. Two 

temporary arrays were used to save the computed forces for the two 

methods. Only the range-limited forces (switched vdw and short-range 

portion of PME) were considered. All computations were done in double 

precision; Equation 4-12 was used to compute the relative RMS. Results 

are shown in Figure 4-11. The reference is direct computation using 

double precision. All exceed the quality criteria given in Shan, et al. [107]. 

We note that 1st and 2nd order interpolation have two orders of magnitude 

less error than 0th order. We also note that with 256 intervals per segment 
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(and 12 segments) 1st and 2nd order are virtually identical. Users can 

choose the implementation method (1st order with higher interpolation 

density or 2nd order with lower interpolation density), depending on the 

resource availability (BRAMs versus logic and hard-multipliers) of FPGA 

devices. 
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Figure 4-12: Graphs of energy for various designs run for 20,000 
timesteps. 

 

3. Energy conservation 

The previous analyses examined the model accuracy statically. In order to 

evaluate the dynamic impact of various designs on MD simuation, we 

must analyze the simulation stablity of the MD system, which can be 

measured in term of energy conservation and fluctuation [107]. Results 
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with respect to energy fluctuation and drift are shown in Figure 4-12. A 

number of design alternatives were examined, including the original code 

and all combinations of the following parameters: interval density (64 and 

256 per segment), interpolation order (0th, 1st, and 2nd), and single and 

double precision floating point. We note that all of the 0th order 

simulations are unacceptable, but that the others are all indistinguishable 

(in both energy fluctuation and drift) from the serial reference code running 

direct computation in double precision floating point.  

 

 

Figure 4-13: Graphs of energy for selected designs run for 100,000 
timesteps 

    Three implementations were chosen for longer simulations (shown in 

Figure 4-13). Using Equation 4-13 to compute E , we find that the value 

for the reference code is 1.1E-4 and for both of the FPGA-accelerated 
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codes is 1.3E-4; all are much smaller than 0.003. After 70,000 timesteps, 

the values for E  are all less than 1.5E-7. 

4.5 Summary 

FPGAs lend themselves to a particular rich design space of both opportunities 

and constraints. We have explored and evaluated this space with respect to both 

resource requirements and simulation quality, including numerical precision, 

arithmetic algorithm, datapath optimization, equation complexity and flexibility. 

For each design axis, general guidelines were given for implementing highly 

competitive MD accelerators. We find that FPGAs’ BRAM architecture makes 

them well suited to support unusually fine-grained intervals. This leads to a 

reduction in other logic and a proportional increase in performance. Potential 

performance and simulation quality for various designs have also been examined 

and can serve as a guideline for FPGA MD implementations.  

    Although the Altera FPC helps save logic resources and simplifies the design 

process, special attention must be paid to how to formulate the target function so 

that the maximum numerical precision can be preserved and the resulting design 

optimized in terms of both latency and resource utilization.  

    In general, more accuracy requires more hardware. Optimization of 

performance versus quality, however, is not trivial. Accuracy only affects 

simulation quality indirectly and highest quality simulations may not always be 

needed. Direct computation (with sufficient precision) usually offers higher 
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simulation quality although its cost may high, especially when evaluating complex 

force equations or when there is a conditional branch. LUT-based methods 

provide flexibility and maintain a fixed hardware cost for various force equations; 

they are favored when the reduction in accuracy is acceptable. A mix of both 

schemes can also be adopted.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 5 Filter Pipeline Design and Optimization 

5.1 Overview 

While MD generally involves all-to-all force evaluations among particles, a cut-off 

is commonly applied to limit the extent of the short-range force to a fraction of the 

simulation space. Two methods are commonly used to take advantage of this 
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cutoff: cell lists and neighbor lists (as shown in Figure 5-1). With cell lists, the 

simulation space is typically partitioned into cubes with edge-length equal to the 

cutoff radius, rc. Non-zero forces on the reference particle P can then only be 

applied by other particles in its home cell and in the 26 adjacent cells (the 3 x 3 x 

3 cell neighborhood). We refer the second particle of the pair as the partner 

particle. With neighbor lists, P has associated with it a list of exactly those partner 

particles within rc. 

    

Figure 5-1: P’s two dimensional cell neighborhood is shown in white; cells have 
edge size equal to the cut-off radius. Particles within the P’s cut-off circle are in 
P’s neighbor list [16]. 

    We now compare these methods.  

 Efficiency: Neighbor lists are by construction 100% efficient: only those 

particle pairs with non-zero mutual forces are evaluated. Cell lists as just 

defined are 15.5% efficient with that number being the ratio of the volumes 

of the cutoff sphere and the 27-cell neighborhood.  

P

 

rc 

rc 

rc
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 Storage: With cell lists, each particle is stored in a single cell’s list. With 

neighbor lists, each particle is typically stored in 400-1000 neighbor lists, 

depending on particle density and cutoff radius. 

 List creation complexity: Computing the contents of each cell requires 

one pass through the particle array. Computing the contents of each 

neighbor list requires, naively, that each particle be examined with respect 

to every other particle: the distance between them is then computed and 

thresholded. In practice, however, it makes sense to first compute cell lists 

anyway. Then the neighbor lists can be computed using only the particles 

in each reference particle’s cell neighborhood such that the work of 

constructing neighboring list can be reduced [139].   

    From the last point, it appears that the creation of neighbor lists involves not 

only cell lists, but also a fraction of the force computation itself. At this point, why 

not finish computing the forces of those particles that are within the cutoff radius? 

Why save the neighbor list? 

    Most MD codes reuse the neighbor lists for multiple iterations and so amortize 

the work in their creation. However, because particles move during each iterative 

step, particles can enter and exit the cutoff region leading to potential error. The 

solution is to add some margin into the neighborlist cutoff such that it is larger 

than the force cutoff, e.g., 13.5Å neighborlist cutoff versus 12Å force cutoff (see 

Figure 5-2). There is a trade-off between the increase in neighborhood size (and 
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thus the number of particle pairs evaluated) and the number of iterations 

between neighbor list updates. 

    

 

 

 

 

 

 

 

Figure 5-2: Neighborlists are often computed for a larger radius than the force 
cutoff. 

  

    Although neighbor lists have been proven to be efficient when particles move 

slowly and their construction time can be reduced with the aid of cell-list scheme 

[139], the shortingcomings of large storage demand and non-sequential data 

transfer between processors and memory still remains and becomes significant 

for large systems [32]. 

    The conventional approach of evaluating pairwise interactions with the cell list 

method usually leads to a substantial number of superfluous computations. 

Several studies have made improvements on the algorithm and investigated their 

efficiency [3, 32, 42, 79, 131]. W. Mattson and B. M. Rice overcame this 

Force cutoff 

Neighborlist cutoff

   i
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shortcoming by further partitioning the simulation domain into cubes whose edge-

length is smaller than cut-off radius [3, 133]. Another approach, proposed by P. 

Gonnet, reduces the number of unnecessary particle-pair calculations by first 

sorting the particles along the cell axis and then only evaluating particles whose 

inter-distance along the axis is smaller than the cutoff radius [42].  It was shown 

that 59.4% of the particle pairs whose inter-distance is computed and tested are 

actually within cutoff radius. This is almost four times better than the 16% in the 

conventional cell list method and more than double the 27% from using cells with 

edge-length equal to 0.5 * rc [32, 42]. U. Welling and G. Guido modified Gonnet’s 

variant of the cell list algorithm by using a reordered linked cell, rather than a 

plain linked cell, and adding optimal sorting to better fit a broad range of 

simulation setups [131]. 

 

5.2 Coprocessor Considerations 

With MD coprocessing there are additional considerations. The cell list 

computation is very fast and the data generated small (both O(N)) so it is 

generally done on the host (along with the motion integration): the cell lists are 

downloaded to the coprocessor every iteration along with the new particle 

positions. The neighbor list computation, however, is much more expensive: if 

done on the host it could mitigate any advantage of coprocessing. Moreover, the 

size of the aggregate neighbor lists is hundreds of times that of the cell lists, 

which makes their transfer impractical. As a consequence, neighbor list 
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computation, if it is done at all, must be done on the coprocessor. But even on 

the coprocessor storage is still a concern. 

    We look first at MD with cell lists. For reference and without loss of generality 

we examine the NAMD benchmark NAMD2.6 on ApoA1. It has 92,224 particles, 

a bounding box of 108 Å × 108 Å × 78 Å, and a cutoff radius of 12 Å. This yields 

a simulation space of 9 × 9 × 7 cells with an average of 175 particles per cell with 

a uniform distribution. On the FPGA coprocessor, the working set is typically a 

single (home) cell and its cell neighborhood for a total of (naively) 27 cells and 

about 4,725 particles. 

    In actuality, Newton’s 3rd Law (N3L) is used to reduce this number. That is, 

since each particle-particle interaction is mutual, it can be calculated once per 

particle pair and recorded for both particles. To effect the reduction in work, 

home cell particles are only matched with particles of a fraction of the cell 

neighborhood, and with, on average, half of the particles in the home cell. We 

refer to the subset of cells in the cell neighborhood that are processed together 

with (and including) the home cell as the cell set. For the 14- and 18-cell sets 

presented below in Chapter 5.5, the average number of particles to be examined 

(for each particle in the home cell) is 2,450 and 3,150, respectively. Given current 

FPGA technology, any of these cell sets (14, 18, or the original 27 cells) easily 

fits in the on-chip BRAMs.  

    Neighbor lists for a home cell do not fit on the FPGA. For example, the 

aggregate neighbor lists for 175 home cell particles is over 64,000 particles (one 
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half of 732 for each of the 175 particles; 732 rather than 4,725 because of 

increased efficiency of neighbor lists over cell lists). 

    The memory requirements are therefore very different for the two methods. 

For cell lists, we swap cells onto and off of the FPGA as needed. Because of the 

high level of reuse, this is easily done in the background. In contrast, neighbor list 

particles must be streamed from off-chip. This has worked when there are one or 

two force pipelines operating at 100MHz [69, 106], but is problematic for current 

HPRC systems. For example, the Stratix-III/Virtex-5 generation of FPGAs can 

support 8 force pipelines operating at 200MHz leading to a bandwidth 

requirement of over 20 GB/s. While high-end FPGAs support this easily, memory 

interfaces in commercial systems generally do not. 

    From this discussion, it follows that use of neighbor lists calls for an “on-FPGA” 

solution, but also that this itself appears to be impracticable due to memory and 

transfer requirements. At the same time, however, the 6x potential increase in 

efficiency cannot be abandoned. One way to improve efficiency is to reduce the 

cell size: the smaller the cell size, the finer the granularity, and the larger the 

fraction of the cell neighborhood volume guaranteed to be useful. With a cell 

edge of rc/2 and a 53 set, efficiency increases to 26.8%. With more aggressive 

clipping of the corner cells, efficiency increases a bit more but so does the control 

complexity. More important is that reducing cell size also reduces reuse and still 

leaves much inefficiency. While reducing cell size is viable, there are better 

options. 
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    The solution we propose is to use neighbor lists, but to compute them every 

iteration, generating them continuously and consuming them almost immediately. 

In this scenario, the use of neighbor lists can be viewed as filtering out the zero-

force particle pairs: the filter pipelines feed the force pipelines with minimal 

buffering in between (see Figure 5-3). Designs and tradeoffs for this solution will 

be presented in the next several sections. 

    We now describe the execution flow. Processing is built around the home cell. 

Position and acceleration data of the particles in the cell set are loaded from 

board memory into on-chip caches, POS and ACC, respectively. When the 

processing of a home cell has completed, focus shifts and a neighboring cell 

becomes the new home cell. Its cell set is now loaded; in our current scheme this 

is nine new cells. 

    Acceleration data differs from position data in that it is read/write. That is, each 

particle’s acceleration accumulates over this and other home cells. It is not 

complete for any given home cell until all 27 cells in its cell neighborhood have 

also been the home cell. Therefore the nine cells of acceleration data are 

swapped rather than just overwritten. 

    One design constraint is that each force pipeline should handle at most a small 

number of reference particles Pi at a time. This enables the total forces on the Pis 

to be accumulated in registers. Accumulating the mutual forces on the Pis’ N3L 

partner particles, however, is more complex as their positions span the cell set. 

To prevent BRAM access contention, the following strategy is used. Partner 
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updates are written to BRAMs associated uniquely with each force pipeline. 

When processing of a home cell is completed, the partner data from the various 

pipeline-specific BRAMs are merged. This operation is performed during 

swapping out, so latency is completely hidden.  

    The time to process a home cell Tproc is generally greater than the time Ttrans to 

swap cell sets with off-chip memory. Assume that a cell has edge length = rc and 

contains on average Ncell particles. Then Ttrans = 324 × (Ncell/B) (9 cells, 32-bit 

data, 3 dimensions, 2 reads and 1 write, and transfer bandwidth of B bytes per 

cycle). To compute Tproc, assume P pipelines and perfect efficiency. Then Tproc is 

~ (Ncell)
 2 × (π/2P) cycles. This gives the following bandwidth requirement: B > 

206 × P/Ncell. For P = 10 and Ncell = 175, B > 12 bytes per cycle. For many 

current FPGA processor boards, B is usually larger than 16. Some factors that 

increase the bandwidth requirement are faster processor speeds, more pipelines, 

and lower particle density. A factor that reduces the bandwidth requirement is 

better cell reuse. 
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Figure 5-3: Schematic of the HPRC MD system 

 

5.3 Filtering Algorithms 

We begin by assuming cell lists with processing concentrating on one home cell 

at a time. With no filtering or other optimization, forces are computed between all 

pairs of particles i and j, where i must be in the home cell but j can be in any of 

the 27 cells of the cell neighborhood, including the home cell. By filtering we 

mean the identification of particle pairs where the mutual short-range force is 

zero. A perfect filter successfully removes all such pairs. The efficiency of the 

filter is the fraction of undesirable particle pairs removed. The extra work due to 

imperfection is the ratio of undesirable pairs not removed to the desirable pairs. 
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    We evaluate three methods, two existing and one new, which trade off 

efficiency for hardware resources. As motivated in 0, we store particle positions 

in three Cartesian dimensions, each in 32-bit integer. There are two parameters, 

precision and geometry. 

1. Full Precision: Precision = full, Geometry = sphere  

Computes r2 = x2 + y2 + z2 and compares whether r2 < (rc)
2 using full 32-bit 

precision. Filtering quality in this case is nearly 100%. Except for the 

comparison operation, this is the same computation that is performed in 

the force pipeline. 

2. Reduced: Precision = reduced, Geometry = sphere  

This filter, used by D.E. Shaw [74], also computes r2 = x2 + y2 + z2, r2 < (rc)
2, 

but uses fewer bits and so substantially reduces the hardware required. 

Lower precision, however, means that the cut-off radius must be 

increased (rounded up to the next bit) so filtering efficiency goes down: for 

8 bits of precision, it is 99.5%. In our reference example, each particle is 

now matched with about 378 particles, rather than the 366 for perfect 

filtering, for about 3% extra work. 

3. Planar: Precision = reduced, Geometry = planes  

A disadvantage of the previous method is its use of multipliers, which are 

the critical resource in the force pipeline. This issue can be important 

because there are likely to be 6 to 10 filter pipelines per force pipeline. In 
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this method we avoid multiplication by thresholding with planes rather than 

a sphere (see Figure 5-4 for the two-dimensional (2D) analog). With 8 bits, 

this method achieves 97.5% efficiency for about 13% extra work. The 

formulae are as follows: 

 ccc rzryrx  ,,  

 ccc rzyrzxryx 2,2,2   

 crzyx 3  

 0x  (with Newton’s 3rd law) 

    Table 5-1 summarizes the resource cost (LUTs, registers, and multipliers) and   

quality (efficiency and extra work) of the three filtering methods. Since multipliers 

are a critical resource, we also show the two “sphere” filters implemented entirely 

with logic. The cost of a force pipeline (from 0) is shown for scale.  
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Figure 5-4: Filtering with planes rather than a sphere - 2D analogue 

 

Table 5-1: Comparison of three filtering schemes for quality and resource usage. 
A force pipeline is shown for reference. Percent utilization is for the Altera Stratix-
III EP3SE260. 

Filtering 
Method 

LUTs/Registers Multipliers Filtering 
Efficiency 

Extra Work 

Full Precision 

(logic only) 

341/881        0.43% 

2577/2696    1.30% 

12     1.6% 

  0     0.0% 

100% 

100% 

0% 

0% 

Reduced  

(logic only) 

131/266        0.13% 

303/436        0.21% 

  3     0.4% 

  0     0.0% 

99.5% 

99.5% 

3% 

3% 

Planar 164/279        0.14%   0      0.0% 97.5% 13% 

Force Pipeline 5695/7678    5.00% 70      9.1% NA NA 

    The most important result is the relative cost of the filters to the force pipeline. 

Depending on implementation, each force pipeline needs between 6 and 10 

filters to keep it running at full utilization. We refer to that set of filters as a filter 

bank. Table 5-1 shows that a full precision filter bank takes from 105% and 160% 

of the resources of its force pipeline. The reduced (logic only) and planar filter 

banks, however, require only a small fraction: between 17% and 40% of the logic 

of the force pipeline and no multipliers at all. Since the latter is the critical 

resource, the conclusion is that the filtering logic itself (not including interfaces) 

has negligible effect on the number of force pipelines that can fit on the FPGA.  
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    We now compare the reduced and planar filters. The “Extra Work” column in 

Table 5-1 shows that for a planar filter bank to obtain the same performance as 

logic-only-reduced, the overall design must have 13% more throughput. This 

translates, e.g., to having 9 force pipelines when using planar rather than 8 for 

reduced. The total number of filters remains constant. The choice of filter 

therefore depends on the FPGA’s resource mix and force pipeline 

implementations. 

 

 

 

 

5.4 Balancing Neighboring List Sizes 

For efficient control and particle-memory access, and for smooth interaction 

between filter and force pipelines, it is preferred to have each force pipeline 

handle the interactions of a single reference particle at a time. This preference 

becomes critical when there are a large number of force pipelines and a much 

larger number of filter pipelines. Moreover, it is highly desirable for all of the 

neighbor lists being created at any one time (by the filter banks) to be transferred 

to the force pipelines simultaneously (buffering mechanisms are described in 

Chapter 5.6). It follows that each reference particle should have a similar number 

of partner particles (neighbor list size). 
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    The problem addressed in this section is that the standard method of choosing 

a reference particle’s partner particles leads to a severe imbalance in neighbor 

list sizes. How this arises can be seen in Figure 5-5, which illustrates the 

standard method (half-shell) of optimizing for N3L. So that a force between a 

particle pair is computed only once, only a “half shell” of the surrounding cells is 

examined (in 2D, this is cells 1-4 plus Home). For forces between the reference 

particle and other particles in Home, if the particle identification (ID) were used to 

break the tie, with, e.g., the force being computed only when the ID of the 

reference particle is the higher. Particle B (shown in Figure 5-5b) has a much 

smaller neighborlist than A (shown in Figure 5-5a), especially if B has a low ID 

and A a high. 
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Figure 5-5: Shown is the standard partitioning scheme with Newton’s 3rd law.  1-
4 plus home cell are examined with a full sphere. 

 

    In fact neighborlist sizes vary from 0 to 2L, where L is the average neighborlist 

size. The significance is as follows. Let all force pipelines wait for the last pipeline 

to finish before starting work on a new reference particle. Then if that (last) 

pipeline’s reference particle has a neighborlist of size 2L, then the latency will be 

double that if all neighbor lists were size L. This distribution has high variance 

(see Figure 5-6) meaning that neighbor list sizes greater than, say, 
2

3
L are likely 

to occur. A similar situation also occurs in other MD implementations, with 

different architectures calling for different solutions [7, 114]. 
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Figure 5-6: Distribution of neighborlist sizes for standard partition as derived 
from Monte Carlo simulations. 

 

    One way to deal with this load imbalance is to overlap the force pipelines so 

that they work independently. While viable, this leads much more complex 

control. 

    An alternative is to change the partitioning scheme. Our new N3L partition is 

shown in Figure 5-7. There are three new features. The first is that the cell set 

has been augmented from a half shell to a prism. In 2D this increases the cell set 

from 5 cells to 6; in 3D the increase is from 14 to 18. The second is that, rather 

than forming a neighbor list based on a cutoff sphere, a hemisphere is used 

instead (the “Half-Moon” in Figure 5-7). The third is that there is now no need to 

compare IDs of home cell particles. 
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Figure 5-7: Shown is half-moon partitioning scheme for using Newton's 3rd law. 
1-5 plus home cell are examined, but with a hemi-sphere (blue-shaded part of 
circle). 

 

    We now compare the two partitioning schemes. There are two metrics: the 

effect on the load imbalance and the extra resources required to prevent it. 

 Effect of load imbalance: We assume that all of the force pipelines begin 

computing forces on their reference particles at the same time, and that 

each force pipeline waits until the last force pipeline has finished before 

continuing to the next reference particle. We call the set of neighbor lists 

that are thus processed simultaneously a cohort. With perfect load 

balancing, all neighbor lists in a cohort would have nearly the same size, 

the average. The effect of the variation in neighbor list size is the number 

of excess cycles—before a new cohort of reference particles can begin 

processing—over the number of cycles if each neighborlist were the same 

size. The performance cost is therefore the average number of excess 

cycles per cohort. This in turn is the average size of the biggest neighbor 

list in a cohort minus the average neighbor list size. We find that, for the 

standard N3L method, the average excess is nearly 50%, while for the 

“half-moon” method it is less than 5%. 

 Extra resources: The extra work required to achieve load balance is 

proportional to the extra cells in the partition: 18 versus 14, or an extra 
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29%. This drops the fraction of neighbor list particles in the cell 

neighborhood from 15.5% to 11.6%, which in turns increases the number 

of filters needed to keep the force pipelines fully utilized (over-provisioned) 

from 7 to 9. For the reduced and planar filters, this is not likely to reduce 

the number of force pipelines. 

 

 

 

5.5 Mapping Particle Pairs to Filter Pipelines 

From the previous sections, we converge on an efficient design for filtering 

particle pairs: 

 During execution, the working set (data held on the FPGA) consists of the 

positions and accelerations of particles in a cell set; i.e., a single home cell 

and its 17 neighbors (in the “half moon” scheme); 

 Particles from each cell are stored in a set of BRAMs: this is currently one 

or two BRAMs per coordinate, depending on the cell size and particle 

density, for a total of 108-216; 

 The N3L partition specifies 7-9 filters per force pipeline; 

 FPGA resources indicate 8-10 force pipelines; and 
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 Force pipelines handle at most a small number of reference particles at a 

time (and their N3L partners). 

    We now address the mapping of particle pairs to filter pipelines. There are a large 
number of ways to do this; finding the optimal mapping is in some ways analogous to 
optimizing loop interchanges with respect to a cost function.  

 

 

Figure 5-8 shows two possibilities. In particle mapping (a), each filter is 

responsible for a different reference particle. Each cycle, a single partner particle 

from the cell set is broadcast to all of the filters (in all of the filter banks). In cell 

mapping (b), each filter bank is collectively responsible for a different reference 

particle. Each filter within a bank processes the reference particle with respect to 

partners from its own subset of 2 or 3 cells. The issues are as follows. 

 Force pipeline efficiency: Overall performance is proportional to the 

efficiency of the force pipelines, i.e., the fraction of cycles that they deliver 

“payload” (pairs with non-zero forces). Since there are no stalls, the 

efficiency is thus proportional to the fraction of cycles that they input (are 

issued) payload particle pairs from their filter banks. 

 Payload generation rate: Given sufficient filters, a filter bank will 

generate payload pairs at an average rate of greater than one per cycle. 

The variance may be high, however, which can substantially degrade 

efficiency. 
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 Distribution of payload particle pairs: While the number of payload 

particle pairs from a given cell set—and even from any reference particle 

(from Chapter 5.4—has a small variance, the number and distribution of 

payload pairs generated by any particular filter can vary wildly. For 

example, in Figure 5-7, let two filters (in a bank) each handle the same 

reference particle, but let the partner particles be from different cells, say 3 

and 5. Each filter examines the same number of pairs, but the first filter 

passes most of its input while the second passes almost none. 

 Queuing particle pairs: A simple (but costly) solution is to: (i) append a 

large queue to each filter and (ii) implement a flexible router from these 

queues to the force pipeline. The two mappings lend themselves to 

multiple more practical queuing methods, the choice of which depends on 

the resources available on the FPGA. 
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Figure 5-8: Two mappings of particle pairs onto filters. (a) Particle Mapping: 
Filters each hold a different reference particle. Particles in cell set are broadcast 
one per cycle. (b) Cell Mapping: Same reference particle held by all filters in a 
bank. Each filter is responsible for 2-3 cells. 

 

 

 

 

 

5.6 Queueing and Routing Particle Pairs 

In this section we present two queuing strategies, whole neighbor list and 

continuous. We evaluate them with respect to the two particle mapping strategies 

for performance (force pipeline efficiency) and hardware cost (queue size and 

complexity). 

5.6.1 Queuing Whole Neighboring List 

If there were sufficient BRAMs, then particle mapping can be used to generate 

neighbor lists in their entirety and consumed in the same way. Details are as 

follows; we assume particle mapping, but the logic is similar for cell mapping. 

 A phase begins with a new and distinct reference particle being 

associated with each filter. 

 Then, on each cycle, a single particle from the 18-cell set is broadcast to 

all of the filters. 
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 Each filter’s output goes to its own set of BRAMs. 

 The output of each filter is exactly the neighborlist for its associated 

reference particle. 

 Double buffering enables neighborlists to be generated by the filters at the 

same time that the previous phase’s neighborlists are being drained by the 

force pipelines.  

 

    Advantages of this method include: 

 Nearly perfect load balance among the filters (from the “half-moon” 

partition); 

 Little overhead: each phase consists of over 3000 cycles before a new set 

of reference particles must be loaded; 

 Nearly perfect load balancing among the force pipelines: each operates 

successively on a single reference particle and its neighborlist; and 

 Simple queuing and control: neighborlist generation is decoupled from 

force computation. 

    A disadvantage is that this queuing method requires hundreds of BRAMs. 

Although there are a thousand or more on some high-end FPGAs, this is still a 

concern.  
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5.6.2 Continuous Queuing 

 

 

 

Figure 5-8 shows the basic queuing used in both mappings: Some number of 

filters F in a filter bank feed a single force pipeline. As described in 0, the force 

pipelines should be as independent as possible. This is to constrain the 

complexity of the routing between filter and force stages and between force stage 

and accelerator cache.  

    At a high-level, this is a typical queuing problem with F servers where each 

has known arrival and departure rates. An arrival is the generation of a particle 

pair that has passed the filter criteria; a departure is when a payload pair is 

consumed by the force pipeline. Also, the goal is to minimize idle time (when all 

queues are empty) and hardware cost. The latter includes queue size, but also 

complexity of the control and of the concentrator logic that routes from the filter 

queues to the force pipeline.  

    There are also a number of differences, however. These restrict the utility of 

stochastic analysis, but also point to implementation methods. 

1. Execution proceeds in phases: For particle mapping, the filter bank 

processes F reference particles in a phase. For cell mapping, it processes 

only one. 
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2.  Uniformity: The total number of arrivals per reference particle varies only 

slightly within a phase (for particle mapping) and among phases (for both 

mappings). 

3. Non-uniformities. The F queues can have highly non-uniform departures 

and/or high variation in departures during a phase. Depending on the 

position of the reference particle in the home cell and on the cell of its 

partner, the a priori probability of a departure can be anything from 0 to 1. 

    Some design considerations are as follows. To minimize queue size, there are 

several mechanisms including under provisioning (by keeping F small) and 

throttling (when queues are full). Even if these are used, however, performance 

is improved by smoothing and balancing the departure rates (arrivals at the force 

pipelines). Here are three ways that help do this. 

 Fetch order: Especially for particle mapping, departure rates for each 

filter vary widely during a phase. For example, in Figure 5-7, the departure 

rate for the filter of the particle shown will be near 0 when cell 4 is 

processed, but greater than 0.5 for cell 3. This variation can be smoothed 

by randomizing the order in which the partner particles are fetched from 

the cell set. A simple way to approximate this is to fetch particles from 

cells round-robin, rather than cell-at-a-time. 

 Mapping combinations of cells: For cell mapping, different cells in the 

cell set vary widely in the probability that their particles will be part of a 
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neighbor list. For example, in Figure 5-7, the Home cell and cell 3 are 

much more likely to provide partner particles than the corner cells (2 and 

4). Pairing cells appropriately helps sooth the arrival rates. 

 Concentrator logic: No matter which mapping scheme (particle or cell 

mapping) is employed, the arrival rate of matching pairs could vary 

dramatically among filter queues during the run-time. This property of non-

uniformity affects the size of queues as well as the efficiency of force 

pipelines. In order to smooth non-uniformities among filter queue arrivals, 

concentrator, logic that can efficiently dispatch particle pairs from queues 

to force pipeline, would be desired. Each filter independently enqueues 

particle pairs that have passed the selection criteria. An arbiter determines 

transfer to the force pipeline based on the following logic. 

1. First priority is given to queues that are within one of being full. This 

is sufficient to prevent data from being dropped. If multiple queues 

are nearly full, then priority is rotated round-robin. 

2. Otherwise priority is given to queues that are not empty. Again, 

priority is rotated round-robin. 

3. If multiple queues are nearly full, then the filters are throttled. Note 

that throttling by itself does not reduce efficiency; the key 

performance consideration is that the force pipelines always be 

active. 
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    Thus, a concentrator would have the following three modes. 

Normal mode: Pairs are dispatched from non-empty queues in round-robin fashion as 
shown in  

 

 

 

 Figure 5-9.  

 

 

 

 

 

Figure 5-9: Concentrator in normal mode. Pair is dispatched from non-empty 
queues in round-robin fashion. 

 
 

 Priority mode:  When one of filter queues is full, it continuously dispatches 

match pairs from this queue until “full” signal is de-asserted as shown in  

  

  

Normal mode: pairs are 
dispatched from non-empty 
queues in round-robin fashion 
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In this example, pairs are 
pulled out from queue 0, 1, 2, 
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 Figure 5-10.  

 

 

 

 

 

Figure 5-10: Concentrator in priority mode. Queue which is full has high 
priority to dispatch pairs (only one queue is full). 

 
 

Throttling mode: When more than one queue is full, stall signal is asserted to halt 
filter pipelines and particle distribution. Priority is given to any queue which is full. 
An example is illustrated in  

 

 Figure 5-11. The advantage of this scheme is that small amount of 

memory resources would be sufficient to maintain high throughput. 

However, in order to prevent the over-flow where more than one queue is 

full, throttling logic is required to stall filter pipelines. 

Priority mode: Only one queue 
is full and pairs are dispatched 
from a queue which is full.  
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Filter 

Filter 
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Force pipeline 
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In this example, priority is 
given to queue 1. 
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Figure 5-11: Concentrator in throttling mode. Stall signal is asserted and 
priority is given to any queue that is full. 

 
 

    Another design consideration is whether to over- or under-provision and 

whether to throttle filter pipeline input to reduce the queue size needed to prevent 

overflow. Having a smaller or larger number of filters under- or over-provisions 

the force pipeline. The advantage of under provisioning is that simple hardware is 

adequate for correct execution. The advantage of the over-provisioning is high 

utilization of the force pipelines: with nine or more filters in the Perfect/“half-

moon” design option the force pipelines are almost always busy. In this case the 

design requires either larger queues or that the filters be throttled. 

     

Table 5-2 shows various configurations with no throttling. The maximum queue 

size is that required to prevent overflow with very high probability. The utilization 

In this example, priority is 
given to either queue 0 or 
queue 1. 

Throttling mode: stall signal is 
asserted when more than one 
queue is full and priority is given 
to any queue which is full.  

Queue 0 (Full) Select = Queue 0 or 1 
Arbiter 
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is the average fraction of cycles that the force pipelines are busy. “Cell mapped” 

requires smaller queues because it has shorter phases: each filter bank 

processes one reference particle at a time rather than F. Even the largest queues 

require much less storage than the neighborlist queuing method from the 

previous section. 

 

Table 5-2: Queue size requirement and utilization are show for various 
configurations with no throttling.  

 

Number of filters Particle mapping Cell mapping 

6 7 8 9 6 9 

Queue size 10 18 36 80 6 36 

Utilization 69.7% 81.2% 92.5% 99.3% 69.6% 98.3% 

 
 

    We now examine the effect of throttling. In this design, the filters all halt when 

any is in danger of overflow. Since the force pipelines consume every cycle, this 

happens when multiple queues are within one of full.  

    Figure 5-12 shows the effect of queue size, number of filters (queues) per 

force pipeline, and mapping on utilization. Even with over provisioning, utilization 

can be less than 100% because of non-uniformities in arrivals, and because of 

start-up and tear-down effects. The key result is that with slight over provisioning, 

i.e., 9 filters, particle mapped yields 99.2% utilization for a (very small) queue 
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size of 8. Particle mapped is slightly better than cell mapped because of its more 

uniform arrivals and longer phase. 
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Figure 5-12: Graph shows the effect of queue size on utilization for various 
numbers of filters (queues) and mappings of particles onto filters. PM is particle-
mapping and CM is cell-mapping.  
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5.7 Pipeline Throughput Analysis 

Our base design uses reduced filtering, “half-moon” partitioning, and particle 

mapping scheme. For other FPGAs, planar filtering may be preferred. For 

queuing, the method depends on the balance between BRAMs on the one hand 

and logic and DSP units on the other. Queueing full neighbor lists is preferred in 

the Stratix-III SL340 (more BRAMs) while using concentrator-based queuing with 

throttling is preferred in the Stratix-III SE260 (more DSP blocks).  

    With the current implementation, the system performance is determined by the 

following factors as follows. 

 Pipeline efficiency: Queueing entire neighbor lists with double buffering 

would provide almost 100% pipeline efficiency but costly as discussed 

earlier in Chapter 5.6.1. If continuous queuing method were used, the 

efficiency would be lowered with increased numbers of filters. This is due 

to the non-uniformity of match pair arrival during runtime among force 

pipelines. Although each force pipeline processes the same amount of 

particle pairs for a given reference particle on average and can operate 

individually, all pipelines have to be stalled once one of them is required to 

do so.  Increasing queue size would help reduce the frequency of pipeline 

stall and thus improve overall pipeline performance.  
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 Phase efficiency: The number of phases necessary to process the 

particles in a single home cell is 









filtersofnumber

cellinparticles
. The 

performance does not scale linearly with the number of filters or force 

pipelines. For small cells or low-density simulations, the loss of efficiency 

can become significant. There are, however, several reasonable solutions. 

o Instead of processing one reference cell at one time, two home 

cells can be fetched and processed together. This halves the phase 

granularity, and so the expected inefficiency, without significantly 

changing the amount of logic required for the distribution bus. 

o Overlap processing of two home cells. This increases the working 

set from 18 to 27 cells for a modest increase in number of BRAMs 

required. A second distribution bus may be required. 

o Another solution is to over provisioning. Increase the number of 

filters and further decouple neighbor list generation from 

consumption. However, it may impact pipeline efficiency as 

mentioned above if queuing FIFO size is not large enough. The 

reasoning is that as long as the force pipelines are busy, some 

inefficiency in filtering is acceptable. 

 Frequency: Our current implementation on Stratix III runs at ~200MHz 

that can be improved in the later FPGA devices. FPGA operating 
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frequency is strongly correlated to the resource utilization. Higher 

resource utilizations often imply lower operating frequency. In order to 

achieve the optimal system performance, our goal should focus on the 

overall throughput rather than one single factor (e.g., the maximum 

number of pipelines implemented). 

    In summary, the time required to process all particles per step can be 

formulated below. 

frequecncy

effpipelineratiofilterparticleapairsphasesofnumbernumbercell _**** 

  

where “pairs a particle” means the number of match pairs for a given reference 

particle after filtering stage and it is determined by the filtering logic efficiency, 

cutoff radius, and particle density. “Filter-ratio” is the number of filters within a 

filter bank and “cell-number” is the number of cells in MD simulation space. 

“Pipeline_eff” represents the pipeline efficiency, which is correlated to filter queue 

size as discussed earlier. 

5.8 SUMMARY 

We have presented a study of filtering that is the first for FPGA-based 

accelerators and one of only very few for hardware implementations of MD. With 

only a small amount of logic, high quality filtering can be achieved to improve the 

overall system performance. Depending on the configurations of FPGA’s 

hardware resources, two low-cost filtering schemes are available. A new 

partitioning method for optimizing with respect to Newton’s 3rd Law was also 
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presented. This is essential for the design presented here, but could also find 

application in other hardware implementations of MD. The result is that almost a 

6x performance improvement can be achieved over previous FPGA-based 

methods.   

    An important comparison is with Anton, the ASIC-based MD system from D.E. 

Shaw [109] that is designed to support hundreds of MD processor chips. As 

discussed earlier in Chapter 5.3, the reduced-precision filtering scheme was 

implemented in Anton [74]. There are several design differences. For partitioning, 

rather than use either the standard “half shell” method or the “half-moon” method 

proposed here, Anton uses a novel “Neutral Territory” scheme. This especially 

minimizes interprocessor communication costs. Another consequence is that 

fewer filters per force pipeline are needed (normalized for throughput). For 

mapping particle pairs onto force pipelines, Anton uses a scheme similar to the 

“particle mapping” used here. The design choices in Anton are not all preferred 

for single chip FPGA versions (in the current FPGA chip architecture). Some of 

the architectural differences that lead to different design choices are as follows: 

single chip versus multiple chip; limitations of FPGA routing logic and its 

implications in control complexity; and the number and type of the FPGA’s hard 

components, especially BRAMs and multipliers.  
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Chapter 6 System Design and Integration 

The primary goal of this study is to accelerate MD simulations without sacrificing 

simulation quality. We have presented efficient algorithms and explored the 

design space for improving FPGA-based designs. In this Chapter, we will 

illustrate how to integrate our coprocessor design into an MD software package.  

We will also examine the handing of various integration details, including data 

transfers, particle exclusion, and cell-lists. 

6.1 System Architecture 

Our HPRC system consists of a generic host node (e.g., a PC, workstation, or 

server blade) with an accelerator board plugged into a high-speed PCI Express 

socket. The host runs the main application program and communicates with the 

accelerator through function calls. The accelerator board consists of a high-end 

FPGA, memory blocks, and a bus interface. Besides configurable logic, the 

FPGA has dedicated components such as independently accessible multiport 

memories (e.g., 1000 x 1KB) and a similar number of multipliers. The system-

level diagram is illustrated in  

Figure 6-1.  

    The FPGA itself is divided into two main components, the user design and the 

vendor logic. The vendor logic is dedicated to system (non-application) functions, 

such as memory controllers, and occupies about 10%-15% of the FPGA’s logic in 

our implementation. The user design contains the computational engine of our 
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MD accelerator, including control logic, filter banks, and force pipelines. In 

addition to the computational logic, the user design also includes BRAMs, to 

store particle data and forces, and simulation parameters.  

 

Figure 6-1: System architecture of the FPGA-based MD accelerator. 

 
 

    We have implemented our MD design using a Gidel PROCStar III board that 

has features similar to those described above. In particular, it contains three 

memory banks:  one is 256MB (Bank A) while the other two (Banks B and C) are 

2GB.  Particle coordinates and charges are stored in Bank B and particle types 

are stored in Bank C. Bank A is used to collect the computed forces for each 

particle. Coordinates, charges and forces are 32-bit single precision floating point 

numbers. Particle types are represented in reduced precision integer; the 

precision required depends on how many particles are supported in the 
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simulation. One limitation of Bank C is that it only runs at half the frequency 

(167MHz) of Banks A and B (333MHz). It is therefore appropriate to store 

compact data (e.g., particle types) in Bank C to prevent its slow access from 

becoming a critical path. The PCI Express interface is responsible for protocol-

level communication management between the host and accelerator.   

6.2 Integration into the MD code 

From a programming standpoint, NAMD-Lite integration has been straightforward. 

The tasks are as follows:  replacement of the short-range force computation with 

the appropriate accelerator calls, data conversion from double precision floating 

point to single precision and back again, packing and unpacking the data,  

handling particle exclusion, and handling cell-lists.  

    In the following subsections, we will present the control flow between the MD 

software code and our FPGA-accelerated system. We will also describe changes 

to the original software code, including supporting particle exclusion and cell lists. 

6.2.1 Control Flow 
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Figure 6-2 shows the control flow between the MD software code and our FPGA-

accelerated system for the non-bonded short-range force kernel. The left side 

illustrates the procedures executed by the software, while the right side shows 

the steps performed on the accelerator board. 

 

 

 

 

 

 

 

 

 

Figure 6-2: Control flow of non-bonded short-range force kernel on the 
FPGA-based system. 

 
 

Initialize FPGA 

Data preparation 
and conversion

DMA data from host 
to on-board memory

Send “start” signal 
to FPGA

Listen to “done” 
signal from FPGA

DMA data from on-
board memory to host

Data integration 
and conversion

Non-bonded short-
range force kernel

Force 
evaluation 

Particle 
Data 

Send “done” signal 
from FPGA to host 

Wait for “start” 
signal 

Clear caches and setup 
simulation parameters 

done

start 

Overlap with other processes



 142

    When the non-bonded short-range force kernel is invoked, the program first 

initializes the coprocessor by clearing on-board memory and on-chip caches.  It 

then sets up the simulation parameters:  numerical precision, cell size, and cutoff. 

Particle data are prepared and packed.  They are then DMAed to the on-board 

memory banks via the PCI Express bus. After the DMA operations have 

completed, the host issues a “start” signal to hand over the control to the 

accelerator board. Once the “start” signal is received by the FPGA, the controller 

on the FPGA initializes the pipelines and loads data from off-chip memory to on-

chip caches.  Then follows the force evaluations. After all particles are evaluated, 

a “done” signal is sent back to the host and forces are DMAed back to the host.  

They are then merged with other force evaluations (e.g., for bonded forces) 

already computed on the host. The process of force evaluations on the FPGA 

(marked in blue-color) can be overlapped with those executed on the host to 

improve performance. 

6.2.2 Cell Lists 

The method of cell lists has been employed in our MD system to help minimize 

the number of force computations. In each timestep, particles are assigned to 

cells based on their coordinates. In most MD software packages, cell lists are 

implemented with an array of linked lists, where each list corresponds to one cell.  

The lists themselves consist of a series of indices pointing to the particles within 

the cell. When particles move across cell boundaries, the indices “move” as well 

and the lists are updated accordingly. The memory footprint of particle data, 
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however, i.e. coordinates, type, and charge, remains unchanged. This helps 

minimize data movement during simulations because the index is much compact 

than the particle data.  The disadvantage of this method is that random data 

access is required to retrieving a series of particles of one cell:  locality in space 

is not followed by locality in memory. This technique, there, does not align well 

with our FPGA-based implementation. 

    Our design requires that the particle data of one cell be fetchable in parallel 

such that they can be processed by pipelines to achieve the maximum 

throughput. In the worst-case scenario, particles of one cell all reside in the same 

memory segment.  In that case, particle data must be accessed sequentially. In 

any case, the overhead of random data access is such that its latency could not 

be completely hidden. 

    Fortunately, there is an alternative solution that fits our needs. Instead of using 

lists of indices, particles’ are grouped dynamically by cell and stored together in 

particle memory.  This approach was implemented in Gu’s MD design and 

proven to be highly effective [46].  
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Figure 6-3: Cell list representation in FPGA-based implementation. 

 

    As shown in  

 

 

 

Figure 6-3, particles from the same cell (marked in the same color) are grouped 

together in a single segment of particle memory. An element (called a word) of 

particle memory can contain more than one particle. This is to coincide with the 

word size of off-chip memory. In our implementation, the memory word size is 

256-bit while that of particle data is 128-bit (coordinates and charge). Thus, two 

particles are packed together in the same word. The order of cells in particle 

memory is fixed a priori. A two-level index scheme is used to transfer particles 
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from on-board memory to on-chip caches and proceeds as follows. Given a 

particular cell, the cell-list-address is accessed to acquire the starting address of 

that cell in particle memory. The cell-list is also accessed to retrieve the number 

of particle words in that particular cell. With the starting address and the number 

of words, particles can be accessed and loaded from on-board memory to on-

chip BRAMS for force computations. This also allows multiple particles of one 

cell to be fetched simultaneously for higher throughput. Dummy particles are 

padded at the end of the cell in the particle memory when the number of particles 

in one cell does not align with the word size of off-chip memory. The cell-list and 

cell-list address are prepared in the host and then DMAed to the coprocessor. 

The size of the cell-list and cell-list-address are small and therefore can be stored 

in on-chip BRAMs. 

 

6.2.3 Particle Exclusion 

Particle exclusion refers to the necessity of not computing the non-bonded forces 

for bonded particles. One common technique used in software codes is to 

exclude bonded particle pairs based on exclusion pair lists. That is, each particle 

has associated with it a pairlist that contains the particles with which it is bonded. 

The “pairlist” scheme is problematic, however, since it requires a fixed particle 

layout that our cell-list implementation tries to avoid. In addition, exclusion 

pairlists are needed for each particle and the size of the exclusion lists scales 
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linearly with the number of particles. As with neighbor lists, exclusion pairlists are 

not appropriate for large simulations since on-chip caches are usually not large 

enough to store all exclusion pairlists. 

 

 

Figure 6-4: Graph shows van der Waals interaction with cutoff check with 
saturation force. 

    To support exclusion, our solution is to apply a short cut-off to the non-bonded force 
calculations based on the fact that two non-bonded particles generally cannot be too close 
to each other (the atomic radius). Therefore, two particles within a certain short distance 
must be bonded. The short cut-off distance can be easily calculated by solving the 
inequality Fshort < range, where range is the dynamic range with a reasonable force value 

[46]. The left-side term of the inequality is dominated by the 14 term, 
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. Multiple short 

cut-off values are required as this value depends on the particle type. A simple graph is 
shown in  

Figure 6-4 to demonstrate this concept [18].  
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exclusion cutoff should be chosen such that it can be represented precisely in both 
formats.  Then a saturation force is applied if the intra-distance between two particles is 
smaller than the exclusion cutoff, as shown by the horizontal blue line in  

Figure 6-4. Another enhancement is to scale the saturation forces down with 

distance, as shown by the red diagonal dashed line. This can help avoid overflow 

in the force accumulation step and improve accuracy.  

    The choice of exclusion cutoff influences the precision of force accumulators. 

Since saturation forces often have large values, large precision would be 

required to avoid overflow. It also affects the simulation quality since large false 

forces would overwhelms the real ones. Therefore, multiple exclusion cutoffs 

would be required for various particle types and careful evaluation is essential. 

6.3 Memory Management and Data Transfer 

In this section, we describe how data are transferred between host and 

accelerator and between off-chip and on-chip memory. Details of transfers from 

stage to stage are presented in the succeeding subsections. 

6.3.1 Accumulating and Combining Accelerations 

In our current MD implementation, the final processing steps are accumulating 

and combining the accelerations generated by the force pipelines. Unlike position 

data, which is read-only, acceleration data is read/write. That is, during the 

processing of a home cell, each particle’s acceleration accumulates over this and 

other cells in the cell set; it is not complete until all 27 cells in the neighborhood 

have taken a turn as the home cell. Thus for each new home cell, the running 
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total of accumulated accelerations of the cell set are read onto the chip in a way 

analogous to the position data.  

    One design constraint is that each force pipeline handles at most a small 

number of reference particles Pi at a time. This enables the total forces on the 

Pis to be accumulated in registers. Accumulating the mutual forces on the Pis’ 

N3L partner particles (the Pj s), however, is more complex as their positions span 

the cell set. To prevent BRAM access contention, the following strategy is used. 

Partner updates are written to BRAMs that are associated uniquely with each 

force pipeline. When processing of a home cell is completed, the partner data 

from the various pipeline-specific BRAMs are merged [17]. 

 

 

 

 

Figure 6-5: Mechanism for accumulating per-particle force. The logic of a single 
pipeline for both reference and partner particles is shown. 

 
 
    This method is depicted in  
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Figure 6-5. The running accumulation for a single pipeline during cell processing 

is shown. We describe this for particle mapping; cell mapping is analogous (see 

Chapter 5.5). Recall that each of the Nforce force pipelines has Nfilters filters and 

that each filter processes a unique reference particle at a time. Also that 

reference particles are always from the home cell, but that partner particles come 

from the entire cell set. For each force pipeline there are Nfilters accumulators for 

the Nfilters reference particles being processed at a time. There are also Nforce 

force caches, one for each pipeline. Each force cache has an accumulator for 

each particle in the entire cell set. 
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Figure 6-6: The approach of how forces are accumulated across multiple 
pipelines is illustrated. 

 

    Processing proceeds as follows. A new home cell and its accompanying cell 

set (positions and accelerations) are loaded. From the home cell, a cohort of 

reference particles is loaded into the filters. Forces are now computed with 

respect to all of the cell set particles and sent to the accumulators. Each force 

(for particle pair i, j) is added to both the register corresponding to reference 

particle i and to the jth slot in that force pipeline’s force cache. The accesses to 

the force cache BRAMs are pipelined: the js are sent a few cycles ahead so that 

the current accumulated values are available “just in time.” When the cohort of 

reference particles has been processed, the reference particle accumulators in 

the force array are combined with those in the force cache. When the home cell 

has been processed, the Nforce force caches are combined. The concept is 

illustrated in  

 

 

Figure 6-6.  The basic design was first appeared in Gu’s design [46]. This 

operation is performed during swapping out, so its latency is completely hidden.  

6.3.2 FPGA-Board Data Transfer 

In order to support a large MD simulation where on-chip memory is not sufficient 

to accommodate all particle data, off-chip memory utilization is unavoidable. 
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Dynamic particle data--including coordinates, charges, accelerations, and types-- 

are updated periodically and can reside in off-chip memory. Static computational 

parameters, such as interpolation coefficients, type-related constants, and cell 

lists, which are required during an entire process, can be stored in on-chip 

memory [46].  
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Figure 6-7: Datapaths between off-chip memories, on-chip caches and force 
pipelines. 

    The bandwidth of off-chip memory, however, may not be large enough to 

directly feed particle data into force pipelines. Fortunately, an efficient technique 

has been developed to overcome this lack by taking advantages of spatial and 

temporal locality. With the techniques of the cell-lists and cutoff radius, for each 

iteration, particles are grouped by cell and only interact with the ones residing in 

their neighboring cells. Hence, only small amounts of data need to be loaded into 

on-chip memory. Figure 6-7 shows the datapaths between on-board memories, 

on-chip caches, and force pipelines. Two sets of caches, cache 0 and cache 1, 

enable double buffering.  Each set has POS and ACC caches which hold particle 

data (coordinates, charges, and types) and acceleration (or force) respectively. 

POS caches are read-only whereas ACC caches are both read and write. While 

one set of caches is swapping data with on-board memories, the other one is 

cooperating with pipeline logic to evaluate pairwise interactions.  

    An example is illustrated in Figure 6-7. POS cache1 (marked in orange color) 

loads the particle data of the next cell set, while ACC cache1 (marked in orange 

color) flushes the computed forces of the previous cell set and merges them with 

those stored in ACC on-board memory. After all of the results in ACC cache1 are 
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flushed, ACC cache1 is reset to zero. POS and ACC cache0 (marked in blue) 

work with the force pipelines to compute forces between particles. The computed 

forces from the pipelines are accumulated with together with the partial results 

stored in ACC cache0.  

    Another observation is that for a given system where the average number of 

particles per cell is N, the cost of accessing data is )(NO  while the cost of 

processing them is )( 2NO . The relative time ratio is about )(NO . Thus, a “double-

buffering” scheme which overlaps data communications and force computations 

can hide the communication overhead and avoid pipeline stalls.  

6.3.3 Host-Accelerator Data Transfers 

At the highest level, processing is built around the timestep iteration and its two 

phases: force calculation and motion update. During each iteration, the host 

transfers position, type, and charge data to, and acceleration data from, the 

coprocessor’s on-board memory (POS SRAM and ACC SRAM, respectively) via 

PCI Express bus. The data transfer between the host and accelerator is done 

through vendor DMA function calls.  

    The conversion of data format would be required since most of MD software 

implementations use double-precision floating point format while single-precision 

is used in our coprocessor design. The data conversion is performed in the host 

before transferring them to on-board memory. This results in a more compact 

data size and thus reduces DMA time. Another alternative method is to perform 
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data conversion on-the-fly while transferring data to on-board memory. This 

helps save the conversion time in the host but is not currently supported by our 

board vendor. 

    With 32-bit precision, 32 bytes are transferred per particle. While the phases 

are necessarily serial, the data transfers require only a small fraction of the 

processing time. For example, in Chapter 7 we described how the short-range 

force calculation takes about 56ms for a 92K particle benchmark and increases 

linearly with particle count through the memory capacity of the board. The 

combined data transfers of 3MB take only 6-7ms. Moreover, since simulation 

proceeds by cell set, processing of the force calculation phase can begin almost 

immediately as the data begin to arrive. 

6.4 Summary 

In order to impact and benefit MD user community, integrating our FPGA-

accelerated design into MD software codes is essential. Although the tasks of 

MD software integration are relatively straightforward from the programmer point 

of view, it requires additional design changes to the original software codes and 

some detailed design considerations. Care must be taken that efficient and 

smooth data transfer between various interfaces can be achieved. Otherwise, the 

advantage of accelerator would be lost. Sometimes, design changes are not 

trivial and may require elaborate changes to the original code. Our ultimate goal 

is to align the application with our accelerator precisely for gaining the best 

overall performance. 
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Chapter 7 Results 

In this Chapter, we present the results of our FPGA accelerated system from two 

perspectives, performance improvement and simulation quality. For performance, 

we concentrate on the nonbonded short-range force kernel. Computation time of 

various implementations is measured and compared with that of a serial 

reference code:  NAMD. For simulation quality, the total energy of the MD system 

is plotted and examined to see if there is a significant divergence. 

    The rest of this Chapter is organized as follows: First, we evaluate the force 

pipelines proposed in Chapter 4. We do this first for resource utilization and then 

performance enhancement. Next, the total energy of various MD-FPGA systems 

is plotted for quality assurance. We also present a preliminary study on scalability 

to demonstrate performance potential of our MD system. We end by providing a 

brief discussion of FPGA development cost and portability. 

7.1 Experiment Platforms 

Our FPGA-MD accelerator has been successfully integrated with NAMD-Lite. As 

described in Chapter 3, the main features of NAMD-Lite are its great flexibility 

and ease of use for the development of new methods and algorithms. But 

although NAMD-Lite is sufficient to be used for examining simulation quality, it is 

not a proper candidate for performance comparison due to its serial 

implementation. To demonstrating the highly competitive capabilities of our MD 
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accelerator, the performance was measured by extracting timing data of 

nonbonded force kernel via NAMD-Lite and then comparing them with those 

reported by highly optimized MD packages, NAMD and NAMD-GPU. 

    We refer to the NAMD benchmark, NAMD2.6 on ApoA1. It has 92,224 

particles, a bounding box of 108Å × 108 Å × 78 Å, and a cut-off radius of 12 Å. 

Coulomb force is evaluated with PME scheme. A switching function is applied to 

smooth out LJ force when the intra-distance of particle pairs is between 10 and 

12 Å. According to a study by Stone, et al. [117], for nonbonded short-range 

force, this benchmark is executed in 1.78 seconds per iteration on a single core 

of an Intel core 2 quad-core 2.66 GHz processor. 

    Our base design uses reduced filtering, “half-moon” partitioning, particle 

mapping, and has eight filters per force pipeline. For other FPGAs, planar filtering 

may be preferred. For queuing, the method depends on the balance between 

BRAMs on the one hand and logic and DSP units on the other. For the Stratix III 

SL340 (more BRAMs), queuing full neighbor lists is preferred. For the Stratix III 

SE260, using concentrator-based queuing is preferred. 

    Our FPGA design was implemented on the Gidel PROCStar III board, which 

has four Altera Stratix III SE260 FPGAs and a total of 18 GB of on-board DDR 

memory. The board is housed in a Dell Precision T3400, which has an Intel 

Core2 Duo 2.8 GHz microprocessor and 2 GB RAM. Only one core is used to 

execute NAMD-Lite program. The interface is a PCIe x 8 slot. All simulations are 

performed in a 32-bit Window XP environment. 
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7.2 Performance Experiments 

Resource Utilization 

Performance is directly related to resources consumed. Both are shown Table 

7-1. LUTn means that both the LJ and short-range part of electrostatic force were 

evaluated with Look-Up Table (LUT) interpolation of order n and 256 intervals per 

segment. DC indicates that the LJ force was computed directly while the short-

range part of the electrostatic force was computed with third order LUT 

interpolation. The latter is due to the expensive “erfc” function as described in 

Chapter 4.3. 

    All designs have been implemented and run on an FPGA of the Gidel board. 

Time is per iteration. We note that the number of pipelines increases from 4 to 5 

to 6 to 7 with interpolation order 2, 1, and 0, respectively. According to the quality 

analysis in Chapter 4.4, the six-pipeline design with 1st order interpolation is 

likely to be preferred. LUT0 timing is not reported since the energy drifts 

unacceptably during MD simulation as shown in Figure 4-12. This design 

increases performance by almost 50% over direct computation. The resource 

utilization results indicate that the limiting factor is the logic. This is used mostly 

for registers. An interesting observation is that the number of bins is not a major 

concern and could be doubled if needed to achieve better simulation quality 

without reducing the number of pipelines [20]. 
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    We have also synthesized the designs with respect to the Stratix IV SE530 

(post place-and-route) and the results are shown in Table 7.2. After optimization, 

we anticipate achieving an operating frequency similar to that for the Stratix III. 

We expect a nearly proportional increase in performance resulting in a time per 

iteration of about 30 ms. 

Table 7-1: Resource utilization and performance of various pipeline 
configurations on Stratix III SE260 (bin/segment = 256, running @ 200MHz) 

 LUT0 LUT1 LUT2 DC 
Multipliers 67% 63% 66% 68% 
Logic (LUT/Register) 87% 88% 85% 94% 
BRAM (M9K) 89% 86% 89% 62% 
BRAM (M144K) 87.5% 75% 62.5% 50% 
Number of Pipeline 7 6 5 4 
Timing (ms) NA 54 63 72 

 
 

Table 7-2: Resource utilization and performance of various pipeline 
configurations on the Stratix IV SE530 (bin/segment = 256; Post Place-and- 
Route results reported by Altera Quartus 9.1) 

LUT0 LUT1 LUT2 DC 
Multipliers 76% 87% 98% 100% 
Logic (LUT/Register) 69% 75% 78% 86% 
BRAM (M9K) 98% 98% 95% 67% 
BRAM (M144K) 100% 100% 94% 75% 
Number of Pipeline 12 11 10 8 

 

    Hardware resources for various generations of Stratix FPGAs are highlighted 

in Table 7-3 as well as plotted in Figure 7-1 for better illustration. For the Stratix 

IV, although logic elements and memory double for each process generation, the 

performance is limited by the number of available hard multipliers; these have not 

scaled with process technology. Compared with the Stratix III and IV, Stratix V 
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FPGAs have large variations in component resources across the family of chips. 

Depending on the critical component of the specific family member, the 

performance could vary dramatically. For example, although the Stratix V 5SEEB 

has abundant logic and memory resources, the performance is expected to be 

the same as that of Stratix III due to the small number of hard multipliers. In 

contrast, the Stratix V 5SGSD can fit 3 times as many pipelines as the Stratix III.  

    As discussed in Chapter 4, FPGA resources have a crucial influence on our 

implementation. One example is that the planar filtering scheme would be 

favorable for Stratix V 5SEEB where the performance is mainly limited by 

multipliers. Another design consideration is the trade-off between the 

interpolation order of the LUTs and the number of interval per segment; this 

depends on the availability of logic elements, multipliers, and BRAMs. For a 

given numerical precision, a LUT with high interpolation order (more logic and 

multipliers required) and few intervals (few BRAMs) may yield the same 

simulation quality as one with low order paired with large intervals. By taking 

advantage of FPGA BRAM architecture and providing flexible design choices, 

our MD design delivers promising performance on various FPGA configurations 

and newer chips. 

 

 

 



 160

Table 7-3: Altera Stratix FPGA resource overview 

 Stratix III 
SE260 
(65nm) 

Stratix IV 
SE530 
(40nm) 

Stratix V 
5SEEB 
(28nm) 

Stratix V 
5SGSD8  
(28nm) 

Equivalent Logic (K) 203 531 950 703 
18 x 18 multiplier 768 1024 704 4096 
Memory (Mb) 14.7 20..7 52 55 

 
 
 

 

Figure 7-1: Component resources of various FPGAs 

 

Performance Enhancement 

A performance profile of our FPGA accelerator is shown in Table 7-4; the details 

are now described. Here, we focus on the nonbonded short-range force kernel 

and our base design consisting of six force pipelines on a single FPGA, each 

with 8 filters, and running at 200 MHz.  
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Table 7-4: Time profiling of FPGA design (Stratix III ES3SE260, ~200MHz) 

 Data 
preparation 

Host to 
FPGA 

FPGA 
Computation 
(6 Pipelines) 

FPGA to 
Host 

Force 
Integration

Time (ms) 4.8 5.5 54 1.3 2.2 

 

 Data preparation 

Proper data conversion and restructuring are needed before data transfer. 

Double precision format is used by many MD software codes, whereas 

single precision is used in our FPGA implementation. Thus, data 

conversion is required and performed on the host. An alternative is leaving 

data conversion to FPGAs. Although it is possible and can shorten data 

conversion process, it would double data transfer time and storage 

requirements.  

    Since our MD implementation uses cell-lists, particles are grouped 

together based on their cell index before being transferred to the FPGA 

board. In addition to particle information (coordinates, charge and type), 

the cell-list table is also required for data retrieval. 

 Communication 

Communication operations include two-way data transfer, upload (from 

the host to FPGA board) and download (from FPGA board to the host). 

Upload transfers particle data (coordinate, charges, and types) and cell-list 

tables to FPGA DDR memory. Download delivers the computed forces 
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from FPGA to host. In our experiments, download is much faster than 

upload for two reasons. One is the less data is required; the other is that a 

faster download speed is supported by the vendor. 

 FPGA Computation 

 This represents the time the FPGA accelerator takes.  

 Force integration 

Nonbonded short-range forces evaluated by FPGAs have to be integrated 

with others computed on the host, i.e., bonded forces and the long-range 

part of electrostatic force. Since the computed force by FPGAs is single 

precision, data conversion is also required. 

    Figure 7-2 shows the performance of various FPGA implementations over 

NAMD running on a single core (called NAMD-CPU). The NAMD ApoA1 

benchmark is used for performance evaluation. NAMD-GPU was illustrated for 

further comparison and its performance speedup is compared to NAMD-CPU as 

well. For the nonbonded short-range force kernel, Stone, et al. [117] reported that 

this benchmark was executed at 1.78 seconds per iteration on a single core and 

0.2 seconds per iteration on a single NVIDIA GeForce 8800 GTX board. It was 

reported that GPU performance outpaced CPU by 9x. 

    NBF represents the speedups of the nonbonded force (NBF) kernel only. Total 

includes communication overheads, data preparation, and force integration as 

described above. The number on top of each column bar represents the 
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speedups over a single-core CPU reference model (NAMD-CPU). For our 

preferred MD design (LUT1), an overall speedup of 26x was obtained over single 

core NAMD implementation and 3x over a single GPU implementation. If the 

computational costs on the host (0.16 second per core) remain fixed, our single 

FPGA implementation can execute 0.38ns simulation per day.  

 

 

Figure 7-2: Performance speedups of various implementations 

 

    As illustrated in Figure 7-2, NBF performance scales almost linearly with the 

number of force pipelines. The overall performance does not due to extra 

overheads. One way to minimize the negative impact from overhead is to overlap 

the short-range force computation with host work. This code must now be 

parallelized to keep it off from the critical path. Also essential, as for all 
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accelerators, is efficient communication between host and coprocessor. For 

simulations of less than a few hundred thousand particles, a conventional I/O bus 

interfaces should be sufficient. 

7.3 Simulation Quality Experiments 

In order to validate and measure quality of our FPGA design, energy was plotted 

as a function of time (see Figure 7-3). In particular, we observe how energy is 

conserved for various implementations. The result labeled NAMD-Lite is from 

code running on the processor only and used here as a reference. The other 

results have the short-range forces computed on the accelerator using table look-

up with polynomial interpolation with the order as shown. The time scale is in 

increments of 100fs.  The time step is 1fs. 

    The main goal of examining energy over time is to ensure that there are no 

significant errors existed in our algorithms and implementations. As shown in 

Figure 7-3, there is no noticeable drift.  Using Equation 4-13 to compute E  we 

find that the values for all of the FPGA-accelerated codes are smaller than1.0E-4, 

which is much smaller than the suggested value, 0.003 [107].  

    These results are preliminary and the time scale may be too short to establish 

final conclusions. Still we find these results promising: an implementation with 1st 

and 2nd order polynomial interpolation could have good energy stability. The 

difficulty in generating longer time-scale simulations is that NAMD-Lite is an un-
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optimized serial code and so each of these graphs takes several hours or even 

days to generate.  

 

Figure 7-3: Graph of energy plot for various Implementations 

 

    Although our focus is energy conservation of various implementations, we 

noticed that there is a small divergence (0.02%) between FPGA implementations 

and NAMD-Lite as shown in Figure 7-3. We attribute it to the following reasons.  

 Numerical Precision and Arithmetic 

Double precision is used in NAMD-Lite to avoid cumulative rounding 

errors in long simulations and minimize the impact of non-associativity in 
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floating point arithmetic. In our MD accelerator, mixed-precision 

manipulation (fixed-point and single precision) is adopted for resource 

constraint and performance. This reduction in precision, however, may 

cause variation from the original software. 

 Floating Point Compiler 

As described in Chapter 4, the Floating Point Compiler may cause 

different results from the software codes. This is mainly because of the 

integer format used internally for resource reduction and performance 

improvement. 

 Particle Exclusion  

Currently, a saturation force is applied to particles if the intra-distance 

between two particles is smaller than the exclusion cutoff. Since the 

exclusion cutoff has to be chosen conservatively to guarantee that two 

particles are bonded as long as long as their intra-distance is smaller than 

the exclusion distance, the saturation forces are sometimes relatively 

large compared to the real ones. Those large “false” forces can 

overwhelm the real small ones and result in the loss of precision. One 

enhancement is to have an accumulator with more precision.  
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7.4 Scalability and Extensions 

The performance results reported above are referred to a single FPGA 

implementation. In this section, we present a preliminary study of the scalability 

and extensions of our MD FPGA accelerator to demonstrate the potential 

performance enhancement.  

Scaling to Multiple FPGAs 

Figure 7.4 shows the performance numbers of multiple FPGAs implementations. 

Our design contains six force pipelines of LUT1 implementation on an FPGA, 

each with 8 filters, and runs at nearly 200 MHz. All performance numbers are 

compared to NAMD-CPU reference model with NAMD ApoA1 benchmark. As 

illustrated in Figure 7.4, the performance scales linearly with the number of 

FPGAs. Here we only present the speedup of nonbonded short-range force (NBF) 

computation. Overheads are excluded. Although the overall performance 

improvement would be reduced when taking overhead into account, it is sufficient 

to demonstrate the good scalability of our MD design. 

Extensions 

For other MD simulations having similar particle density, the FPGA performance 

scales linearly with the number of particles up to the memory capacity of the 

FPGA board, or several tens of millions particles. For simulations having much 

lower density, transfer of cell sets on/off chip becomes the bottleneck. This 

limitation, however, is a function of current HPRC systems rather than the 
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FPGAs themselves. Most current HPRC board designs use only a small fraction 

of the FPGA’s available bandwidth. 

 

Figure 7-4: Performance speedups of multiple FPGAs (nonbonded short-
range force only) 

 
 

7.5 Power Performance Analysis 

We have presented the performance enhancements of our MD accelerator over 

microprocessors and GPUs. In this section, we examine an additional metric, 

energy efficiency. 

    FPGAs are commonly regarded to be very power efficient. A high-end FPGA 

chip typically consumes  at most 20-30 watts. Novo-G reports indicate that each 

FPGA of a single node consume less than 20W [90]. With the same benchmark  

[117], a single NVIDIA GeForce 8800 GTX dissipates about 185 watts and an 

Intel Core 2 Extreme QX6700 quad core CPU dissipates 130-watts. 
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Figure 7-5: Energy-efficienct performance comparison 

 

    The performance per watt for two implementations is plotted in Figure 7-5. The 

performance-per-watt metric is defined as computational time times the power 

rating.  The reference is the CPU-based model. The computational speedup is 

also shown as a comparison. As stated earlier in Chapter 7.2, we only focus on 

the non-bonded short-range kernel and omit the bonded force calculation and 

motion integration.  Those are left to the host and only occupy a small amount of 

the entire computation. As illustrated in Figure 7-5, FPGA demonstrated the best 

performance in term of computation-to-watt. Although GPUs provide massive 

computational power, their comparative power-hunger lessens their advantage. 
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    Although the results shown above are approximated and preliminary, they 

serve as a good indicator of the performance benefits of FPGAs over CPU or 

GPU-based implementations. 

7.6 Development Cost and Portability 

Compared with CPU and GPU implementations where highly efficient and 

mature tools are available and the interfaces are well defined, FPGA-based 

design often involves the manipulation of cumbersome low-level hardware 

description language and management of non-standard IO interfaces and 

protocols. Thus, the development cost of FPGA accelerated solution is relatively 

high in term of designer hours. It is also worth noting that although CPU-based 

implementation is relatively cost effective, developing efficient multi-core version 

may not be straightforward for some applications. 

    In order to be competitive with multi-core and GPU implementations, the 

design models have to be ported into the newer devices every few years. Two 

types of tasks, design model replication and board level integration, are involved 

during the porting process and are now described. 

Design model replication 

Porting FPGA design to newer chips mainly involves the task of maximizing the 

number of pipeline replications. With pipeline parallelism and multiple design 

options, our MD accelerating system provides easy design scaling as well as 

maximization of replications.  
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Board level integration 

As long as the board vendor remains unchanged, integrating FPGA designs into 

a newer board would be relatively straightforward. Otherwise it is a non-trivial 

work. Every board vendor develops different interfaces and protocols that aim to 

meet various design goals. This non-standardization of interfaces results in 

significant effort.  Changes in interface logic and software would be required to 

move the FPGA designs from one vendor’s products to another.  

    From our experience, board level integration is the most timing consuming 

task during the development process. Due to the unfamiliarity of vendor interface 

logic and lack of interface simulation models, it makes our integration work 

challenging, especially for hardware and interface debugging.  

7.7 Summary 

We have summarized the results of our MD implementations and validated our 

designs with respect to energy conservation and fluctuation. Our MD accelerator 

can execute the short-range force for the ApoA1 benchmark in under 70 ms. This 

represents a 26-fold per core speedup for the computational kernel. Since NAMD 

scales well, this represents 6.5x speed-up on a quad core implementation. While 

this benchmark result is a little dated, its microprocessor is comparable in 

process technology to the Stratix-III that we use here. 

    We validated our designs by inspecting energy fluctuation and drift. 

Preliminary analysis showed that the total energy is preserved in our designs. 
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The development cost and challenges were also addressed briefly to reflect our 

views of FPGA-based implementations. Finally, we presented a discussion about 

how our design scales to multiple FPGAs and newer devices. Although it is still 

preliminary, it shows the potential of scalability and proves that our design 

continues being promising as the technology progresses.  
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK 

We conclude this thesis by summarizing the work performed in this study and 

presenting a discussion of how we plan to extend our MD-HPRC work. We also 

list some lessons we have learned.  

8.1 Summary 

In this research, we have presented a new implementation of MD for FPGA-

based accelerators. We have thoroughly explored the design space of force 

pipeline implementations with respect to both performance and numerous 

measures of quality. We have presented a study of filtering that is the first for 

FPGAs and one of only very few for hardware implementations of MD. The 

results show that FPGAs are highly competitive with respect to the short-range 

force computation in MD simulations. 

    We summarize the results for the force pipeline. We found that look-up table 

interpolation is somewhat favorable to direct computation for supporting various 

simulation configurations and complex function implementations. Other results 

are a demonstration of the Altera Floating Point Compiler, and numerous 

observations with respect to datapath design parameters. The most important of 

these is probably that simulation quality of the single precision and hybrid (fixed 

point/single precision) implementations is comparable to that of full double 

precision. 
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    In the filtering part of this study, we find that high quality filtering can be 

achieved with only a small amount of logic. We present a geometric filtering 

scheme that is preferable for FPGA implementation. We also present a new 

partitioning method for optimizing with respect to Newton’s 3rd Law. This is 

essential for the design presented here, but could also find application in other 

hardware implementations of MD. And finally, the scheme of mapping particle 

pairs to filter pipelines also appears to be new. 

    We have successfully integrated our FPGA design into NAMD-Lite and this is 

now running on a workstation containing a single node of the Novo-G, a 

supercomputer that consists of 192 Stratix-III ES260 FPGAs and [90]. We also 

conducted performance measurement and quality evaluation. Our accelerator 

system demonstrated that significant performance enhancement is achieved and 

HPRC is promising for MD applications.  

8.2 Lessons learned 

Some lessons have been learned through the process of accelerating MD 

simulations and are summarized as follows. 

 Algorithm reconstruction is essential 

Direct mapping of software serial codes to FPGAs often results 

unoptimized implementations. Application specific optimizations, including 

hardware architecture and algorithm restructure, and proper data 
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formatting and restructuring, is crucial for obtaining competitive 

performance. 

 Precision management is required for high performance and quality 

Although current FPGAs have shown significant floating point 

computational capability, proper precision management is crucial for 

achieving high performance. It helps reduce hardware resource utilization 

and enables more coarse-level parallelism. 

 High performance comes from high throughput 

Although achieving high utilization of the FPGA resources is important, the 

key for high performance computing is the throughput that is measured by 

the amount of work completed within a given time. High resource 

utilization often reduces the operation frequency due to routing congestion. 

Finding the optimal point between the resource utilization and operating 

frequency is an important factor in creating successful designs. 

8.3 Future Directions 

We now list some of possible future work. 

8.3.1 Design Node Optimization 

We have presented a complete MD accelerator system that delivers outstanding 

performance speedups. There is still room for further optimization.  
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 Performance 

The current FPGA system (Stratix III based board) where our system is 

implemented is two generations old. Porting our design into a newer 

device (Stratix IV or V) allows exploiting more coarse-level parallelism as 

well as boosting the operating frequency. For example, from the analysis 

shown in Table 7.2, integrating our system to the latest FPGA would 

nearly double performance if the same frequency is maintained. 

    As described in Chapter 5.7, one potential issue of the current filter 

implementation is fragmentation. It will become a performance limit when 

the number of force pipelines is more than 12. Several solutions were 

proposed in Chapter 5.7 to improve filter phase efficiency.  

 Quality 

The initial measurements of simulation quality indicated that our FPGA-

based approach is viable, although more testing are needed. Longer 

simulations are essential to evaluate the overall design quality and provide 

more data for design optimization and turning.  

 Extendibility 

Our current FPGA accelerator is currently working with NAMD-Lite, a pilot 

program of popular MD program, NAMD. In order to benefit the user 

community, the integration to NAMD is essential. The tasks mainly involve 
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the data restructure, generation of cell-list tables, efficient communication 

between the host and FPGA board, and exclusion of bonded particle pairs.  

8.3.2 System Level Parallelization 

We have focused on the short-range non-bonded force computation and 

associated overhead. We now examine our work for HPRC MD simulations as a 

whole. There are typically three other significant computations in MD simulations: 

bonded forces, long-range non-bonded forces, and motion integration. Bonded 

forces and motion integration are generally computed every timestep while the 

long-range force may be computed every fourth timestep or even less frequently. 

According to Amdahl’s law, the overall performance of our MD system will be 

constrained by the kernels that are not accelerated. Hence, one reasonable 

solution to keep improving performance is outsourcing certain tasks to the 

coprocessor such that they can be removed from the critical path. For example, 

based on NAMD profiling, the long-range force using PME takes over 200ms [96] 

and can be accelerated with either GPUs or FPGAs. Hardy et al. have 

demonstrated a GPU version with speed-up of over 20x [54] for electrostatic 

energy evaluation. 

    Another direction of extending our work is to scale our design to multiple 

FPGAs and use them as coprocessors in parallel systems. Our preliminary study 

has shown the linear scalability of our MD accelerator for the nonbonded force 

kernel. Integrating MD accelerators to parallel systems would be reasonable with 
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some work necessary for performance tuning and system integration.  One 

common challenge in creating parallel systems is the communication overhead. 

For example, the 3D FFT used in PME requires massive all-to-all data transfers. 

A way to overcome this problem is utilizing the overwhelming computational 

power of FPGAs [16, 17, 46, 49], which enables to perform large-scale 

simulations using relatively smaller number of nodes, resulting in reduced 

communication for the 3D FFT. Data transfers can be further minimized by 

employing direct communication among FPGAs themselves, bypassing the host 

CPUs. 
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