
 1

Implementation Issues of Building a Multicomputer on a Chip

A Thesis

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in Electrical Engineering

by

Chaitanya Adapa

August 2001

 2

Implementation Issues of Building a Multicomputer on a Chip

Chaitanya Adapa

Approved:

Committee Members:

 Chairman of the Committee
Martin Herbordt, Associate Professor,
Electrical and Computer Engineering

Pauline Markenscoff, Associate Professor,
Electrical and Computer Engineering

Jaspal Subhlok, Associate Professor,
Computer Science

E. J. Charlson, Associate Dean,
Cullen College of Engineering

Fritz Claydon, Professor and Chair
Electrical and Computer Engineering

 3

Acknowledgements

Special thanks and gratitude to my advisor Dr. Martin Herbordt for his guidance,

friendship without which this thesis would not be possible. Special thanks to Dr. Pauline

Markenscoff and Dr. Subhlok for serving on my committee. This research was supported

in part by the National Science Foundation through CAREER award \#9702483 and by

the Texas Advanced Technology Program under grant 003652-0424.

 v

Implementation Issues of Building a MultiComputer on a Chip

An Abstract of

of a

Thesis

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in Electrical Engineering

by

Chaitanya Adapa

August 2001

 vi

ABSTRACT

Availability of highly dense chips has made systems-on-a-chip a reality. In this context,

systems with multiple processors are being built on a single chip to achieve higher

performance. With the availability of freely distributed Intellectual Property (IP)

processor cores and related tools, it is possible for university projects such as ours to

engage in this type of system development. We have built fine-grained, highly parallel,

virtual multicomputers-on-a-chip using IP cores to establish this proof-of-concept. We

have established an evaluation methodology whereby the various architectural tradeoffs

in this class of designs can be examined. The functionality of individual components and

several systems as a whole are verified using commercial simulation tools. Sample area

and timing results that were generated using commercial synthesis tools have indicated

possible physical implementations of multicomputers-on-a-chip.

 vii

TABLE OF CONTENTS

ABSTRACT vi

LIST OF FIGURES x

LIST OF TABLES xii

1. INTRODUCTION 1

1.1. Motivation 1

1.2. Objective 1

1.3. Context 2

1.4. Design Criteria and System Specification 3

1.5. Design Methodology and Flow 4

1.6. Results Overview and Significance 5

1.7. Thesis Outline 6

2. BACKGROUND 7

2.1 Multicomputer Systems 7

2.1.1 Network Interface Design 8

2.2 Communication Network Design 9

2.3 Integrated Circuit Design 10

2.3.1 ASIC Design Flow 11

2.3.2 Design Methodology 13

3. DESIGN SPACE 14

3.1 Assumptions and Parameters 14

3.1.1 Processor Evaluation 14

 viii

3.1.2 RISC8 16

3.1.2.1 Features 16

3.1.2.2 Block Diagram 17

3.1.3 LEON 18

3.1.3.1 Features 18

3.1.3.2 Block Diagram 18

3.1.3.3 Previous Implementations 19

3.1.4 Network Interface 20

3.2 The Multicomputer System 22

4. IMPLEMENTATION ISSUES 24

 4.1 RISC8 24

4.1.1 Implementation-1 24

4.1.2 Implementation-2 26

4.2 LEON 27

4.3 Network Interface Design 28

4.3.1 RISC8 28

4.3.2 LEON 31

4.4 Communication Network 33

4.4.1 Functional Description 33

4.4.2 Interface Signals 33

4.5 The Multicomputer System 34

5. EXPERIMENTS AND RESULTS 37

5.1 Simulation Results 37

 ix

5.1.1 RISC8 37

5.1.1.1 Apparatus 38

5.1.1.2 Experiment-1 39

5.1.1.3 Experiment-2 44

5.1.1.4 Multicomputer Configuration using RISC8 48

5.1.2 LEON 63

5.2 Synthesis Results 66

5.2.1 Technology Libraries 66

5.2.2 RISC8 67

5.2.3 LEON 69

5.2.4 Discussion 72

6. CONCLUSIONS 73

REFERENCES 75

APPENDIX 76

 x

LIST OF FIGURES

Figure__ Page

1.1 Design Flow 5

2.1. ASIC Design Flow 12

3.1. Block Diagram of RISC8 17

3.2. Block Diagram of LEON Processor Core 19

4.1. Block Diagram of Implementation-1 of RISC8 25

4.2. Block Diagram of Implementation-2 of RISC8 26

4.3. Network Interface for RISC8 in a Multicomputer Configuration 30

4.4. The Multi-Computer System 35

5.1 Multiprocessor Configuration using RISC8 37

5.2 Multiprocessor Configuration for Experiment-1 39

5.3 Simulation Result-1, Experiment-1 40

5.4 Simulation Result-2, Experiment-1 41

5.5 Simulation Result-3, Experiment-1 42

5.6 Simulation Result-4, Experiment-1 43

5.7 Multiprocessor Configuration for Experiment-2 44

5.8 Illustration of Moving Average Window Problem 45

5.9 Simualtion-1, Experiment-2 47

5.10 Simualtion-2, Experiment-2 48

5.11 Timing Diagram illustrating send sequence 51

5.12 Timing Diagram illustrating the read sequence 53

5.13 Depicts the path taken by four packets from node 0 to node 49 54

 xi

5.14 Final Destination of Packets 55

5.15. System testing, header flit formation 61

5.16. System testing, tail flit formation 61

5.17. System testing, packets reaching destination 62

 xii

LIST OF TABLES

Table __ ______Page

3.1. Processor Evaluation 14

3.2. Previous Implementations of LEON 19

4.1 Expansion Interface Signals 29

5.1. Technology Constants of G11-p 67

5.2 Synthesis Results of RISC8 (unmodified) in G11-p process technology 68

5.3 Synthesis results of I/O module in Implementation-1 in G11-p 69

5.4 Synthesis results of I/O module in Implementation-2 in G11-p 69

5.5 Synthesis results of LEON in G11-p process technology 70

A.1 LEON model hierarchy 76

A.2 LEON packages 78

 1

1. INTRODUCTION

1.1. Motivation

Recent advances in process technology have resulted in increased gate densities and

better wiring technology, enabling systems-on-a-chip. Consequently, it is now possible to

integrate multiple processors and a communication network onto a single substrate to

create multicomputer systems. Such a system avoids costly off-chip inter-processor

communication resulting in high-speed transfer of data among processors and potentially

very high performance for appropriate applications. The availability of processor cores

and tools for their integration allows university projects such as ours to explore the design

space of high-performance single chip systems, particularly for domains such as

computer vision. Recently, resources have become available that provide a wide choice

of 8-bit and 32-bit processor cores. We use two such cores RISC8 and LEON to do

experimentation and understand the issues involved and to gain experience with building

a virtual multicomputer system.

1.2. Objective

System-on-a-chip technology has the advantages of lower power, greater reliability, and

lower cost. With removal of chip boundaries, the off-chip communication among

processor chips is converted to on-chip communication among processing elements.

Removal of chip boundaries, however, also changes some of the design considerations

for a multicomputer. Among these are processor granularity, type of communication

network, bus width to access memory off-chip, and the amount of memory on-chip. In

 2

this thesis, we address the implementation issues of building a multicomputer system-on-

a-chip using IP cores with the goal of enabling exploration of this design space.

1.3. Context

 Process technology has improved over the years and it is now possible to have up to 100

million transistors or more on a single chip. Thus, more and more system functionality

can be integrated onto a single chip, reducing the number of chips in the system.

However, there is a choice of what to put in a single chip. Two extremes are a powerful

processor with L2 cache on the one hand and a large number of very simple processors

and their interconnections on the other. Processors such as the wide issue, dynamically

scheduled, super scalar Alpha 21464 are a good example of the first type. However,

studies [11] show that the implementation complexity of the dynamic issue mechanisms

and the size of register file scale quadratically with increasing issue width and ultimately

impact the cycle time of the machine. Therefore, an alternative is suggested [11] where

several less-complex processors on the same chip would use the real estate efficiently and

scale well. Presently systems like RAPTOR [7] have demonstrated the integration of

multiple processors on a single chip. Further improvement in the transistor count is

inevitable, which only means higher integration or the integration of whole multiple

processor systems onto a single chip. We feel that a logical extension of the multiple

processors on a chip approach is to consider a variety of candidate processors, including

those with very simple CPUs.

New design methodologies have been devised to handle this complexity and have

reduced product time-to-market considerably. Use of IP cores is one such improvement:

 3

integrating these “pre-designed” components reduces development time as the system is

built around the core. Semiconductor companies such as LSI logic [2] license IP cores

along with related tool support. Lately, open source IP cores have also become available

and rapid development of designs at very low cost is now possible. Web resources such

as the OPENCORES [10] organization are attempting to standardize a methodology in

developing designs using these cores. We have used the resources provided by such open

source providers [3, 5].

1.4. Design Criteria and System Specification

In the previous section, we briefly described some approaches to building systems-on-a-

chip containing multiple processors. We believe that a potentially fruitful design path for

high performance processors is to investigate the use of very simple CPUs. The

reasoning is that current microprocessors have almost universally been designed with the

chip boundary as a primary constraint: maximum functionality is placed on the chip and

the entire available chip area is used. This approach has especially good possibilities for

computer vision and graphics applications.

The design criteria for building systems of this type are:

- Maximum processing capability

- Control autonomy of the processors

- Flexible communication

- Ease of design

System specifications that satisfy the above criteria

 4

- RISC8 and LEON processor cores are relatively simple and publicly available.

- The communication networks developed in the CAAD lab provide the necessary

communication capability.

- Tools such as the MPLAB, LEONCCS are useful in designing, debugging and

programming.

1.5 Design Methodology and Flow

The following method for developing the system has been used

- Obtain processor as an IP core

- Develop the network interface using Verilog

- Integrate the communication network

- Connect the components of the system into a top module

- Use the top module for simulation and synthesis

The above design methodology is implemented using the design flow shown in

Figure1.1, which illustrates the various tools used. The design component is entered in

Verilog or VHDL, or as an IP core. The simulation is done using SILOS, which does

Verilog simulation only, and Aldec Active-HDL, which does mixed mode simulation.

After simulation and verification of the design, the synthesis tool (Synopsys) is used to

synthesize the design to extract area and timing parameters.

 Use of freely distributed cores has the advantage of low cost in procurement of

core and related tools. However, the working of these designs is not guaranteed.

 5

Figure 1.1 Design Flow

1.6 Results Overview and Significance

The goal of this research is to build a working virtual multicomputer system using IP

cores. The processors read programs from the program memory and execute the code

successfully. These programs are compiled or cross-compiled into the processor

instruction set and stored into the processors program memory. Results are obtained by

simulation and synthesis. Simulations verify the working of the system and synthesis

results give an idea of the physical implementation of the system. Also, issues like

amount of memory on-chip and off-chip, number of processors and area occupied by

communication network are shown to be the concerns when building systems on a chip.

It was possible to synthesize individual components but an attempt to synthesize the

whole system failed due to the limitation of the Synthesis tool.

DESIGN ENTRY

Verilog IP core VHDL

DIGITAL SIMULATION

SILOS Active-HDL

SYNTHESIS

Synopsys

 6

Experience has been gained in building a Virtual Multicomputer system: from the

results it is realized that better tools for synthesis will enable better estimation of the

physical implementation. With the next generation of process technologies, it will be

possible to design a larger system with a more significant processor.

1.7 Thesis Outline

The next chapter builds the background of the traditional multicomputer and integrated

circuit design. Chapter 3 gives the analysis on the design space by providing the

assumptions and decisions made on design parameters. Chapter 4 describes issues

encountered when implementing various components and integrating into a system.

Experiments done on the implementations are also explained in Chapter 4 and results

obtained from them are detailed in Chapter 5. Chapter 6 gives the conclusions and some

ideas for future work.

 7

2. BACKGROUND

This chapter explains the changes in multicomputer design with respect to network

interface and interconnection networks. The earlier network interfaces and changes that

have been brought about in recent architectures are discussed. In addition, different

interconnection networks are mentioned and the reason for selecting an array of routers

as the communication network is given. Also included is a brief description of the design

methodology used in building the system using IP cores.

2.1 Multicomputer Systems

Multicomputer architectures employ complete computers as building blocks – including

processor, memory and I/O system. Early multicomputers were essentially the same as

NUMA shared memory architectures, differing in integration of communication at the

I/O level rather than the memory level. However, the trend has been to integrate the

communication module more deeply into the memory system as well and to transfer data

directly from user address space. Some designs provide DMA transfers across the

network, from memory on one machine to memory on the other machine, so the network

interface or the communication module is integrated fairly deep into the memory system.

The nodes, consisting of the processor and network interface, interact with each other by

connecting themselves to interconnection network such as a crossbar, multistage

interconnection network or a bus interconnect. Proper design of a network interface and

the communication network can result in a high performance system. The next section

describes the developments in network interface design.

 8

2.1.1 Network Interface Design

Early multicomputers provided hardware primitives that were very close to the simple

send/receive user-level communication. A node of the multicomputer system was

connected to a fixed set of neighbors in a regular pattern by point-point links that

behaved as simple FIFOs. Hypercube was an example of such an organization, where the

synchronous message passing was implemented. This direct FIFO design was soon

replaced by direct memory access (DMA), allowing non-blocking sends. The physical

topology of these designs dominated the programming model. However, to make the

machines more general purpose, support for communication between arbitrary processors

was provided rather than just the physical neighbors. One example of such an approach is

the store and forward where the transfer time is proportional to the number of hops it

takes through the network.

 The emphasis on network topology was significantly reduced with the

introduction of more general-purpose networks, which pipelined the message transfer

through each of the routers forming the interconnection machine. Processor clock

frequencies are approaching the gigahertz range and the network switch latencies

dropped to tens of nano seconds. This explosive growth also exposes processor accesses

to the network interface as the critical bottleneck for fine-grain communication. The

incremental delay introduced by each hop is small enough that the transfer time is

dominated by the time to simply move the data between processor and the network. So

emphasis is given to reduce the latency caused by overhead due to Operating System

involvement. We have mentioned earlier in this section that network interface might

prove to be a bottleneck when we have fast processor and the network, however there are

 9

some issues like scaling which make us think about the communication network we are

going to use in the system on chip. The next section explains the reason for selection of a

communication network for our system.

2.2 Communication Network Design

The communication networks in multicomputers, multiprocessor and Network Of

Workstations (NOW) are asynchronous networks with distributed control. These

networks can be classified based on network topology as shared, direct, indirect or hybrid

mediums.

Shared Medium: all the devices share the transmission medium. Scaling the devices will

not scale the bandwidth so there might be a decrease in performance with scaling.

Direct Medium: The devices are connected to the nearest neighbors with point-to-point

links. Communication with non-neighbors will require passing through many devices

resulting in large latency.

Indirect Medium: The devices use switches to connect to each other. The switches have

point-to-point links among them.

Hybrid Medium: from the name it is obvious that a hybrid network is a combination of

the above networks.

As mentioned earlier Shared medium networks are not scalable as their bandwidth

gets spilt between the devices. So the best alternative is to use switch or router based

networks as the bandwidth scales with the number of nodes. But the disadvantage would

be that the cost increases due to increase in the number of switches/routers. An

alternative, wherein the cost of increasing the routers is small is required. With advances

 10

in process technology chips with greater density are possible, which can incorporate

whole of the multicomputer system with the nodes and switches/routers. So the cost

reduces to manufacturing one single chip and we meet the budget even with a better

scaling network. Thus the use of an array of routers with point-to-point links as an

interconnection network will provide scaling and due to better process technology, be

cost effective.

The next section introduces Integrated circuit design flow and also the design

methodology, which illustrates IP core usage in the design. This should help in building a

background for understanding our design methodology.

2.3. Integrated Circuit Design

In the current revolution of IC and microelectronics design, large number of logic

elements can be put on a single chip die. Number of transistors on a single die can be as

many as 33 million, which enables designers to put large systems on a single chip. This

progress, in turns, lead to the introduction of new design methodologies and techniques.

This technology is called System-on-Chip "SoC" that uses different design blocks made

by several designers. These designs should be reusable ones so as to reduce the time

needed to develop the same functionality again by other group.

This system-on-chip (SOC) solution has the advantages of lower power, greater

reliability and low cost, making it possible to have a cost-effective solution for high

performance parallel architectures.

2.3.1. ASIC Design Flow

 11

The steps involved in the conventional ASIC design [6] are listed below (numbered to

correspond to the labels in Figure 2.1 with brief description of the function of each step.

1. Design Entry: Enter the design into an ASIC design system, either using a

hardware description language (HDL), schematic entry, block diagram or state

diagram.

2. Logic Synthesis: Use an HDL (VHDL or Verilog) and a logic synthesis tool to

produce a net list, which is a description of the logic cells and their connections.

3. System Partitioning: Divide a large system into ASIC-sized pieces.

4. Prelayout Simulation: Check to see if the design functions correctly

5. Floorplanning: Arrange the blocks of the net list on the chip.

6. Placement: Decide the location of the cells in the block.

7. Routing: Make the connections between cells and blocks.

8. Extraction: Determine the resistance and capacitance of the interconnect.

9. Postlayout Simulation: Check to see the design still works with the added loads of

the interconnect.

The sequence of steps in design flow, to design an Application Specific Integrated

Circuit (ASIC) is shown in Figure 2.1.

Design (1)
entry

L i (2)

Pre layout (4)
simulation

Logic
design

Start

 12

Figure 2.1 ASIC Design flow

We are concerned with the first two stages in the design flow, design entry and

logic synthesis in our thesis. The next section describes the conventional design

methodology of using IP cores, which is what we use in our system design.

 13

2.3.2. Design Methodology

The functional blocks used in chip design are available as Intellectual Property

(IP) cores or macros. Use of hard, soft, and configurable cores for system-on-a-chip

(SOC) designs is becoming common with new and improved design processes and design

flow. One instance of this design methodology is LSI Logic [1] CoreWare Design

Methodology. LSI logic, the semiconductor company, through its CoreWare

methodology provides the IP core and related support with tools and libraries which

enable successful integration of the IP core and additional logic surrounding the core onto

a single silicon substrate. Use of proven cores aids in design reuse, which reduces the

design time.

 A core or macro is the Intellectual Property of the core developers, made

available as soft, firm and hard macros. The soft macros are the RTL net lists, which can

be synthesized and configured. To protect the macros they may be encrypted. Firm

macros are Synthesized Gate level net lists. Simulation using gate level net list takes a

prohibitively long time so behavior level code is also given. Hard macros are already laid

out and characterized for a specific process technology. Here also behavior level code is

given for simulation. The advantage of a hard macro is that it reduces the number of

iterations, but the disadvantage is that it is tied up to a process technology. The hard

macro is like a black box whose interface is known, but the implementation is not

obvious to the user of the core.

In the next chapter we look at the design parameters and the assumptions made in

order to make it possible to build the multicomputer system.

 14

3. DESIGN SPACE

In this chapter we outline the parameters and assumptions made in the design of

multicomputer system on a chip.

3.1. Assumptions and Parameters

With removal of chip boundaries the design parameters or concerns have shifted to the

processor granularity (area, frequency and performance), network latency, on-chip

memory and off-chip memory. The following sections give the details of the analysis we

have done to explore the design space.

3.1.1. Processor Evaluation

The first task in building the multicomputer system was to acquire the processor as an IP

core. We obtained the technology libraries for logical synthesis from LSI logic [2] and so

evaluated the processor cores available from LSI logic. The following Table3.1

summarizes the features of each processor with respect to area, frequency and

performance.

TABLE 3.1. Processor Evaluation

Core Area Freque-

ncy

Perfor-

mance.

Power ISA Process Cache

Tiny

RISC

4102

1.1 mm2 85MHz N/A 0.5mW/

MHz

MIPS

I/II

2.5v @

0.25um

No

cache

 15

Tiny

RISC

4103

1.9 mm2 120MH

z

N/A 0.5mW/

MHz

MIPS

I/II

1.8v @

0.18um

32KB I-

cache

and D-

cache

Mini

RISC

EZ4021

12 mm2 250MH

z

275

DMIPS

@250M

H

2.6mW/

MHz

MIPS

III

1.8v @

0.18um

16KB

2-way I-

cache

and D-

cache

SR1-

GX

21 mm2

to 29

mm2

333-

400

MHz

2

MIPS/M

Hz

1.4W

@

400MH

z

MIPS

IV

1.8v @

0.18um

Upto

64KB

ARM94

6E-S

2.6mm2

@0.18u

m

(ARM96

6E-S)

200MH

z

1.1

MIPS/M

Hz

N/A ARM9E 1.8v

@0.18u

m

4kB to

1MB

LSI Logic has developed a robust library containing some of the most advanced

cores in the industry. All cores have been proven in silicon with a fixed layout to ensure

accurate timing and predictability. Microprocessor cores provided by LSI Logic include

ARM7TDMI, ARM9E, MiniRISC, TinyRISC. The search was for a processor, which is

small but powerful and a good number of these, along with network interface and

 16

interconnection network should fit in a 1 cm2 die. Among the above five short-listed,

TinyRISC is the smallest, but its frequency of operation is small and it does not include

on-chip cache. The next one in line is the MiniRISC, which has on-chip cache and higher

performance, and with 12mm2 area, it appears to be a good candidate. ARM7TDMI with

2.6mm2 is even better.

 To avoid the expense involved in licensing these processor cores, at least initially,

we decided to experiment with toy processors available for free. Two of them have been

downloaded, one is the RISC8 and the other is LEON processor.

3.1.2. RISC8

A free IP core compatible with the MicroChip 16c57 8-bit processor was obtained from

the web site of Thomas A Coonan [5]. It is coded in Verilog.

3.1.2.1. Features

- Harvard Architecture with separate program and data memory

- Binary code compatible with the Microchip 16C57

- Up to 72 8-bit data words and 2048 12-bit program words (configurable)

- It has an accumulator-based instruction set (33 instructions).

- Pipelines its Fetch and Execute

- The Register File uses a banking scheme and an Indirect Addressing mode.

- The Program memory (PRAM) is a separate memory from the Register File and is

outside the core.

 17

- The ALU is very simple and includes the minimal set of 8-bit operations (ADD,

SUB, OR, AND, XOR, ROTATE, etc.)

- The Instruction Decoder is a purely combinatorial look-up Table that supplies

key control signals

3.1.2.2. Block Diagram

The RISC8 had two input ports and one output port, which were unidirectional. The

Figure 3.1 below shows the components of the original processor core, where output data

is sent to Port B and PortC input data is read from Port A.

Figure 3.1 The Block Diagram of RISC8

Microchip 16c57

Program Memory
(2048 X 12)

Data Memory
(72 X 8)

PortA

PortB

PortC

 18

3.1.3. LEON

The second free IP core is based on the 32-bit architecture of SPARC version 8. It is

obtained from the site maintained by Jiri Gaisler [3], which coded in VHDL. The VHDL

model is fully synthesizable and contains synthesis scripts.

3.1.3.1. Features

- The Integer Unit has the following features:

o 5-stage instruction pipeline

o Separate instruction and data cache interface

o Support for 2 - 32 register windows

- Multiprocessor synchronization instructions

o Atomic read-then-set-memory operation

o Atomic exchange-register-with-memory operation.

- Architecture defines coprocessor instruction set in addition to the floating-point

instruction set.

3.1.3.2. Block Diagram

The Figure 3.2 below shows the block diagram of the LEON processor with integer unit,

cache, optional FPU and coprocessor, AHB/APB bus controllers and memory controller.

 19

Figure 3.2 Block Diagram of LEON Processor Core

3.1.3.3. Previous Implementations

Targeting a 0.25 um CMOS process (std-cell), more than 125 MHz can be reached with a

gate count of less than 30 K gates. The processor also fits in an Altera Xilinx XV300 The

Following synthesis results were achieved

TABLE 3.2. Previous implementations of LEON

Technology Area Timing

UMC 0.25 CMOS std-

cell
35K gates + RAM 130 MHz (pre-layout)

Atmel 0.25 CMOS std-

cell
33K gates + RAM 140 MHz (pre-layout, log file)

Atmel 0.35 CMOS std-

cell
2 mm2 + RAM 65 MHz (pre-layout, log file)

 20

Xilinx XCV300E-8
4,800 LUT + block

RAM
45 MHz (post-layout)

Xilinx XCV800-6
4,800 LUT + block

RAM

35 MHz (post-layout, log1,

log2)

Altera 20K200C-7
5,700 LCELLs + EAB

RAM
49 MHz (post-layout) log file

Altera 20K200E-1X
6,700 LCELLs + ESB

RAM
37 MHz (post-layout) log file

The area in the Table reflects the complete processor with on-chip peripherals and

memory controller. The area of the processor core only (IU + cache controllers) is about

half of that. The timing for the ASIC technologies has been obtained using worst-case

process corner and industrial temperature range.

 Based on the above information it is clear that LEON has larger cache on-chip, is

pipelined and is better suited for systems with multiple processors. But complexity of

LEON is high due to the amount of control involved in instruction processing compared

to RISC8, so initial experiments have been conducted with RISC8 and then LEON has

been used later on.

3.1.4. Network Interface

The existing designs of network interface can be broadly grouped into four categories [1].

 21

1. OS Based DMA Interface: The message handling is relegated to the DMA. A

message is written into a memory location and an operating system send directive

is executed. At the hardware level both machines send and receive messages by

initiating a DMA transfer between memory and the network channel. Examples of

such a parallel system are NCUBE and the iPSC/2. There is a large overhead due

to the involvement of OS, which is justified, as OS involvement is required for

protection.

2. User Level Memory Mapped: The important feature of these interfaces is that the

latency of accessing the network interface is similar to accessing memory. The

system calls are avoided and since interfaces are user level, extra copies between

system and user space are eliminated. Examples of this approach include the

MDP Machine, the CM-5 , the memory communication of iWarp , and the

message-passing interface of the MIT Alewife .

3. User level register mapped: The interface resides in the processor register file

thus allowing rapid access. These models do not support message-passing

functions. Two examples which support this communication model are the grid

network of CM-2 and the systolic array of iWARP.

4. Hardwired interfaces: The communication function is hardwired into the

processor thus eliminating any software overhead. This approach does not provide

the programmer the flexibility to allocate resources and has no control over the

details of how the communication occurs. Examples of this approach are shared

memory interface of MIT Alewife.

 22

From the above four cases, we understand that the network interface we build should

satisfy the following

- Be user programmable, should not invoke OS

- Sending and Receiving should be under the control of user program

- The processor-network interface should be located closer to the processor register

file for rapid transfer

- Frequent message operations like dispatching should be assisted by hardware

mechanisms

3.2. The Multicomputer System

Increase in chip density can be exploited to integrate a complete system on a chip

providing a cost effective solution. However, there lies the issue of access to program and

data, which reside in memory. Since all of it cannot reside on-chip, off-chip memory

access is inevitable. How much of memory resides on chip will affect the number of

processors or alternatively their granularity or both. The number of processors or nodes

will determine the off-chip memory access bandwidth due to pin limitation. Tradeoff has

to be made between number of processors, off-chip memory access bandwidth and

memory on-chip.

 The interconnection network could be a bus, cross bar, multistage switches or an

array of routers. As mentioned in the previous chapter it is better to use an array of

routers due to better scaling provided by them and the use of systems on chip technology

and tools we can make it cost effective.

 23

 The next chapter gives the specification of the architecture implementations of

components that will be used for the experimentation.

 24

4. IMPLEMENTATION ISSUES

This chapter gives the details of the implementations done with RISC8 and procedure for

working with LEON. The necessary changes and proper interface is defined for the

processor cores in order for them to be part of a Multicomputer System.

4.1. RISC8

Since RISC8 is the simpler of the two cores, it has been utilized to gain experience in

using IP cores. RISC8 is available as a soft core described in Verilog HDL, allowing

modification in its architecture. From the description of RISC8 in previous chapter it is

known that it has two output ports and one input port. To have point-to-point

communication among neighboring processors and reduce latency two implementations

were done.

4.1.1. Implementation-1

Figure 4.1 below shows the processor after a Communication Module and four

bidirectional ports were added . The data is put out by storing value in PortB and data is

taken in by reading from PortA. PortC is used to conFigure the ports as inputs or outputs.

All the three registers are part of processor register file. At a time one value can be read

from a port and one value can be broadcast to four ports.

 25

The ports are conFigured as

PortC [7:4] PortC [3:0]

0001: N = PortB 0001: PortA = N

0010: E = PortB 0010: PortA = E

0100: W = PortB 0100: PortA = W

1000: S = PortB 1000: PortA = S

FIG 4.1. Block diagram of Implementation-1 of RISC8

Microchip 16c57

Program Memory
(2048 X 12)

Data Memory
(72 X 8)

PortA

PortB

PortC

N

E

W

S

Communication
Module

 26

4.1.2 Implementation-2

Changes have been made to enable block transfer at the hardware level. Three existing

registers TrisA, TrisB, TrisC were included in the communication module. However, data

can be transfered from accumlator to these registers but not vice-versa. Since the

Instruction Set Architecture is accumlator based it would be useful to have data transfer

capability from these three registers to the accumlator. So PortC, which is the

configuration register for the ports, can also be used for determining the transfer of data

between one of the Tris registers and the accumlator. Figure 4.2 shows the

communication module added to the RISC8 core.

FIG 4.2. Block diagram of Implementation-2

accumulator

Port C

Communication
Module
 TrisA

 TrisB
 TrisC

 27

The bidirectional Ports are conFigured as

PortC [7:6]: 01

PortC [5]: Read/Write

PortC [4:3]: Decide among N, E, W or S

PortC [2:1]: Number of bytes to be transferred 1, 2 or 3

PortC [0]: done bit indicating completion of operation

Data transfer between accumulator and the 'Tris' registers is determined as follows

PortC [7:6]: 10

PortC [5:3]: 101 Acc <- TrisA

PortC [5:3]: 110 Acc <- TrisB

PortC [5:3]: 111 Acc <- TrisC

4.2. LEON

The LEON processor is SPARC V8 compatible and has support from GNU cross

compiler, which compiles the C and C++ programs into the instruction set of SPARC V8.

The cross compiler is known as LEONCCS and is available in the web site of JiriGaisler

[3]. Also provided are utilities like “mkprom”, which is a binary utility, used to build a

memory BFM in VHDL for use in simulation. The application program is first cross-

compiled into the processor’s instruction set and then the "mkprom" utility is used to

form a memory BFM. The memory BFM has the following responsibilities

- The register files of IU and FPU (if present) are initialized.

 28

- The LEON control, wait state and memory configuration registers are set

according to the specified options.

- The ram is initialized and the application is decompressed and installed.

- The text part of the application is optionally write-protected, except the lower 4K

where the trap table is assumed to reside.

- Finally, the application is started, setting the stack pointer to the top of external memory.

After booting the processor the application is loaded into the external SRAM and then

the processor starts fetching the application code.

4.3. Network Interface Design

To connect and access the network interface the processors should have the required

signal interface and instructions in the instruction set. Analysis that has been done for

each of the cores in this regard is given in this section.

4.3.1. RISC8:

The RISC8 was analysed for its use in a Multicomputer configuration and the following

facts have been understood. In the Multicomputer configuration it was required that the

processor has to interface to the Router, which has a buffer. To transfer data between

Processor and the Router there needs to be some control signals coming out of the

processor. Upon exploring we found that the processor has a set of ports known as the

expansion ports, which can be used for interfacing with external devices. The description

of the ports is given in Table 4.1 below

 29

Table 4.1. Expansion Interface Signals

Signal Description

Expdin [7:0] Input back to the RISC8 core. This is 8-bit
data from the expansion module(s) to the
core. Should be valid when 'expread' is
asserted.

Expdout [7:0] Output from the RISC8 core. This is 8-bit
data to the expansion module(s)
from the core. Is valid when 'expwrite' is
asserted. The expansion module
is responsible for decoding 'expaddr' in
order to know which expansion
address is being written to.

Expaddr [6:0] This is the final data space address for
reads or writes. It includes any
Indirect addressing.

Expread Asserted (HIGH) when the RISC8 core is
reading from an expansion
address.

Expwrite Asserted (HIGH) when the RISC8 core is
writing to an expansion address.

 The port access is similar to register access. The highest four slots in register

address space (0x FC, 0x FD, 0x FE and 0x FF) are allotted to these ports. Since we have

signals ‘expread’ and ‘expwrite’, it is easy to interface through these signals. However, it

is seen that some control signals are to be sent to the processor to indicate the status of

external device and so PortA is used for this purpose. Experimental test were done to

verify the send and receive of data. The network interface has two buffers each of four

10-bit locations. One acts as an input buffer and the other is the output buffer. The

 30

network interface interaction with router can be reviewed from the earlier chapters. The

network interface consists the following components

Figure 4.3. Network Interface for RISC8 in a Multicomputer Configuration

 Output Buffer

 Input Buffer

ne

nf

expdin

expread

expwrite

expdout

dWt_Inj

DIn_Inj

dNF_Inj

uNF_Ej

DOut_Ej

UWt_Ej

 31

The network interface has the responsibility to convert 8 bit data into 10 bit flit

data to send it to the router and convert 10-bit flit data into 8 bit data and send it to the

processor. When sending data from network interface to processor bits 2 and 3 of the

PortA will be used to indicate if the data is a header, a tail or just data.

4.3.2 LEON

For LEON to be part of a Multicomputer system there have to be proper signals to

interface to the network through a network interface. LEON provides the flexibility to

connect the network interface at different levels differentiated by the closeness to the

processor.

Network interface as a Coprocessor:

Connecting network interface as a coprocessor would be the best option as it allows rapid

transfer of data, but it has been realized that the VHDL model does not allow the

coprocessor to interact with the outside world. So in order to connect a network interface

as a coprocessor the coprocessor signals have to be taken out of the core. The following

coprocessor signals have to be taken out for use

rst : Reset

clk : main clock

holdn : pipeline hold

cpi : data and control into coprocessor

cpo : data and control out of coprocessor

 32

‘cpi’ is a bunch of signals containing data bus into the coprocessor and control signals for

pipeline control, exception indication from the pipeline and exception acknowledge from

integer unit. ‘cpo’ is a bunch of signals containing the data bus going out from the

coprocessor, exception indication and condition codes from coprocessor. There are two

instructions, CPOP1 and CPOP2 in the instruction set of SPARC V8 [3], which will

define the operations done in the coprocessor or the network interface in this case. There

can be 32 registers in the coprocessor, which can be addressed for loading and storing

form memory using coprocessor load and store instructions.

Network interface as an I/O device:

An alternative is to connect the network interface as an Input/Output device. The I/O is

memory mapped and so the access is same as memory and capable of addressing up to

512MB of memory mapped I/O. The I/O access is programmed through the Memory

Configuration Register1 (MCR1) in the memory controller. The description of various

fields in MCR1 is provided in the appendix. To ensure proper connection and operation

of the I/O device to LEON processor core, memory configuration register 1 has to be

appropriately set.

- [19]: I/O enable. If set, the access to the memory bus I/O area are enabled.

- [23:20]: I/O wait states. Defines the number of wait states during I/O accesses

(“0000”=0,“0001”=1, “0010”=2,..., “1111”=15).

- [28:27]: I/O bus width. Defines the data with of the I/O area (“00”=8, “01”=16,

“10”=32).

 33

As it can be seen bits 28-27, 23-20 and 19 of the memory configuration register are

to be set accordingly. The address range for of I/O is Ox20000000 to Ox 3FFFFFFF.For

the purpose this thesis we have set the wait states to be zero([23:20] = “0000”) and the

I/O bus width to be 32bits ([28:27] = “10”). SPARC assumes that input/output registers

are accessed via load/store alternate instructions, normal load/store instructions,

coprocessor instructions, or read/write ancillary state register instructions.

4.4. Communication Network

The communication network is formed using routers described in Verilog HDL.

4.4.1. Functional Description

The basic features are

- Buffering at both input and output is modeled inside the router.

- Each virtual channel may be constructed with several lanes for performance

reasons rather than for deadlock prevention.

- All virtual channel in the same direction share the same physical channel, unless

specified otherwise.

- Width of the physical channel is assumed to be equal to that of its flits.

4.4.2. Interface signals

The network interface interacts with the router using two unidirectional buses. One bus is

used by node to inject into channel through router, the other ejects the data from the

 34

channel into the node through the router. The signals can be seen on the right side of the

network interface in the Figure 4.3.

Signals to inject data into Router from Node

DIn_Inj : Data Injected from Node to Router

dWt_Inj: Write signal from Node to Router

dNF_Inj: Not full signal from Router to Node

Signals to eject data out of Router into Node

DOut_Ej: Data ejected out from Node to Router

uWt_Ej: Write signal from Node to Router

uNF_Ej: Not full signal from Router to Node

Only the NF signal is asserted the Node or Router will write to the other by

asserting Wt signal. The data is sent in the form of a Flit of size 10 bits. The first flit is

the header containing address and the rest of the flits are considered as data. The header

is identified by a “01“ in MSB position and the tail data flit has “10” as the MSB. The

Router directly monitors injector bus without latching it to detect a header. So care

should be taken by the Network interface to put all zeros on the injector bus so that a

previous value in the buffer does not mislead the Router.

4.5. The Multicomputer system

The nodes of the multicomputer system will contain the processor core and a

network interface, which connect the processor to the Router. The neighboring Routers

 35

are connected with point-to-point links. The processor will have some on-chip memory

and cache. In order to access the external memory the UART provided with the LEON

processor could be used and the program or application could be downloaded as srecords.

But this method delays the process, as the access is slow even though it saves the pins.

With better technologies more memory can be located on chip and with higher pin counts

the external access can have higher bandwidth.

The multicomputer system is as shown in the Figure 4.4 below

FIG 4.4. The multi-computer System

P: Processor NI: Network Interface S: Switch

P
N

S

P
N

S

P
N

S

P
N

S

P
N

S

P
N

S

P
N

S

P
N

S

P
N

S

P
N

S

P
N

S

P
N

S

 36

In the next chapter we describe the experiments done to verify the use of IP core

and results which to help us in understanding the issues with building the system.

 37

5. EXPERIMENTS AND RESULTS

5.1. Simulation Results

Simulation have been utilized to verify the proper functionality of the cores and also

estimate the performance in terms of number of cycles taken for the data transfer. During

the course of this thesis two simulation tools were used. One is Silos, which does Verilog

simulation only and the other is Active-HDL, which is capable of mixed simulation of

Verilog and VHDL. This sections ends with a description of the procedure of using

LEON VHDL model for simulation.

5.1.1. RISC8

One of the main purposes of this thesis is to build a working system that executes

program code compiled from high-level languages like C.

Figure 5.1. Multiprocessor Configuration using RISC8

In the process of building the multicomputer system initial experimentation was

done using RISC8. Two Multiprocessor systems and one Multicomputer system using

the RISC8 processor core have been built. The two implementations of RISC8 in

CPU_0 CPU_3

CPU_1 CPU_2

 38

Multiprocessor configuration differed in the links between the processors. One had

unidirectional links and the other had bi-directional links between processors. The

general structure is illustrated in the Figure 5.1 above. The purpose of building the

multiprocessor configurations was to test the core for running simple to complex

problems. Also the communication capability has been tested.

5.1.1.1. Apparatus

In order to perform the experiment by executing an algorithm we have to generate

instructions, which are subset of the RISC8 Instruction Set. Since RISC8 is binary

compatible with Microchip’s 16c57 processor Instruction Set we obtained MPLAB,

which is a Windows-based Integrated Development Environment (IDE) for the

Microchip Technology Incorporated [8] PICmicro micro controller families. MPLAB

allows us to write, debug, and optimize PICmicro applications for firmware product

designs. MPLAB includes a text editor, simulator, and project manager.

 The output from MPLAB is a hex file, which is to be converted to a memory

BFM in Verilog for simulation purposes. For this purpose a C- program, hex_pram.c

(given in the Appendix), has been developed as part of this thesis. In order to perform

the simulations Silos simulation tool has been used which was available through the

services provided in CAAD lab.

 39

5.1.1.2. Experiment-1

The experiment has been performed on the multiprocessor configuration shown in the

Figure 5.2, with unidirectional links between the processors.

Figure 5.2. Multiprocessor configuration for Experiment-1

 Problem

The experiment was intended to verify the processing capability and communication

capability of RISC8. The summary of the operation is given under operations and actual

data transfer among the registers of the RISC8 is shown in Code (referring to the

instruction code).

Note: PortA is the input port, PortB is the output port and W is the accumulator through

which all the instructions pass data to ports.

CPU_0 CPU_3

CPU_1 CPU_2

 40

Results: The rest of this section illustrates the code being executed by the four processors

with the help of Figures and assembly code.

CPU_0

Operation: Perform 1 + 2 and send it out to CPU_1

code:

 mem[0]=12'b1100_0000_0001; //load 8'h01 into w
 mem[1]=12'b0000_0010_0110;//w --> portb
 mem[2]=12'b1100_0000_0010; //load 8'h02 into w
 mem[3]=12'b0001_1110_0110; //Add w + portb --> portb
 mem[4]=12'b0000_0000_0000;//NOP
 mem[5]=12'b0000_0000_0000;//NOP
 mem[6]=12'b0000_0000_0000;//NOP
 mem[7]=12'b0000_0000_0000;//NOP
 mem[8]=12'b0000_0000_0000;//NOP
 mem[9]=12'b0000_0000_0000;//NOP
 mem[10]=12'b0000_0000_0000;//NOP
 mem[11]=12'b0000_0000_0000;//NOP
 mem[12]=12'b0000_0000_0000;//NOP
 mem[13]=12'b0000_0000_0000;//NOP

Simulation result:

Figure 5.3 Simulation result-1, Experiment-1

 41

CPU_1

Operation: Calculate 1 + 3 and later when CPU_1 sends its data (1 + 2) add it the

previous result (1 + 3) and send it out to CPU_2

Code :

 mem[0]=12'b1100_0000_0001; //load 8'h01 into w
 mem[1]=12'b0000_0010_0110;//w --> portb
 mem[2]=12'b1100_0000_0011; //load 8'h03 into w
 mem[3]=12'b0001_1110_0110; //Add w + portb --> portb
 mem[4]=12'b0000_0000_0000;//NOP
 mem[5]=12'b0010_0000_0101;//w <-- porta
 mem[6]=12'b0001_1110_0110; //Add w + portb --> portb
 mem[7]=12'b0000_0000_0000;//NOP
 mem[8]=12'b0000_0000_0000;//NOP
 mem[9]=12'b0000_0000_0000;//NOP
 mem[10]=12'b0000_0000_0000;//NOP
 mem[11]=12'b0000_0000_0000;//NOP
 mem[12]=12'b0000_0000_0000;//NOP
 mem[13]=12'b0000_0000_0000;//NOP

Simulation result:

Figure 5.4 Simulation result-2, Experiment-1

 42

CPU_2:

Operation:

Calculates 1 + 1 and sends the result to CPU_3, later when data arrives form CPU_1, it is

sent to the CPU_3.

Code:

 mem[0]=12'b1100_0000_0001; //load 8'h01 into w
 mem[1]=12'b0000_0010_0110;//w --> portb
 mem[2]=12'b1100_0000_0001; //load 8'h01 into w
 mem[3]=12'b0001_1110_0110; //Add w + portb --> portb
 mem[4]=12'b0000_0000_0000;//NOP
 mem[5]=12'b0000_0000_0000;//NOP
 mem[6]=12'b0000_0000_0000;//NOP
 mem[7]=12'b0000_0000_0000;//NOP
 mem[8]=12'b0010_0000_0101;//w <-- porta
 mem[9]=12'b0000_0010_0110;//w --> portb
 mem[10]=12'b0000_0000_0000;//NOP
 mem[11]=12'b0000_0000_0000;//NOP
 mem[12]=12'b0000_0000_0000;//NOP
 mem[13]=12'b0000_0000_0000;//NOP

Simulation result:

Figure 5.5. Simulation result-3, Experiment-1

 43

CPU_3

Operation:

Calculates 2 + 3 and stores it in portb, later when data (1 + 1) arrives form CPU_2 it is

added to the above result (2 +3) in portb and stored back into portb (07). When the

second and last data arrives from CPU_2 (07) it added to the previous result in portb (

07) and stored back into portb (0E).

Code:

 mem[0]=12'b1100_0000_0010; //load 8'h02 into w
 mem[1]=12'b0000_0010_0110;//w --> portb
 mem[2]=12'b1100_0000_0011; //load 8'h03 into w
 mem[3]=12'b0001_1110_0110; //Add w + portb --> portb
 mem[4]=12'b0000_0000_0000;//NOP
 mem[5]=12'b0010_0000_0101;//w <-- porta
 mem[6]=12'b0001_1110_0110; //Add w + portb --> portb
 mem[7]=12'b0000_0000_0000;//NOP
 mem[8]=12'b0000_0000_0000;//NOP
 mem[9]=12'b0000_0000_0000;//NOP
 mem[10]=12'b0000_0000_0000;//NOP
 mem[11]=12'b0010_0000_0101;//w <-- porta
 mem[12]=12'b0001_1110_0110; //Add w + portb --> portb
 mem[13]=12'b0000_0000_0000;//NOP
 mem[14]=12'b0000_0000_0000;//NOP
 mem[15]=12'b0000_0000_0000;//NOP
 mem[16]=12'b0000_0000_0000;//NOP
 mem[17]=12'b0000_0000_0000;//NOP

Simulation result:

Figure 5.6. Simulation result-4, Experiment-1

 Thus from the above Figures the computation and communication capability of the

processor is established.

 44

5.1.1.3 Experiment-2

The unidirectional link was changed to a bi-directional bus and an I/O module

was added to handle PE-to-PE communication. The configuration is shown in Figure 5.7

below. This experiment is conducted using implementation-1 of RISC8.

Figure 5.7. Multiprocessor configuration for Experiment-2

 Moving Average Window Problem: The problem involved computing the average of a 2-

Dimensional image data. The data is an 8 X 8 matrix and the window size for finding the

average was 3 X 3. All the elements in that window were added and stored into the

position occupied by the top left corner element. For the elements on the edges the

window cannot have nine elements so the rest of the elements are assumed to be zeros.

The data is distributed equally among four processor thus each processor contains a

4X 4 matrix. The Figure 5.8 below illustrates the explanation above by showing a

sample data and the window for the first element and the edge element of the result

matrix.

CPU_0 CPU_3

CPU_1 CPU_2

 45

 2 1 3 * 4 2 3

4 1 3 2 * 1 3 1 2

2 4 6 1 * 1 2 4 1

2 3 1 2 * 2 3 2 1

*

3 6 1 4 * 3 3 5 2

2 4 2 1 * 5 1 2 1

1 4 4 3 * 3 4 3 2

1 3 4 1 * 5 6 1 2

Figure 5.8. Illustration of Moving Average Window Problem

1 2 1

4 1 3

2 4 6

1

6 3 0

1 2 0

4 1 0

6

 46

 The windows in Figure 5.8 above show the elements under consideration for each

window. The small squares to which they are mapped show the position in the final result

matrix, which has the same size as the original data. The partitions show the data

distribution among four processors. Each processor can calculate 16 averages of which

four are complete sums and 12 are partial sums. These partial sums require data from

other processors so each processor requests communication. Out of the 12 partials sums

only five of these will be completed within each processor thus each processor will have

nine complete sums by the end of the algorithm. Thus, we have 36 complete sums for an

8 X 8 matrix and window size of 3 X 3. Modifications were done to the RISC8 processor

to have two implementations of RISC8, which differed in the way they implement

communication.

Result

The moving avaerage problem algorithm was executed and each processor generated

four complete sums and 12 partial sums. Communication events among these four

processor then enabled the completion of the rest of the five sums in each processor.

Observations:

Receiving data:

It takes two clock cycles to get the value on the port into the register PortA, which is part

of the register file.

 47

 Figure 5.9. Simulation result-1, Experiment-2

The Figure 5.9 above illustrates that the value on east port takes two clock cycles to come

onto the register porta.

Sending data:

In order to send one 8-bit data, Implementation-1 takes three clock cycle

o In first cycle PortC is used to conFigure ports

o In the second cycle data is stored in accumlator

o In third cycle data is sent to output port register from accumlator

o In fourth cycle data will appear on port

 48

This above mentioned sequence is verified in the Figure 5.10 below

 Figure 5.10. Simulation result-2, Experiment-2

5.1.1.4. Multicomputer System using RISC8

 The Multicomputer system built is shown in the Figure 4.4. It has a node with a

Processor and a Network Interface to connect the processor to the network of Routers.

The expansion ports of the RISC8 are used for the purpose of interfacing to the network.

The expansion ports have been explained in section 4.2.1. The functionality of the

system has been tested in three phases. First the Processor- Network Interface side is

tested for sending and receiving packets. Next the Network Interface and the Network are

tested for sending packets to random destinations. In the last phase the whole System is

integrated and tested by sending packets from one source to random destinations.

Phase1: Test between the Processor and the Network Interface has been conducted by

testing the send and read separately

 49

Send : The source executes the program shown below in the code. All the other

Processors in the Network consume the packet as soon as it appears in the Network

Interface.

C Code:

// Directives to the compiler

#pragma char porta @ PORTA // porta points to PORTA

#pragma char portb @ PORTB // portb points to PORTB

#pragma char portc @ PORTC // portc points to PORTC

#pragma char header @ 0x7C // header indicates that the data in expdout[7:0] is header

#pragma char data @ 0x7D // data indicates valid data in expdout[7:0]

#pragma char tail @ 0x7E // tail indicates that expdout contains tail

#pragma char read_d @ 0x7F // read_d indicates read from input buffer

#pragma bit nf @ PORTA.0 // bit 0 of PORTA is Not Full signal from input buffer

#pragma bit ne @ PORTA.1 // the bit 1 is the Not Empty signal

void main(void){

// code to send a packet

 while(nf == 0){

 ;

 }

 header = 4; //the value 0x 04 is sent as header, 0x104 by network interface

 while(nf == 0){

 ;

 50

 }

 data = 5; // value 0x 05 is sent as 0x 005

 while(nf == 0){

 ; }

 tail = 6; // value 0x 06 is sent as tail, 0x 206 by network interface

}// ends the main program

Result : The above C-program was compiled using MPLAB to a hex format, which is

converted into a memory BFM in Verilog using the “hex_pram.c” file developed by us.

The Figure 5.11 below shows the data being written into the buffer of network interface.

When the address 0x 7C appears in the 'expaddr' and 'expwrite' is asserted, the data in the

expdout is considered as the header and a ‘01’ is added to the data. This data is then

stored in the buffer indicated by Queue in the timing diagram.

 51

Figure 5.11. Timing diagram illustrating the send sequence

Read: To read data from the network interface the processor uses ‘ne’ signal to check for

the input buffer to have new data. It then asserts the 'expread' signal, which will output

data onto 'expdin' bus.

Code : The following code will read a data form the

#pragma char porta @ PORTA

#pragma char portb @ PORTB

#pragma char portc @ PORTC

#pragma char header @ 0x7C

#pragma char data @ 0x7D

#pragma char tail @ 0x7E

#pragma char read_d @ 0x7F

#pragma bit nf @ PORTA.0

#pragma bit ne @ PORTA.1

void main(void){

// code to read a packet

 52

 //wait for the input buffer to have a value, indicated by ne =1

 while(ne!=1){

 ;

 }

 portb = read_d; // read data

 while(ne !=1){

 ;

 }

 portb = read_d;

 while(ne !=1){

 ;

 }

 portb = read_d;

} //end of main program

Results:

The Figure 5.12 shows the timing diagram of the sequence in reading a data

value from network. The Router passes the data on 'DOut_Ej' bus, which is stored in the

input buffer of network interface. The ‘ne’ signal is set indicating availability of data in

the buffer.

 53

Figure 5.12. Timing diagram illustrating the read sequence

The processor senses the ‘ne’ signal and reads the data from the input buffer by asserting

the 'expread' signal. As the Figure 5.13 above shows three reads occur.

 From the above results we have established that the RISC processor is suitable of

interfacing to the network through the network interface.

Phase2:

The network is formed from an array of routers, which are fully connected. In

order to have the flexibility in changing the array size and also to avoid rewriting the

connections in the top module for simulations, a C-program has been written that will

generate the array and also define the connection among the routers and the network

interfaces. This C-file is given in the Appendix. Simulations were done to determine the

working of the interface signals, which helped in the network interface development.

Simulaiton1:

 The first simulation was done to check if the connectivity among the routers is proper.

Checking if the path selection resulted in the smallest route did this. Four packets were

 54

sent from node 0 to node 49. The path taken was node 0 to node 59, node 59 to node 49.

All the packets traveled through the negative Y direction.

Figure 5.13. Depicts the Path Taken By Four Packets From node 0 to node 49

Simulation 2:

The next simulation was done to check if there were any packets lost. We performed a

simple experiment of sending 8 data flits each to all the nodes from one single node. The

successful transmission ensures reliability to some extent. To distinguish among packets

sent to each node, we encoded the position of the node with respect to the array and sent

it in each packet. It is clear from Figure 5.14 that packet 0x 100, 0x 002, 0x003 are

destined to node 00.

 55

Figure 5.14 Final Destination of Packets

Thus the Network side has been verified . The last phase is to verify the whole system

Phase 3: The last phase in the testing has been to connect all the components in a top

module and test it by sending packets to random locations.

Code: The source Processor sends one header and eight data packets including the tail by

executing the following code

/ /code to generate file to be sent to ni

#pragma rambank 1

int8 i, x, y, temp;

 56

//temp3, image_index, mask_index, y_index, m1, m2, n1, n2, mask[9];

#pragma char porta @ PORTA

#pragma char portb @ PORTB

#pragma char portc @ PORTC

#pragma char header @ 0x7C

#pragma char data @ 0x7D

#pragma char tail @ 0x7E

#pragma char read_d @ 0x7F

#pragma bit nf @ PORTA.0

#pragma bit ne @ PORTA.1

void main(void){

// code to send packet to consecutive locations

 temp = 0;

 for(x=0;x<2;x++)

 {

 for(y=0;y<2;y++)

 {

 while(nf!=1)

 {

 ;

 }

 header = x * 16 + y ; //send the header

 while(nf!=1)

 57

 {

 ;

 }

//data1

 data = temp ;

 while(nf!=1)

 {

 ;

 }

//data2

 data = temp + 1;

 while(nf!=1)

 {

 ;

 }

//data3

 data = temp + 2;

 while(nf!=1)

 {

 ;

 }

 58

//data4

 data = temp + 3;

 while(nf!=1)

 {

 ;

 }

//data5

 data = temp + 4;

 while(nf!=1)

 {

 ;

 }

//data6

 data = temp +5;

 while(nf!=1)

 {

 ;

 }

//data7

 data = temp + 6;

 59

 while(nf!=1)

 {

 ;

 }

//data8

 tail = temp + 7;

 }//for ends

 }//for ends

//consume all packets that are sent

 while(1)

 {

 while(ne!=1)

 {

 ;

 }

 portb = read_d;

 }

}

 60

All the other processors in the network execute the following code to consume all the

packets that are sent to them.

Code:

// code to consume all the packets sent

#pragma char porta @ PORTA

#pragma char portb @ PORTB

#pragma char portc @ PORTC

#pragma char header @ 0x7C

#pragma char data @ 0x7D

#pragma char tail @ 0x7E

#pragma char read_d @ 0x7F

#pragma bit nf @ PORTA.0

#pragma bit ne @ PORTA.1

void main(void){

// code to continuously read a packet

 while(1){

 while(ne==0){

 ;

 }

 portb = read_d;// the flits read are displayed on PortB

 }

 61

}// end of main program

The Figure 5.15 below shows the Source processor 24 sending the data 0x00 with an

address of 0x7C implying header. The Network Interface recognizes this as the header

and concatenates a ‘01’ to the 8-bit value to make it a 10-bit flit. The subsequent data are

sent to 0x7D implying data flits and so a ‘00’ is appended to the data. For the last data

‘10’ is appended when the address is 0x7E as shown in Figure 5.16.

Figure 5.15. System testing, header flit formation

Figure 5.16. System testing, tail flit formation

 62

The Figure below shows all the flits reaching the destination. All the packets take the

same route. The values taken are displayed on PortB.

Figure 5.17. System testing, packets reaching destination

Thus in three phases the proper functionality of the Multicomputer System is verified.

Summary

 Experiments have been done and the following results have been observed

- Gained experience with the core, experiment 1 and 2

- Verified computational and communication capability of core, experiment1

- Verified the functionality of modified core, experiment 2

- To verify the individual components of the System, experiment on multicomputer

Configuration

- To verify the complete Multicomputer system, experiment on multicomputer

Configuration

 63

 5.1.2. LEON

 To perform simulations the LEON VHDL model has to be compiled to the

simulation tools format, which in this case is Active-HDL. Some changes had to be

made in some of the modules of the model in order to ensure proper compilation. VHDL

model have to be compiled in the following order

- amba.vhd

- target.vhd

- device.vhd

- config.vhd

- sparcv8.vhd (the library IEEE.std_logic_arith.all had to be included in this

module)

- iface.vhd

- macro.vhd

- debug.vhd

- ambacomp.vhd

- multlib.vhd

- tech_generic.vhd

- tech_atc35.vhd

- tech_atc25.vhd

- bprom.vhd

- tech_virtex.vhd

- tech_fs90.vhd

- tech_map.vhd

 64

- fpulib.vhd

- fp1eu.vhd

- mul.vhd

- div.vhd

- clkgen.vhd

- rstgen.vhd

- iu.vhd

- regfile.vhd

- icache.vhd

- dcache.vhd

- cachemem.vhd

- acache.vhd

- cache.vhd

- proc.vhd

- apbmst.vhd

- ahbarb.vhd

- lconf.vhd

- wprot.vhd

- ahbtest.vhd

- ahbstat.vhd

- timers.vhd (had to include IEEE.std_logic_arith.all and also changed

std_logic_vector(TPREC(..)) to conv_std_logic_vector(TPREC(..)))

- uart.vhd (the above change should be done in this module also)

 65

- irqctrl.vhd

- irqctrl2.vhd

- ioport.vhd

- mctrl.vhd

- pci_is.vhd

- pci_arb.vhd

- pci_esa.vhd

- mcore.vhd

- leon_pci.vhd

- leon.vhd

Mixed simulation has been done and so the VHDL module 'leon' is instantiated in the

Verilog top module just as any other Verilog module is done with the module name and

an instance name after it. The example of 'leon' module is given below

leon L1(resetn, clk, errorn, address, data, ramsn, ramoen, rwen,

 romsn, iosn, oen, read, writen, brdyn, bexcn, pio, wdogn,

 test);

 66

5.2. Synthesis Results

Synthesis of the design is done in the pre-layout stage as illustrated by Figure 2.1.

Synthesis is used to get an estimate of the timing and area of the design before the layout

is done in order to check if the design complies with the constraints set. A synthesis tool

uses wire load models (wlm) to calculate the capacitance, resistance, and wire area within

a synthesis block. These values are only estimates since synthesis tools cannot predict the

actual placement of cells and routing of nets.

5.2.1. Technology Libraries

A technology library is compiled using a library compiler into the format of the

tool; in this case with Synopsys it is ”.db”. The library contains the information such as

attributes and environment in which the process is performed. The environment is the

process operating conditions, which determine the approximate delay values and area of

the design. The interconnect model is defined by a “tree_type” attribute, which can take

three values as best_case_tree, worst_case_tree or balanced_tree. In the worst_case_tree

the load pin is most distant from the driver, in best_case_tree type the driver is next to the

load pin and in the balanaced_tree type the load pins are separate and at equal distance

from the driver. The synthesis results of area are measured in cell units, which is 11.54

um2 for G-11p process technology.

For the purpose of Logic synthesis G11-p technology libraries have been used.

G11-p cell based ASICs are LSI Logic’s highest performance 2.5v and 1.8v products [4].

It can have up to 8.1 million usable gates with effective gate length of 0.18um (Leff),

8Mbits RAM on chip and up to 6 metal layer achieving system on chip. The next level of

 67

process technology is the G12-p where the gate count reaches 33 million enabling

multiple systems on chip with a gate length of 0.13um and 16Mbits of RAM. Table 5.1

below gives the technology constants of G11-p technology.

Table 5.1. Technology constants of G11-p

Quantity Value Units

Standard Load 0.0111995 pF

Grid Size 0.9 mm

Cell Width (Standard Cell) 12.6 mm

Cell Unit* 11.34 mm2

* A cell unit is the area used by a cell one grid tall and a standard cell width wide.

5.2.2 RISC8

 The hierarchy of the RISC8 CPU is given in the appendix. The following Table

summarizes the results of synthesizing the unmodified RISC8 core

 68

Table 5.2. Synthesis Results of RISC8 (unmodified) in G11-p process technology

Design / module name Area (um2) % Timing (ns)

cpu 741734.176 100.0 7.61

alu 16430.787 2.2 2.27

idec 12935.753 1.7 1.56

regs 565576.841 76.24 2.84

dram 563834.663 76 2.06

exp 18859.577 2.5 1.02

Observation:

- 75% of the cpu area is occupied by the memory

- All the other components except memory occupy 6.4%

- The logic around these components inside the cpu is 17.36 % (100 - 76.24 - 6.4)

- From the timing results we can say that the maximum frequency of operation

could be approximately 130MHz (1 / 7.61ns)

Implementation-1

A communication module (io module) is added to the RISC8 core in

Implementation-1. Table 5.3 below shows the area of this single module.

Table 5.3. Synthesis Results of I/O Module in Implementation-1 in G11-p process
technology

Design / module name Area (um2) Timing (ns)

 69

Io 7803.222 0.18

Implementation-2

In implementation-2 the communication module is given three additional

registers. The Table 5.4 below shows the area of this single module.

Table 5.4. Synthesis Results of I/O Module in Implementation-2 in G11-p process
technology

Design / module name Area (um2) Timing (ns)

Io 31166.187 0.42

Observation:

- Implementation-1 is 25% of implementation-2 in other words implementation-2 is

4 times larger than implementation-1.

The difference between implementation-1 and implementation-2 is the addition of three

registers and also a state machine intended to do one, two or three 8-bit data transfers.

5.2.3. LEON

 The description for the modules names of LEON VHDL model can be found in

the appendix. The following Table gives the area of the various components that make up

the 'leon' VHDL model after synthesis with the library “lcbg11p_nom.db” from LSI

Logic.

Table 5.5. Synthesis Results of LEON in G11-p process technology

 70

Design Area (um2) % Timing (ns)

Leon 1780211.87 100.00 0.80

Clkgen 308.871 0.00 0.12

Ahbarb 8876.787 0.49 0.81

Ahbmst 90967.053 5.10 7.00

Bprom 90804.687 5.10 4.14

Proc 1223437.261 68.00 2.00

Icache 82209.923 4.61 2.58

Dcache 280007.551 15.72 4.01

Iu 853623.897 47.95 6.96

Irqctrl 64018.228 3.59 0.70

Ioport 73441.906 4.12 0.89

Timers 137051.192 7.69 1.51

Uart 66652.617 3.74 0.88

ahbstat 31115.836 1.75 0.58

ahbtest 66520.476 3.73 7.00

rstgen 1366.086 0.00 0.20

mctrl 251249.466 14.11 2.33

Router 2460926.998 138.00 1.95

Ni 95303.833 5.35 1.23

Observation:

 71

- The majority of the real estate is taken by processor (Proc), which contains the

integer unit (Iu), data cache controller (Dcache) and the memory controller

(Mctrl).

- Dcache and Icache refer to the cache controllers and not memories themselves. So

the need for control logic is more in data cache than instruction cache.

- The worst critical path of 7.00 ns is obtained for Ahbtest and Ahbmst modules

- The critical path of 'leon' module is quite less at 0.80

Estimation of Multicomputer System area

 An attempt to synthesize the whole system failed due to limitation of the tool. To

get an estimate the following procedure has been used. The Multicomputer system is

formed by replication of the Processor, Network Interface and the Router. By calculating

the area of this building block an estimate can be obtained. In order to get an estimate of

the interconnect area the following assumption was made. It is a fact that the interconnect

area cannot reduce beyond a point with decrease in feature size as the resistance of the

interconnect increases with decrease in area (R = ρ * L/A). Thus with decrease in feature

size the ratio of interconnect area to cell area increases. Since the area of the building

block includes the area of interconnect within each module the external and overhead

interconnect area has to be estimated. Based on the above assumption the interconnect

area can be estimated to be around 25% of the chip.

 With a 1cm2 chip we will have 0.25cm2 for external and overhead interconnect

and so 0.75cm2 for the cells. With 4.27 mm2 area for the building block in the case of

 72

LEON, the size of the System can be 16 (17.56 rounded). With 3.23 mm2 for RISC8 the

System size is 24 (23.12 rounded).

5.2.4. Discussion

The general observation from the above synthesis results is about the percentage of area

memory and Router occupy in the System. For RISC8 memory is almost 75% of the

processor area. In such a scenario an increase in memory on chip would reduce the area

for processors. So the number of processors needed on the chip limits the amount of

memory. The Router also occupies a large area, which is comparable to the processors.

So the System size would have to be a trade-off between the Communication Network

size, memory on chip and the number of processors.

The off- chip memory access bandwidth depends upon the pins available for the

chip used. Since RISC8 is 8-bit RISC architecture, there can be a large number of

processors. But LEON cannot have the advantage, as LEON is 32-bit architecture. The

off-chip access bandwidth is configurable in LEON but then reducing the access

bandwidth would mean more number of cycles to access each instruction or data. LEON

can also access or download program instructions as srecords from a UART but the

access is obviously slow.

 73

6. CONCLUSIONS

This thesis describes the work we have done in the context of building a system. The

major contribution is

- Building of a single chip multicomputer

- Finding a processor core for experimentation

- Investigating the various network interfaces and building one based on the

research

- Developing two configurations of RISC8, one with direct connection and the

other with a network

- Investigating the LEON processor to find a way of connecting it to the network in

order to form a multicomputer system

- Showing the environment, like the tools and software, that is need to build the

system

- Obtaining simulation and synthesis results for the components that form the

multicomputer system.

- Attempting to synthesize the whole system with the nodes and the network

From the above work we gained significant experience in building a system and

building an environment for this purpose.

 74

Future Scope

From the results we obtained it can be seen that with the present technology it has

been possible to integrate a multicomputer system along with the communication

network. However, we have also discussed the tradeoff in the amount of memory off-chip

and the number of processors. Future process technology will enable integration of large

systems with 100s of processors and large on-chip memory onto a single chip. From our

failure to synthesize the whole system we realize that synthesis tools that can handle large

designs are needed to compile large designs and produce area and timing results.

REFERENCES

 75

1. Dana S.Henry and Christopher F. Joerg “A Tightly-Coupled Processor Network

Interface”, Proceedings of the 5th ASPLOS, October 1992, pp. 111-122.

2. LSI Logic Corporation Homepage available at, http://www.lsilogic.com.

3. JiriGaisler’s Research Homepage available at, http://www.gaisler.com.

4. “Overview of G11™ Cell-Based Technologies”, LSI Logic ASKK

Documentation System, Copyright © 1983- 1999 LSI Logic Corporation.

5. Thomas Connan’s Home Page available at,

http://www.mindspring.com/~tcoonan/.

6. Michael John Sebastian Smith, “Application Specific Integrated Circuits “, VLSI

system series, Addison Wesley, 1997, pages 16-17.

7. San-Won Lee, Yun-Seob Song, Soo-Won Kim, Hyeong-Cheol Oh, Woo-Jong

Hahn “RAPTOR: A Single Chip Multiprocessor”, The First IEEE Asia Pacific

Conference on ASICs, 1999.Ap-ASIC ’99 on pages 217-220.

8. MPLAB, Integrated Development Environment from Microchip available at,

http://www.microchip.com.

9. Aldec Incorporation, Design Verification Company, available at,

http://www.aldec.com.

10. OPENCORES organisation home page available at, http://www.opencores.org/.

11. Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson and Kunyung

Chang,” The Case of a Single Chip Multiprocessor”, Proceedings of the 7th

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS VII), pages 2 to 11.

 76

APPENDIX

A.1. VHDL model:

 TABLE A.1 LEON model hierarchy

Entity/Package File name Function

LEON leon.vhd LEON top level

entity

LEON_PCI leon_pci.vhd LEON/PCI top

level entity

LEON/MCORE mcore.vhd Main core

LEON/MCORE/CLKGEN clkgen.vhd Clock generator

LEON/MCORE/RSTGEN rstgen.vhd Reset generator

LEON/MCORE/AHBARB ahbarb.vhd AMBA/AHB

controller

LEON/MCORE/APBMST apbmst.vhd AMBA/APB

controller

LEON/MCORE/MCTRL mctrl.vhd Memory

controller

LEON/MCORE/MCTRL/BPROM bprom.vhd Internal boot

prom

LEON/MCORE/PROC proc.vhd Processor core

LEON/MCORE/PROC/CACHE cache.vhd Cache module

LEON/MCORE/PROC/CACHE/CACHEMEM cachemem.vhd Cache ram

 77

LEON/MCORE/PROC/CACHE/DCACHE dcache.vhd Data cache

controller

LEON/MCORE/PROC/CACHE/ICACHE icache.vhd Instruction cache

controller

LEON/MCORE/PROC/CACHE/ACACHE acache.vhd AHB/cache

interface module

LEON/MCORE/PROC/IU iu.vhd Processor integer

unit

LEON/MCORE/PROC/MUL mul.vhd Multiplier state

machined

LEON/MCORE/PROC/DIV div.vhd radix-2 divider

LEON/MCORE/PROC/FP1EU fp1eu.vhd parallel FPU

interface

LEON/MCORE/PROC/REGFILE regfile.vhd Processor register

file

LEON/MCORE/IRQCTRL irqctrl.vhd Interrupt

controller

LEON/MCORE/IOPORT ioport.vhd Parallel I/O port

LEON/MCORE/TIMERS timers.vhd Timers and

watchdog

LEON/MCORE/UART uart.vhd UARTs

LEON/MCORE/LCONF lconf.vhd LEON

configuration

 78

register

LEON/MCORE/AHBSTAT ahbstat.vhd AHB status

register

TABLE A.2 LEON packages

Package File name Function

TARGET target.vhd Pre-defined configurations

for various targets

DEVICE device.vhd Current configuration

CONFIG config.vhd Generation of various

constants for processor and

caches

SPARCV8 sparcv8.vhd SPARCV8 opcode

definitions

IFACE iface.vhd Type declarations for

module interface signals

MACRO macro.vhd Various utility functions

AMBA amba.vhd Type definitions for the

AMBA buses

AMBACOMP ambacomp.vhd AMBA component

declarations

MULTLIB multlib.vhd Multiplier modules

 79

FPULIB fpu.vhd FPU interface package

DEBUG debug.vhd Debug package with

SPARC disassembler

TECH_GENERIC tech_generic.vhd Generic regfile and pad

models

TECH_ATC25 tech_atc25.vhd Atmel ATC25 specific

regfile, ram and pad

generators

TECH_ATC35 tech_atc35.vhd Atmel ATC35 specific

regfile, ram and pad

generators

TECH_MAP tech_map.vhd Maps mega-cells according

to selected target

This hierarchy can be better visualized using the Figure 3.2. The files of our concern are

target.vhd and device.vhd. "target.vhd" contains the various configurations for each of the

components from which we can select the LEON configuration

A.2 Configuring LEON:

The following features of LEON are configurable

 80

- Cache 2K – 64Kbytes

- Optional Coprocessor

- Optional Floating point Unit

- Ram and ROM sizes (upto 512MB ROM and 1GB RAM)

- 8 bit or 16 bit operation of bus

The memory configuration is used to configure the prom and I/O access. The following is

the description of each field.

- [3:0]: Prom read wait states. Defines the number of wait states during prom read

cycles (“0000”=0,“0001”=1,... “1111”=15).

- [7:4]: Prom write wait states. Defines the number of wait states during prom write

cycles (“0000”=0, “0001”=1,... “1111”=15).

- [9:8]: Prom with. Defines the data with of the prom area (“00”=8, “01”=16,

“10”=32).

- [10]: Reserved

- [11]: Prom write enable. If set, enables write cycles to the prom area.

- [17:12]: Reserved

- [18]: External address latch enable. If set, the address is sent out unlatched and

must be latched by external address latches.

- [19]: I/O enable. If set, the access to the memory bus I/O area are enabled.

- [23:20]: I/O wait states. Defines the number of wait states during I/O accesses

(“0000”=0,“0001”=1, “0010”=2,..., “1111”=15).

- [25]: Bus error (BEXCN) enable.

- [26]:Bus ready (BRDYN) enable.

 81

- [28:27]: I/O bus width. Defines the data with of the I/O area (“00”=8, “01”=16,

“10”=32).

A.3 Hex to Memory BFM Converter:

 The C-program shown below is used to convert the output hex file obtained from

MPLAB to a memory BFM compatible with the RISC8 core.

hex_pram.c:

#include <stdio.h>

#include <stdlib.h>

main()

{

 FILE *fptr1, *fptr2;

 char hex_file[20], line[44], pram_file[20];

 int x=0,index=0;

 printf("Give the file name to read:");

 scanf("%s",hex_file);

 // transfer the data to pram only if

 // file is opened without error

 if((fptr1=fopen(hex_file,"r"))!=NULL){

 82

 printf("Give the output file name:");

 scanf("%s",pram_file);

 fptr2=fopen(pram_file,"w+");

 // initial statements in teh file

 fprintf(fptr2,"//

// Synchornous Data RAM, 12x2048

//

// Replace with your actual memory model..

//

module pram_00 (

 clk,

 address,

 we,

 din,

 dout

);

input clk;

input [10:0] address;

input we;

input [11:0] din;

output [11:0] dout;

 83

// synopsys translate_off

parameter word_depth = 2048;

reg [10:0] address_latched;

// Instantiate the memory array itself.

reg [11:0] mem[0:word_depth-1];

initial

 begin ");//end of first part

 // read from the file till

 // the EOFis encountered

 while(fscanf(fptr1,"%s",line)!=EOF){

 printf(" \n\t %s",line);

 x=9;

 // write the memory values to pram file

 while(line[x+2]!='\0'){

fprintf(fptr2,"mem[%d]=12'h%c%c%c;\n",index,line[x+3],line[x],line[x+1]);

 x=x+4;

 84

 index++;

 }//ends while(line[....

 }//ends while(fscanf...

 // the last instruction after sleep

 // should be a nop

 fprintf(fptr2,"mem[%d]=12'h000;\n end",index-1);

 // write the second part

 fprintf(fptr2,"// Latch address\n

always @(posedge clk)\n

 address_latched <= address;\n

 \n

// READ\n

//assign dout = mem[address_latched];\n

assign dout = mem[address];\n

\n

// WRITE\n

always @(posedge clk)\n

 if (we) mem[address] <= din;\n

\n

// synopsys translate_on\n

 85

\n

endmodule\n");

 fclose(fptr2);//closes pram_file

 }

 else{

 printf("unable to open the file: %s",hex_file);

 }//ends if-else

 printf("\n");

 fclose(fptr1);

}

A.4. Router Array Generator

 In order to have the flexibility in the size of the router array and to avoid rewriting

the connection between the router, network interface and a processor core, we developed

the following two files, ro_array.c and roa_pic.c. The executables of these files take the

array size and name of the output file as the input.

 86

ro_array.c: This file generates the array of routers along with network interfaces.

#include <stdio.h>

main()

{

 FILE * fptr;

 char ver_file[20];

 int size, i,j,pos,l,r,t,b;

 int modulus(int x, int y);

 printf("\n Give the size of the array\n (Ex: For 16 x 16 size is 16):");

 fflush(stdin);

 scanf("%d",&size);

 if(size<2 || (size%2 !=0))

 {

 printf("\n\n The size has to be an even number greater than or equal to 2\n");

 exit(1);

 }

 printf("\n Give output file name:");

 fflush(stdin);

 87

 scanf("%s",ver_file);

 //create a file

 fptr = fopen(ver_file, "w+");

 if(fptr == NULL)

 {

 printf(" \n error in opening a file");

 }

 fprintf(fptr,"\n module top;

reg Clk, Rst;

reg[3:0] HalfWidth; //used to sel. the short route inside dim ring

reg[3:0] WidthM1; //the right (top) end node number");

 for(i=0;i<size;i++)

 {

 for(j=0;j< size;j++)

 {

 pos = i + j * size;

 // the defining of ports

 fprintf(fptr," \n

reg[7:0] NodeAddr%d; //assume a 8 bits addr, 2+8 bits flit/phit",pos);

 88

 fprintf(fptr," \nwire[9:0] D%dIn_Inj;",pos);

 fprintf(fptr," \nwire d%dWt_Inj;",pos);

 fprintf(fptr," \nwire d%dNF_Inj;",pos);

 fprintf(fptr," \nwire[9:0] D%dOut_YP, D%dOut_YN, D%dOut_XP, D%dOut_XN,

D%dOut_Ej;",pos,pos,pos,pos,pos);

 fprintf(fptr," \nwire[2:0] u%dWt_YP, u%dWt_YN, u%dWt_XP,

u%dWt_XN;",pos,pos,pos,pos);

 fprintf(fptr," \nwire u%dWt_Ej;", pos);

 fprintf(fptr," \nwire[2:0] u%dNF_YP, u%dNF_YN, u%dNF_XP,

u%dNF_XN;",pos,pos,pos,pos);

 fprintf(fptr," \nwire u%dNF_Ej;", pos);

 fprintf(fptr," \nwire[1:0] u%dE_YP, u%dE_YN, u%dE_XP,

u%dE_XN;",pos,pos,pos,pos);

 }

 }

 for(i=0;i<size;i++)

 {

 for(j=0;j< size;j++)

 {

 89

 pos = i + j * size;

 l = modulus((i-1), size) + j * size;

 r = modulus((i+1), size) + j * size;

 t = modulus((j+1), size) * size + i;

 b = modulus((j-1), size) * size + i;

 // instantiation of modules

 fprintf(fptr, "\n\n ni ni_%d(Clk,Rst, D%dIn_Inj,d%dWt_Inj,d%dNF_Inj,

D%dOut_Ej,u%dWt_Ej,u%dNF_Ej);",pos,pos,pos,pos,pos,pos,pos);

 fprintf(fptr,"\n Router r_%d(Clk,Rst,NodeAddr%d, HalfWidth, WidthM1,",pos,pos);

 fprintf(fptr," \n D%dOut_YP, D%dOut_YN, D%dOut_XP, D%dOut_XN,

D%dIn_Inj,",b,t,l,r,pos);

 fprintf(fptr," \n u%dWt_YP, u%dWt_YN, u%dWt_XP, u%dWt_XN,

d%dWt_Inj,",b,t,l,r,pos);

 fprintf(fptr," \n u%dNF_YP, u%dNF_YN, u%dNF_XP, u%dNF_XN,

d%dNF_Inj,",b,t,l,r,pos);

 fprintf(fptr," \n u%dE_YP, u%dE_YN, u%dE_XP, u%dE_XN, ",b,t,l,r);

 fprintf(fptr," \n D%dOut_YP, D%dOut_YN, D%dOut_XP, D%dOut_XN,

D%dOut_Ej,",pos,pos,pos,pos,pos);

 fprintf(fptr," \n u%dWt_YP, u%dWt_YN, u%dWt_XP, u%dWt_XN,

u%dWt_Ej,", pos,pos,pos,pos,pos);

 90

 fprintf(fptr," \n u%dNF_YP, u%dNF_YN, u%dNF_XP, u%dNF_XN,

u%dNF_Ej,", pos,pos,pos,pos,pos);

 fprintf(fptr," \n u%dE_YP, u%dE_YN, u%dE_XP, u%dE_XN);",

pos,pos,pos,pos);

 }//end of loop for j

 }// end of loop for i

 fprintf(fptr,"\n\ninitial

 begin

 HalfWidth <= 4'd%d;

 WidthM1 <= 4'd%d;

 Clk <= 1'b0;

 Rst <=1'b0;",size/2,size);

 fprintf(fptr,"\n end

always

 begin

 #5 Clk = ~Clk;

 end

initial

 begin

 #10 Rst <=1'b1;

 91

 #10 Rst <=1'b0;

 #500

 $finish;

 end ");

 fprintf(fptr," \n\n endmodule\n");

 fclose(fptr);

} // end of main prog

int modulus(int i, int j)

{

 int x;

 if((i%j)<0)

 {

 x = j + (i % j);

 }

 else

 {

 x = i%j;

 }

 return x;

 92

}

roa_pic.c: This file generates the top module for a multicomputer system with the array

of routers connected to the network interface along with a processor. The input is the

array size and output file name.

#include <stdio.h>

main ()

{

 FILE * fptr;

 char ver_file[20];

 int size, i,j,pos,l,r,t,b;

 int modulus(int x, int y);

 printf("\n Give the size of the array\n (Ex: For 16 x 16 size is 16):");

 fflush(stdin);

 scanf("%d",&size);

 if(size<2 || (size%2 !=0))

 {

 printf("\n\n The size has to be an even number greater than or equal to 2\n");

 93

 exit(1);

 }

 printf("\n Give output file name:");

 fflush(stdin);

 scanf("%s",ver_file);

 //create a file

 fptr = fopen(ver_file, "w+");

 if(fptr == NULL)

 {

 printf(" \n error in opening a file");

 }

 fprintf(fptr,"\n module top;

reg Clk, Rst;

reg[3:0] HalfWidth; //used to sel. the short route inside dim ring

reg[3:0] WidthM1; //the right (top) end node number");

 for(i=0;i<size;i++)

 {

 for(j=0;j< size;j++)

 {

 pos = i + j * size;

 94

 // the defining of ports

 fprintf(fptr," \n

reg[7:0] NodeAddr%d; //assume a 8 bits addr, 2+8 bits flit/phit",pos);

 fprintf(fptr," \nwire[9:0] D%dIn_Inj;",pos);

 fprintf(fptr," \nwire d%dWt_Inj;",pos);

 fprintf(fptr," \nwire d%dNF_Inj;",pos);

 fprintf(fptr," \nwire[9:0] D%dOut_YP, D%dOut_YN, D%dOut_XP, D%dOut_XN,

D%dOut_Ej;",pos,pos,pos,pos,pos);

 fprintf(fptr," \nwire[2:0] u%dWt_YP, u%dWt_YN, u%dWt_XP,

u%dWt_XN;",pos,pos,pos,pos);

 fprintf(fptr," \nwire u%dWt_Ej;", pos);

 fprintf(fptr," \nwire[2:0] u%dNF_YP, u%dNF_YN, u%dNF_XP,

u%dNF_XN;",pos,pos,pos,pos);

 fprintf(fptr," \nwire u%dNF_Ej;", pos);

 fprintf(fptr," \nwire[1:0] u%dE_YP, u%dE_YN, u%dE_XP,

u%dE_XN;",pos,pos,pos,pos);

 fprintf(fptr," \nwire

nf%d,ne%d,dt0%d,dt1%d,expread%d,expwrite%d;",pos,pos,pos,pos,pos,pos);

 fprintf(fptr," \nwire[7:0]expdin%d,expdout%d;",pos,pos);

 fprintf(fptr," \nwire[6:0]expaddr%d;",pos);

 fprintf(fptr," \nwire[10:0]paddr%d,debugpc%d;",pos,pos);

 95

 fprintf(fptr," \nwire[11:0]pdata%d,debuginst%d;",pos,pos);

 fprintf(fptr," \nreg [11:0]din%d;",pos);

 fprintf(fptr," \nreg we%d;",pos);

 fprintf(fptr,"

\nwire[7:0]portain%d,portbout%d,portcout%d,debugw%d,debugstatus%d;",pos,pos,pos,p

os,pos,pos);

 }

 }

 for(i=0;i<size;i++)

 {

 for(j=0;j< size;j++)

 {

 pos = i + j * size;

 l = modulus((i-1), size) + j * size;

 r = modulus((i+1), size) + j * size;

 t = modulus((j+1), size) * size + i;

 b = modulus((j-1), size) * size + i;

 // instantiation of modules

 96

 fprintf(fptr,"\n\n cpu

cp%d(Clk,Rst,paddr%d,pdata%d,portain%d,portbout%d,portcout%d,",pos,pos,pos,pos,p

os,pos);

fprintf(fptr,"expdin%d,expdout%d,expaddr%d,expread%d,expwrite%d,debugw%d,debug

pc%d,",pos,pos,pos,pos,pos,pos,pos);

 fprintf(fptr,"debuginst%d,debugstatus%d);",pos,pos);

 fprintf(fptr,"\n pram_00

p%d(Clk,paddr%d,we%d,din%d,pdata%d);",pos,pos,pos,pos,pos);

 fprintf(fptr, "\n ni

ni_%d(Clk,Rst,portain%d[0],portain%d[1],portain%d[2],portain%d[3],expdin%d,expdou

t%d,expaddr%d,expread%d,expwrite%d,",pos,pos,pos,pos,pos,pos,pos,pos,pos,pos);

 fprintf(fptr," D%dIn_Inj,d%dWt_Inj,d%dNF_Inj,

D%dOut_Ej,u%dWt_Ej,u%dNF_Ej);",pos,pos,pos,pos,pos,pos);

 fprintf(fptr,"\n Router r_%d(Clk,Rst,NodeAddr%d, HalfWidth, WidthM1,",pos,pos);

 fprintf(fptr," \n D%dOut_YP, D%dOut_YN, D%dOut_XP, D%dOut_XN,

D%dIn_Inj,",b,t,l,r,pos);

 fprintf(fptr," \n u%dWt_YP, u%dWt_YN, u%dWt_XP, u%dWt_XN,

d%dWt_Inj,",b,t,l,r,pos);

 fprintf(fptr," \n u%dNF_YP, u%dNF_YN, u%dNF_XP, u%dNF_XN,

d%dNF_Inj,",b,t,l,r,pos);

 fprintf(fptr," \n u%dE_YP, u%dE_YN, u%dE_XP, u%dE_XN, ",b,t,l,r);

 97

 fprintf(fptr," \n D%dOut_YP, D%dOut_YN, D%dOut_XP, D%dOut_XN,

D%dOut_Ej,",pos,pos,pos,pos,pos);

 fprintf(fptr," \n u%dWt_YP, u%dWt_YN, u%dWt_XP, u%dWt_XN,

u%dWt_Ej,", pos,pos,pos,pos,pos);

 fprintf(fptr," \n u%dNF_YP, u%dNF_YN, u%dNF_XP, u%dNF_XN,

u%dNF_Ej,", pos,pos,pos,pos,pos);

 fprintf(fptr," \n u%dE_YP, u%dE_YN, u%dE_XP, u%dE_XN);",

pos,pos,pos,pos);

 }//end of loop for j

 }// end of loop for i

 fprintf(fptr,"\n\ninitial

 begin

 HalfWidth <= 4'd%d;

 WidthM1 <= 4'd%d;

 Clk <= 1'b0;

 Rst <=1'b0;",size/2,size);

 fprintf(fptr,"\n end

always

 begin

 #5 Clk = ~Clk;

 end

initial

 98

 begin

 #10 Rst <=1'b1;

 #10 Rst <=1'b0;

 #500

 $finish;

 end ");

 fprintf(fptr," \n\n endmodule\n");

 fclose(fptr);

} // end of main prog

int modulus(int i, int j)

{

 int x;

 if((i%j)<0)

 {

 x = j + (i % j);

 }

 else

 {

 x = i%j;

 99

 }

 return x;

}

