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ABSTRACT 

 

Availability of highly dense chips has made systems-on-a-chip a reality. In this context, 

systems with multiple processors are being built on a single chip to achieve higher 

performance. With the availability of freely distributed Intellectual Property (IP) 

processor cores and related tools, it is possible for university projects such as ours to 

engage in this type of system development. We have built fine-grained, highly parallel, 

virtual multicomputers-on-a-chip using IP cores to establish this proof-of-concept.  We 

have established an evaluation methodology whereby the various architectural tradeoffs 

in this class of designs can be examined.  The functionality of individual components and 

several systems as a whole are verified using commercial simulation tools. Sample area 

and timing results that were generated using commercial synthesis tools have indicated 

possible physical implementations of multicomputers-on-a-chip. 
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1. INTRODUCTION 

 

1.1. Motivation   

Recent advances in process technology have resulted in increased gate densities and 

better wiring technology, enabling systems-on-a-chip. Consequently, it is now possible to 

integrate multiple processors and a communication network onto a single substrate to 

create multicomputer systems. Such a system avoids costly off-chip inter-processor 

communication resulting in high-speed transfer of data among processors and potentially 

very high performance for appropriate applications. The availability of processor cores 

and tools for their integration allows university projects such as ours to explore the design 

space of high-performance single chip systems, particularly for domains such as 

computer vision. Recently, resources have become available that provide a wide choice 

of 8-bit and 32-bit processor cores. We use two such cores RISC8 and LEON to do 

experimentation and understand the issues involved and to gain experience with building 

a virtual multicomputer system.  

 

1.2. Objective 

System-on-a-chip technology has the advantages of lower power, greater reliability, and 

lower cost. With removal of chip boundaries, the off-chip communication among 

processor chips is converted to on-chip communication among processing elements. 

Removal of chip boundaries, however, also changes some of the design considerations 

for a multicomputer.  Among these are processor granularity, type of communication 

network, bus width to access memory off-chip, and the amount of memory on-chip. In 



 

 2

this thesis, we address the implementation issues of building a multicomputer system-on-

a-chip using IP cores with the goal of enabling exploration of this design space. 

 

1.3. Context 

 Process technology has improved over the years and it is now possible to have up to 100 

million transistors or more on a single chip. Thus, more and more system functionality 

can be integrated onto a single chip, reducing the number of chips in the system.  

However, there is a choice of what to put in a single chip.  Two extremes are a powerful 

processor with L2 cache on the one hand and a large number of very simple processors 

and their interconnections on the other. Processors such as the wide issue, dynamically 

scheduled, super scalar Alpha 21464 are a good example of the first type. However, 

studies [11] show that the implementation complexity of the dynamic issue mechanisms 

and the size of register file scale quadratically with increasing issue width and ultimately 

impact the cycle time of the machine. Therefore, an alternative is suggested [11] where 

several less-complex processors on the same chip would use the real estate efficiently and 

scale well.  Presently systems like RAPTOR [7] have demonstrated the integration of 

multiple processors on a single chip. Further improvement in the transistor count is 

inevitable, which only means higher integration or the integration of whole multiple 

processor systems onto a single chip.  We feel that a logical extension of the multiple 

processors on a chip approach is to consider a variety of candidate processors, including 

those with very simple CPUs. 

New design methodologies have been devised to handle this complexity and have 

reduced product time-to-market considerably. Use of IP cores is one such improvement: 
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integrating these “pre-designed” components reduces development time as the system is 

built around the core. Semiconductor companies such as LSI logic [2] license IP cores 

along with related tool support. Lately, open source IP cores have also become available 

and rapid development of designs at very low cost is now possible. Web resources such 

as the OPENCORES [10] organization are attempting to standardize a methodology in 

developing designs using these cores. We have used the resources provided by such open 

source providers [3, 5].  

  

1.4. Design Criteria and System Specification 

In the previous section, we briefly described some approaches to building systems-on-a-

chip containing multiple processors.  We believe that a potentially fruitful design path for 

high performance processors is to investigate the use of very simple CPUs.  The 

reasoning is that current microprocessors have almost universally been designed with the 

chip boundary as a primary constraint: maximum functionality is placed on the chip and 

the entire available chip area is used.  This approach has especially good possibilities for 

computer vision and graphics applications. 

The design criteria for building systems of this type are: 

- Maximum processing capability 

- Control autonomy of the processors 

- Flexible communication 

- Ease of design 

 

System specifications that satisfy the above criteria 
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- RISC8 and LEON processor cores are relatively simple and publicly available. 

- The communication networks developed in the CAAD lab provide the necessary 

communication capability.  

- Tools such as the MPLAB, LEONCCS are useful in designing, debugging and 

programming. 

 

1.5 Design Methodology and Flow 

The following method for developing the system has been used 

- Obtain processor as an IP core 

- Develop the network interface using Verilog 

- Integrate the communication network 

- Connect the components of the system into a top module  

- Use the top module for simulation and synthesis 

 

The above design methodology is implemented using the design flow shown in 

Figure1.1, which illustrates the various tools used. The design component is entered in 

Verilog or VHDL, or as an IP core. The simulation is done using SILOS, which does 

Verilog simulation only, and Aldec Active-HDL, which does mixed mode simulation. 

After simulation and verification of the design, the synthesis tool (Synopsys) is used to 

synthesize the design to extract area and timing parameters. 

 Use of freely distributed cores has the advantage of low cost in procurement of 

core and related tools. However, the working of these designs is not guaranteed.  
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Figure 1.1 Design Flow 
 

1.6 Results Overview and Significance 

The goal of this research is to build a working virtual multicomputer system using IP 

cores. The processors read programs from the program memory and execute the code 

successfully. These programs are compiled or cross-compiled into the processor 

instruction set and stored into the processors program memory. Results are obtained by 

simulation and synthesis. Simulations verify the working of the system and synthesis 

results give an idea of the physical implementation of the system. Also, issues like 

amount of memory on-chip and off-chip, number of processors and area occupied by 

communication network are shown to be the concerns when building systems on a chip. 

It was possible to synthesize individual components but an attempt to synthesize the 

whole system failed due to the limitation of the Synthesis tool. 

DESIGN ENTRY 

Verilog IP core VHDL 

DIGITAL SIMULATION 

SILOS Active-HDL 

SYNTHESIS 

Synopsys 
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Experience has been gained in building a Virtual Multicomputer system: from the 

results it is realized that better tools for synthesis will enable better estimation of the 

physical implementation. With the next generation of process technologies, it will be 

possible to design a larger system with a more significant processor. 

 

1.7 Thesis Outline 

The next chapter builds the background of the traditional multicomputer and integrated 

circuit design. Chapter 3 gives the analysis on the design space by providing the 

assumptions and decisions made on design parameters. Chapter 4 describes issues 

encountered when implementing various components and integrating into a system. 

Experiments done on the implementations are also explained in Chapter 4 and results 

obtained from them are detailed in Chapter 5. Chapter 6 gives the conclusions and some 

ideas for future work. 
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2. BACKGROUND 

This chapter explains the changes in multicomputer design with respect to network 

interface and interconnection networks. The earlier network interfaces and changes that 

have been brought about in recent architectures are discussed. In addition, different 

interconnection networks are mentioned and the reason for selecting an array of routers 

as the communication network is given.  Also included is a brief description of the design 

methodology used in building the system using IP cores. 

 

2.1 Multicomputer Systems  

Multicomputer architectures employ complete computers as building blocks – including 

processor, memory and I/O system. Early multicomputers were essentially the same as 

NUMA shared memory architectures, differing in integration of communication at the 

I/O level rather than the memory level. However, the trend has been to integrate the 

communication module more deeply into the memory system as well and to transfer data 

directly from user address space. Some designs provide DMA transfers across the 

network, from memory on one machine to memory on the other machine, so the network 

interface or the communication module is integrated fairly deep into the memory system. 

The nodes, consisting of the processor and network interface, interact with each other by 

connecting themselves to interconnection network such as a crossbar, multistage 

interconnection network or a bus interconnect.  Proper design of a network interface and 

the communication network can result in a high performance system. The next section 

describes the developments in network interface design. 
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2.1.1 Network Interface Design 

Early multicomputers provided hardware primitives that were very close to the simple 

send/receive user-level communication. A node of the multicomputer system was 

connected to a fixed set of neighbors in a regular pattern by point-point links that 

behaved as simple FIFOs. Hypercube was an example of such an organization, where the 

synchronous message passing was implemented. This direct FIFO design was soon 

replaced by direct memory access (DMA), allowing non-blocking sends. The physical 

topology of these designs dominated the programming model. However, to make the 

machines more general purpose, support for communication between arbitrary processors 

was provided rather than just the physical neighbors. One example of such an approach is 

the store and forward where the transfer time is proportional to the number of hops it 

takes through the network.  

 The emphasis on network topology was significantly reduced with the 

introduction of more general-purpose networks, which pipelined the message transfer 

through each of the routers forming the interconnection machine. Processor clock 

frequencies are approaching the gigahertz range and the network switch latencies 

dropped to tens of nano seconds. This explosive growth also exposes processor accesses 

to the network interface as the critical bottleneck for fine-grain communication. The 

incremental delay introduced by each hop is small enough that the transfer time is 

dominated by the time to simply move the data between processor and the network.  So 

emphasis is given to reduce the latency caused by overhead due to Operating System 

involvement. We have mentioned earlier in this section that network interface might 

prove to be a bottleneck when we have fast processor and the network, however there are 
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some issues like scaling which make us think about the communication network we are 

going to use in the system on chip. The next section explains the reason for selection of a 

communication network for our system. 

 

2.2 Communication Network Design 

The communication networks in multicomputers, multiprocessor and Network Of 

Workstations (NOW) are asynchronous networks with distributed control. These 

networks can be classified based on network topology as shared, direct, indirect or hybrid 

mediums.  

Shared Medium: all the devices share the transmission medium. Scaling the devices will 

not scale the bandwidth so there might be a decrease in performance with scaling. 

Direct Medium: The devices are connected to the nearest neighbors with point-to-point 

links. Communication with non-neighbors will require passing through many devices 

resulting in large latency.  

Indirect Medium: The devices use switches to connect to each other. The switches have 

point-to-point links among them.  

Hybrid Medium: from the name it is obvious that a hybrid network is a combination of 

the above networks. 

As mentioned earlier Shared medium networks are not scalable as their bandwidth 

gets spilt between the devices. So the best alternative is to use switch or router based 

networks as the bandwidth scales with the number of nodes. But the disadvantage would 

be that the cost increases due to increase in the number of switches/routers. An 

alternative, wherein the cost of increasing the routers is small is required. With advances 
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in process technology chips with greater density are possible, which can incorporate 

whole of the multicomputer system with the nodes and switches/routers. So the cost 

reduces to manufacturing one single chip and we meet the budget even with a better 

scaling network. Thus the use of an array of routers with point-to-point links as an 

interconnection network will provide scaling and due to better process technology, be 

cost effective.  

The next section introduces Integrated circuit design flow and also the design 

methodology, which illustrates IP core usage in the design. This should help in building a 

background for understanding our design methodology. 

 

2.3. Integrated Circuit Design  

In the current revolution of IC and microelectronics design, large number of logic 

elements can be put on a single chip die. Number of transistors on a single die can be as 

many as 33 million, which enables designers to put large systems on a single chip. This 

progress, in turns, lead to the introduction of new design methodologies and techniques. 

This technology is called System-on-Chip "SoC" that uses different design blocks made 

by several designers. These designs should be reusable ones so as to reduce the time 

needed to develop the same functionality again by other group.  

This system-on-chip (SOC) solution has the advantages of lower power, greater 

reliability and low cost, making it possible to have a cost-effective solution for high 

performance parallel architectures.   

 

2.3.1. ASIC Design Flow 
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The steps involved in the conventional ASIC design [6] are listed below (numbered to 

correspond to the labels in Figure 2.1 with brief description of the function of each step. 

1. Design Entry: Enter the design into an ASIC design system, either using a 

hardware description language (HDL), schematic entry, block diagram or state 

diagram. 

2. Logic Synthesis: Use an HDL (VHDL or Verilog) and a logic synthesis tool to 

produce a net list, which is a description of the logic cells and their connections. 

3. System Partitioning: Divide a large system into ASIC-sized pieces. 

4. Prelayout Simulation: Check to see if the design functions correctly 

5. Floorplanning: Arrange the blocks of the net list on the chip. 

6. Placement: Decide the location of the cells in the block. 

7. Routing: Make the connections between cells and blocks. 

8. Extraction: Determine the resistance and capacitance of the interconnect. 

9. Postlayout Simulation: Check to see the design still works with the added loads of 

the interconnect. 

 

The sequence of steps in design flow, to design an Application Specific Integrated 

Circuit (ASIC) is shown in Figure 2.1. 
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Figure 2.1 ASIC Design flow 

 

We are concerned with the first two stages in the design flow, design entry and 

logic synthesis in our thesis. The next section describes the conventional design 

methodology of using IP cores, which is what we use in our system design. 
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2.3.2. Design Methodology 

The functional blocks used in chip design are available as Intellectual Property 

(IP) cores or macros. Use of hard, soft, and configurable cores for system-on-a-chip 

(SOC) designs is becoming common with new and improved design processes and design 

flow. One instance of this design methodology is LSI Logic [1] CoreWare Design 

Methodology. LSI logic, the semiconductor company, through its CoreWare 

methodology provides the IP core and related support with tools and libraries which 

enable successful integration of the IP core and additional logic surrounding the core onto 

a single silicon substrate.  Use of proven cores aids in design reuse, which reduces the 

design time.   

  A core or macro is the Intellectual Property of the core developers, made 

available as soft, firm and hard macros. The soft macros are the RTL net lists, which can 

be synthesized and configured. To protect the macros they may be encrypted. Firm 

macros are Synthesized Gate level net lists. Simulation using gate level net list takes a 

prohibitively long time so behavior level code is also given. Hard macros are already laid 

out and characterized for a specific process technology. Here also behavior level code is 

given for simulation. The advantage of a hard macro is that it reduces the number of 

iterations, but the disadvantage is that it is tied up to a process technology. The hard 

macro is like a black box whose interface is known, but the implementation is not 

obvious to the user of the core.   

In the next chapter we look at the design parameters and the assumptions made in 

order to make it possible to build the multicomputer system. 
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3. DESIGN SPACE 

In this chapter we outline the parameters and assumptions made in the design of 

multicomputer system on a chip. 

 

3.1. Assumptions and Parameters 

With removal of chip boundaries the design parameters or concerns have shifted to the 

processor granularity (area, frequency and performance), network latency, on-chip 

memory and off-chip memory. The following sections give the details of the analysis we 

have done to explore the design space. 

 

3.1.1. Processor Evaluation 

The first task in building the multicomputer system was to acquire the processor as an IP 

core. We obtained the technology libraries for logical synthesis from LSI logic [2] and so 

evaluated the processor cores available from LSI logic. The following Table3.1 

summarizes the features of each processor with respect to area, frequency and 

performance.  

TABLE 3.1. Processor Evaluation 

Core Area Freque-

ncy  

Perfor-

mance. 

Power ISA Process Cache  

Tiny 

RISC 

4102 

1.1 mm2 85MHz N/A 0.5mW/

MHz 

MIPS 

I/II 

2.5v @ 

0.25um 

No 

cache 
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Tiny 

RISC 

4103 

1.9 mm2 120MH

z 

N/A 0.5mW/

MHz 

MIPS 

I/II 

1.8v @ 

0.18um 

32KB I-

cache 

and D-

cache 

Mini 

RISC  

EZ4021 

12 mm2 250MH

z 

275 

DMIPS 

@250M

H 

2.6mW/

MHz 

MIPS 

III 

1.8v @ 

0.18um 

16KB 

2-way I-

cache 

and D-

cache 

SR1-

GX 

21 mm2 

to  29 

mm2 

333- 

400 

MHz 

2 

MIPS/M

Hz 

1.4W 

@ 

400MH

z 

MIPS 

IV 

1.8v @ 

0.18um 

Upto 

64KB 

 

ARM94

6E-S 

2.6mm2  

@0.18u

m 

(ARM96

6E-S) 

200MH

z 

1.1 

MIPS/M

Hz 

N/A ARM9E 1.8v 

@0.18u

m 

4kB to 

1MB  

LSI Logic has developed a robust library containing some of the most advanced 

cores in the industry. All cores have been proven in silicon with a fixed layout to ensure 

accurate timing and predictability. Microprocessor cores provided by LSI Logic include  

ARM7TDMI, ARM9E, MiniRISC, TinyRISC. The search was for a processor, which is 

small but powerful and a good number of these, along with network interface and 
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interconnection network should fit in a 1 cm2 die.  Among the above five short-listed, 

TinyRISC is the smallest, but its frequency of operation is small and it does not include 

on-chip cache. The next one in line is the  MiniRISC, which has on-chip cache and higher 

performance, and with 12mm2 area, it appears to be a good candidate. ARM7TDMI with 

2.6mm2 is even better.  

 To avoid the expense involved in licensing these processor cores, at least initially, 

we decided to experiment with toy processors available for free. Two of them have been 

downloaded, one is the RISC8 and the other is LEON processor.  

 

3.1.2. RISC8 

A free IP core compatible with the MicroChip 16c57 8-bit processor was obtained from 

the web site of Thomas A Coonan [5]. It is coded in Verilog.  

 

3.1.2.1. Features 

- Harvard Architecture with separate program and data memory 

- Binary code compatible with the Microchip 16C57 

- Up to 72 8-bit data words and 2048 12-bit program words (configurable) 

- It has an accumulator-based instruction set (33 instructions).  

- Pipelines its Fetch and Execute 

- The Register File uses a banking scheme and an Indirect Addressing mode.  

- The Program memory (PRAM) is a separate memory from the Register File and is 

outside the core. 



 

 17

- The ALU is very simple and includes the minimal set of 8-bit operations (ADD, 

SUB, OR, AND, XOR, ROTATE, etc.) 

-  The Instruction Decoder is a purely combinatorial look-up Table that supplies 

key control signals 

 

3.1.2.2. Block Diagram 

The RISC8 had two input ports and one output port, which were unidirectional. The 

Figure 3.1 below shows the components of the original processor core, where output data 

is sent to Port B and PortC input data is read from Port A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The Block Diagram of RISC8 

Microchip 16c57 

Program Memory 
(2048 X 12) 
 

Data Memory 
(72 X 8) 
 

PortA 

PortB 

PortC
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3.1.3. LEON 

The second free IP core is based on the 32-bit architecture of SPARC version 8. It is 

obtained from the site maintained by Jiri Gaisler [3], which coded in VHDL. The VHDL 

model is fully synthesizable and contains synthesis scripts. 

 

 

 

3.1.3.1. Features 

- The Integer Unit has the following features: 

o  5-stage instruction pipeline 

o  Separate instruction and data cache interface 

o  Support for 2 - 32 register windows 

- Multiprocessor synchronization instructions  

o Atomic read-then-set-memory operation 

o Atomic exchange-register-with-memory operation. 

- Architecture defines coprocessor instruction set in addition to the floating-point 

instruction set. 

 

3.1.3.2. Block Diagram 

The Figure 3.2 below shows the block diagram of the LEON processor with integer unit, 

cache, optional FPU and coprocessor, AHB/APB bus controllers and memory controller.  



 

 19

 

Figure 3.2 Block Diagram of LEON Processor Core 

 

3.1.3.3. Previous Implementations 

Targeting a 0.25 um CMOS process (std-cell), more than 125 MHz can be reached with a 

gate count of less than 30 K gates. The processor also fits in an Altera Xilinx XV300 The 

Following synthesis results were achieved 

  

TABLE 3.2. Previous implementations of LEON 

Technology Area Timing 

UMC 0.25 CMOS std-

cell  
35K gates + RAM 130 MHz (pre-layout) 

Atmel 0.25 CMOS std-

cell  
33K gates + RAM 140 MHz (pre-layout, log file)

Atmel 0.35 CMOS std-

cell  
2 mm2 + RAM 65 MHz (pre-layout, log file) 
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Xilinx XCV300E-8 
4,800 LUT + block 

RAM 
45 MHz (post-layout) 

Xilinx XCV800-6 
4,800 LUT + block 

RAM 

35 MHz (post-layout, log1, 

log2) 

Altera 20K200C-7 
5,700 LCELLs + EAB 

RAM 
49 MHz (post-layout) log file 

Altera 20K200E-1X 
6,700 LCELLs + ESB 

RAM 
37 MHz (post-layout) log file 

 

The area in the Table reflects the complete processor with on-chip peripherals and 

memory controller. The area of the processor core only (IU + cache controllers) is about 

half of that. The timing for the ASIC technologies has been obtained using worst-case 

process corner and industrial temperature range.  

  Based on the above information it is clear that LEON has larger cache on-chip, is 

pipelined and is better suited for systems with multiple processors. But complexity of 

LEON is high due to the amount of control involved in instruction processing compared 

to RISC8, so initial experiments have been conducted with RISC8 and then LEON has 

been used later on. 

 

3.1.4. Network Interface  

The existing designs of network interface can be broadly grouped into four categories [1]. 
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1. OS Based DMA Interface: The message handling is relegated to the DMA. A 

message is written into a memory location and an operating system send directive 

is executed.  At the hardware level both machines send and receive messages by 

initiating a DMA transfer between memory and the network channel. Examples of 

such a parallel system are NCUBE and the iPSC/2. There is a large overhead due 

to the involvement of OS, which is justified, as OS involvement is required for 

protection. 

2. User Level Memory Mapped: The important feature of these interfaces is that the 

latency of accessing the network interface is similar to accessing memory. The 

system calls are avoided and since interfaces are user level, extra copies between 

system and user space are eliminated. Examples of this approach include the 

MDP Machine, the CM-5 , the memory communication of iWarp , and the 

message-passing interface of the MIT Alewife . 

3. User level register mapped: The interface resides in the processor register file 

thus allowing rapid access. These models do not support message-passing 

functions. Two examples which support this communication model are the grid 

network of CM-2 and the systolic array of iWARP.  

4. Hardwired interfaces: The communication function is hardwired into the 

processor thus eliminating any software overhead. This approach does not provide 

the programmer the flexibility to allocate resources and has no control over the 

details of how the communication occurs. Examples of this approach are shared 

memory interface of MIT Alewife. 
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From the above four cases, we understand that the network interface we build should 

satisfy the following 

- Be user programmable, should not invoke OS 

- Sending and Receiving should be under the control of user program 

- The processor-network interface should be located closer to the processor register 

file for rapid transfer 

- Frequent message operations like dispatching should be assisted by hardware 

mechanisms 

   

 

3.2. The Multicomputer System 

Increase in chip density can be exploited to integrate a complete system on a chip 

providing a cost effective solution. However, there lies the issue of access to program and 

data, which reside in memory. Since all of it cannot reside on-chip, off-chip memory 

access is inevitable. How much of memory resides on chip will affect the number of 

processors or alternatively their granularity or both. The number of processors or nodes 

will determine the off-chip memory access bandwidth due to pin limitation.  Tradeoff has 

to be made between number of processors, off-chip memory access bandwidth and 

memory on-chip.  

 The interconnection network could be a bus, cross bar, multistage switches or an 

array of routers.  As mentioned in the previous chapter it is better to use an array of 

routers due to better scaling provided by them and the use of systems on chip technology 

and tools we can make it cost effective. 
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  The next chapter gives the specification of the architecture implementations of 

components that will be used for the experimentation. 
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4. IMPLEMENTATION ISSUES 

This chapter gives the details of the implementations done with RISC8 and procedure for 

working with LEON. The necessary changes and proper interface is defined for the 

processor cores in order for them to be part of a Multicomputer System.  

 

4.1. RISC8 

Since RISC8 is the simpler of the two cores, it has been utilized to gain experience in 

using IP cores. RISC8 is available as a soft core described in Verilog HDL, allowing 

modification in its architecture. From the description of RISC8 in previous chapter it is 

known that it has two output ports and one input port. To have point-to-point 

communication among neighboring processors and reduce latency two implementations 

were done. 

 

4.1.1. Implementation-1 

Figure 4.1 below shows the processor after a Communication Module and four 

bidirectional ports were added . The data is put out by storing value in PortB and data is 

taken in by reading from PortA. PortC is used to conFigure the ports as inputs or outputs. 

All the three registers are part of processor register file. At a time one value can be read 

from a port and one value can be broadcast to four ports. 
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The ports are conFigured as 

PortC [7:4]    PortC [3:0] 

0001: N = PortB   0001: PortA = N 

0010: E = PortB   0010: PortA = E 

0100: W = PortB   0100: PortA = W 

1000: S = PortB        1000: PortA = S                 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 4.1. Block diagram of Implementation-1 of RISC8 
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4.1.2 Implementation-2 

Changes have been made to enable block transfer at the hardware level. Three existing 

registers TrisA, TrisB, TrisC were included in the communication module. However, data 

can be transfered from accumlator to these registers but not vice-versa. Since the 

Instruction Set Architecture is accumlator based it would be useful to have data transfer 

capability from these three registers to the accumlator. So PortC, which is the 

configuration register for the ports, can also be used for determining the transfer of data 

between one of the Tris registers and the accumlator.  Figure 4.2  shows the 

communication module added to the RISC8 core.                     

 

 

 

 

                    

                               

                                     

                                     

                                           

                                              

                                           

                                 

FIG 4.2. Block diagram of Implementation-2 
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The bidirectional Ports are conFigured as  

PortC [7:6]: 01  

PortC [5]: Read/Write 

PortC [4:3]: Decide among N, E, W or S 

PortC [2:1]: Number of bytes to be transferred 1, 2 or 3 

PortC [0]: done bit indicating completion of operation 

 

Data transfer between accumulator and the 'Tris' registers is determined as follows 

PortC [7:6]: 10 

PortC [5:3]: 101 Acc <- TrisA 

PortC [5:3]: 110 Acc <- TrisB 

PortC [5:3]: 111 Acc <- TrisC 

 

4.2. LEON 

The LEON processor is SPARC V8 compatible and has support from GNU cross 

compiler, which compiles the C and C++ programs into the instruction set of SPARC V8. 

The cross compiler is known as LEONCCS and is available in the web site of JiriGaisler 

[3]. Also provided are utilities like “mkprom”, which is a binary utility, used to build a 

memory BFM in VHDL for use in simulation. The application program is first cross-

compiled into the processor’s instruction set and then the "mkprom" utility is used to 

form a memory BFM. The memory BFM has the following responsibilities  

- The register files of IU and FPU (if present) are initialized. 
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- The LEON control, wait state and memory configuration registers are set 

according to the specified options. 

- The ram is initialized and the application is decompressed and installed. 

- The text part of the application is optionally write-protected, except the lower 4K 

where the trap table is assumed to reside. 

- Finally, the application is started, setting the stack pointer to the top of external memory.  

 

After booting the processor the application is loaded into the external SRAM and then 

the processor starts fetching the application code.  

 

4.3. Network Interface Design 

To connect and access the network interface the processors should have the required 

signal interface and instructions in the instruction set. Analysis that has been done for 

each of the cores in this regard is given in this section. 

 

4.3.1. RISC8: 

The RISC8 was analysed for its use in a Multicomputer configuration  and the following 

facts have been understood. In the Multicomputer configuration it was required that the 

processor has to interface to the Router, which has a buffer. To transfer data between 

Processor and the Router there needs to be some control signals coming out of the 

processor. Upon exploring we found that the processor has a set of ports known as the 

expansion ports, which can be used for  interfacing with external devices. The description 

of the ports is given in Table 4.1 below 
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Table 4.1. Expansion Interface Signals 

Signal Description 
 

Expdin [7:0] Input back to the RISC8 core. This is 8-bit 
data from the expansion module(s) to the 
core. Should be valid when 'expread' is 
asserted. 

Expdout [7:0] Output from the RISC8 core. This is 8-bit 
data to the expansion module(s) 
from the core. Is valid when 'expwrite' is 
asserted. The expansion module 
is responsible for decoding 'expaddr' in 
order to know which expansion 
address is being written to. 

Expaddr [6:0] This is the final data space address for 
reads or writes. It includes any 
Indirect addressing.  

Expread Asserted (HIGH) when the RISC8 core is 
reading from an expansion 
address. 

Expwrite Asserted (HIGH) when the RISC8 core is 
writing to an expansion address. 

  

  The port access is similar to register access. The highest four slots in register 

address space ( 0x FC, 0x FD, 0x FE and 0x FF) are allotted to these ports. Since we have 

signals ‘expread’ and ‘expwrite’, it is easy to interface through these signals. However, it 

is seen that some control signals are to be sent to the processor to indicate the status of 

external device and so PortA is used for this purpose. Experimental test were done to 

verify the send and receive of data. The network interface has two buffers each of four 

10-bit locations. One acts as an input buffer and the other is the output buffer. The 
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network interface interaction with router can be reviewed from the earlier chapters. The 

network interface consists the following components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 4.3. Network Interface for RISC8 in a Multicomputer Configuration 
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The network interface has the responsibility to convert 8 bit data into 10 bit flit 

data to send it to the router and convert 10-bit flit data into 8 bit data and send it to the 

processor. When sending data from network interface to processor bits 2 and 3 of the 

PortA will be used to indicate if the data is a header, a tail or just data.  

 

 

4.3.2 LEON 

For LEON to be part of a Multicomputer system there have to be proper signals to 

interface to the network through a network interface. LEON provides the flexibility to 

connect the network interface at different levels differentiated by the closeness to the 

processor.  

 

Network interface as a Coprocessor:   

Connecting network interface as a coprocessor would be the best option as it allows rapid 

transfer of data, but it has been realized that the VHDL model does not allow the 

coprocessor to interact with the outside world. So in order to connect a network interface 

as a coprocessor the coprocessor signals have to be taken out of the core. The following 

coprocessor signals have to be taken out for use 

rst     : Reset 

clk    : main clock 

holdn  : pipeline hold 

cpi    :  data and control into coprocessor 

cpo    : data and control out of coprocessor 
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‘cpi’ is a bunch of signals containing data bus into the coprocessor and control signals for 

pipeline control, exception indication from the pipeline and exception acknowledge from 

integer unit. ‘cpo’ is a bunch of signals containing the data bus going out from the 

coprocessor, exception indication and condition codes from coprocessor. There are two 

instructions, CPOP1 and CPOP2 in the instruction set of SPARC V8 [3], which will 

define the operations done in the coprocessor or the network interface in this case. There 

can be 32 registers in the coprocessor, which can be addressed for loading and storing 

form memory using coprocessor load and store instructions. 

 

Network interface as an I/O device:  

An alternative is to connect the network interface as an Input/Output device. The I/O is 

memory mapped and so the access is same as memory and capable of addressing up to 

512MB of memory mapped I/O. The I/O access is programmed through the Memory 

Configuration Register1 (MCR1) in the memory controller. The description of various 

fields in MCR1 is provided in the appendix. To ensure proper connection and operation 

of the I/O device to LEON processor core, memory configuration register 1 has to be 

appropriately set. 

- [19]: I/O enable. If set, the access to the memory bus I/O area are enabled. 

- [23:20]: I/O wait states. Defines the number of wait states during I/O accesses 

(“0000”=0,“0001”=1, “0010”=2,..., “1111”=15). 

-  [28:27]: I/O bus width. Defines the data with of the I/O area (“00”=8, “01”=16, 

“10”=32). 
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As it can be seen bits 28-27, 23-20 and 19 of the memory configuration register are 

to be set accordingly. The address range for of I/O is Ox20000000 to Ox 3FFFFFFF.For 

the purpose this thesis we have set the wait states to be zero( [23:20] = “0000”) and the 

I/O bus width to be 32bits ([28:27] = “10”).  SPARC assumes that input/output registers 

are accessed via load/store alternate instructions, normal load/store instructions, 

coprocessor instructions, or read/write ancillary state register instructions.  

 

4.4. Communication Network 

The communication network is formed using routers described in Verilog HDL.  

 

4.4.1. Functional Description  

The basic features are 

- Buffering at both input and output is modeled inside the router. 

- Each virtual channel may be constructed with several lanes for performance 

reasons rather than for deadlock prevention. 

- All virtual channel in the same direction share the same physical channel, unless 

specified otherwise. 

- Width of the physical channel is assumed to be equal to that of its flits. 

 

4.4.2. Interface signals 

The network interface interacts with the router using two unidirectional buses. One bus is 

used by node to inject into channel through router, the other ejects the data from the 
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channel into the node through the router.  The signals can be seen on the right side of the 

network interface in the Figure 4.3. 

 

Signals to inject data into Router from Node 

DIn_Inj : Data Injected from Node to Router 

dWt_Inj: Write signal from Node to Router 

dNF_Inj: Not full signal from Router to Node 

 

Signals to eject data out of Router into Node 

DOut_Ej: Data ejected out from Node to Router  

uWt_Ej: Write signal from Node to Router 

uNF_Ej: Not full signal from Router to Node 

Only the NF signal is asserted the Node or Router will write to the other by 

asserting Wt signal. The data is sent in the form of a Flit of size 10 bits. The first flit is 

the header containing address and the rest of the flits are considered as data. The header 

is identified by a “01“ in MSB position and the tail data flit has “10” as the MSB.  The 

Router directly monitors injector bus without latching it to detect a header. So care 

should be taken by the Network interface to put all zeros on the injector bus so that a 

previous value in the buffer does not mislead the Router. 

 

4.5. The Multicomputer system 

The nodes of the multicomputer system will contain the processor core and a 

network interface, which connect the processor to the Router. The neighboring Routers 
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are connected with point-to-point links. The processor will have some on-chip memory 

and cache. In order to access the external memory the UART provided with the LEON 

processor could be used and the program or application could be downloaded as srecords. 

But this method delays the process, as the access is slow even though it saves the pins.  

With better technologies more memory can be located on chip and with higher pin counts 

the external access can have higher bandwidth. 

The multicomputer system is as shown in the Figure 4.4 below 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 4.4. The multi-computer System 

P: Processor    NI: Network Interface            S: Switch 
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In the next chapter we describe the experiments done to verify the use of IP core 

and results which to help us in understanding the issues with building the system. 
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5. EXPERIMENTS AND RESULTS 

 

5.1. Simulation Results 

Simulation have been utilized to verify the proper functionality of the cores and also 

estimate the performance in terms of number of cycles taken for the data transfer. During 

the course of this thesis two simulation tools were used. One is Silos, which does Verilog 

simulation only and the other is Active-HDL, which is capable of mixed simulation of 

Verilog and VHDL. This sections ends with a description of the procedure of using 

LEON VHDL model for simulation. 

 

5.1.1. RISC8 

One of the main purposes of this thesis is to build a working system that executes 

program code compiled from high-level languages like C.  

 

 

 

 

 

 

Figure 5.1. Multiprocessor Configuration using RISC8 
 

In the process of building the multicomputer system initial experimentation was 

done using RISC8.  Two Multiprocessor systems and one Multicomputer system using 

the RISC8 processor core have been built. The two implementations of RISC8 in 

CPU_0 CPU_3 

CPU_1 CPU_2 
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Multiprocessor configuration differed in the links between the processors. One had 

unidirectional links and the other had bi-directional links between processors. The 

general structure is illustrated in the Figure 5.1 above. The purpose of building the 

multiprocessor configurations was to test the core for running simple to complex 

problems. Also the communication capability has been tested. 

 

 

5.1.1.1. Apparatus 

In order to perform the experiment by executing an algorithm we have to generate 

instructions, which are subset of the RISC8 Instruction Set. Since RISC8 is binary 

compatible with Microchip’s 16c57 processor Instruction Set we obtained MPLAB, 

which is a Windows-based Integrated Development Environment (IDE) for the 

Microchip Technology  Incorporated [8] PICmicro micro controller families. MPLAB 

allows us to write, debug, and optimize PICmicro applications for firmware product 

designs. MPLAB includes a text editor, simulator, and project manager. 

 The output from MPLAB is a hex file, which is to be converted to a memory 

BFM in Verilog for simulation purposes. For this purpose a C- program, hex_pram.c 

(given in the Appendix), has been developed as part of this thesis. In order to perform 

the simulations Silos simulation tool has been used which was available through the 

services provided in CAAD lab.  
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5.1.1.2. Experiment-1 

The experiment has been performed on the multiprocessor configuration shown in the 

Figure 5.2, with unidirectional links between the processors. 

 

 

 

 

 

 

 

 

Figure 5.2. Multiprocessor configuration for Experiment-1 

 

 Problem 

The experiment was intended to verify the processing capability and communication 

capability of RISC8.  The summary of the operation is given under operations and actual 

data transfer among the registers of the RISC8 is shown in Code (referring to the 

instruction code). 

 

Note: PortA is the input port, PortB is the output port and W is the accumulator through 

which all the instructions pass data to ports. 

 

CPU_0 CPU_3 

CPU_1 CPU_2 
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Results:  The rest of this section illustrates the code being executed by the four processors 

with the help of Figures and assembly code. 

 

CPU_0  

Operation:  Perform 1 + 2 and send it out to CPU_1 

code: 

   mem[0]=12'b1100_0000_0001; //load 8'h01 into w 
   mem[1]=12'b0000_0010_0110;//w --> portb 
   mem[2]=12'b1100_0000_0010; //load 8'h02 into w 
   mem[3]=12'b0001_1110_0110; //Add w + portb --> portb 
   mem[4]=12'b0000_0000_0000;//NOP 
   mem[5]=12'b0000_0000_0000;//NOP 
   mem[6]=12'b0000_0000_0000;//NOP 
   mem[7]=12'b0000_0000_0000;//NOP 
   mem[8]=12'b0000_0000_0000;//NOP 
   mem[9]=12'b0000_0000_0000;//NOP 
   mem[10]=12'b0000_0000_0000;//NOP 
   mem[11]=12'b0000_0000_0000;//NOP 
   mem[12]=12'b0000_0000_0000;//NOP 
   mem[13]=12'b0000_0000_0000;//NOP 
 
Simulation result: 

 

Figure 5.3 Simulation result-1, Experiment-1 
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CPU_1 

Operation:  Calculate 1 + 3  and later when CPU_1 sends its data ( 1 + 2 ) add it the 

previous result ( 1 + 3  ) and send it out to CPU_2 

 

Code :  

   mem[0]=12'b1100_0000_0001; //load 8'h01 into w 
   mem[1]=12'b0000_0010_0110;//w --> portb 
   mem[2]=12'b1100_0000_0011; //load 8'h03 into w 
   mem[3]=12'b0001_1110_0110; //Add w + portb --> portb 
   mem[4]=12'b0000_0000_0000;//NOP 
   mem[5]=12'b0010_0000_0101;//w <-- porta 
   mem[6]=12'b0001_1110_0110; //Add w + portb --> portb 
   mem[7]=12'b0000_0000_0000;//NOP 
   mem[8]=12'b0000_0000_0000;//NOP 
   mem[9]=12'b0000_0000_0000;//NOP 
   mem[10]=12'b0000_0000_0000;//NOP 
   mem[11]=12'b0000_0000_0000;//NOP 
   mem[12]=12'b0000_0000_0000;//NOP 
   mem[13]=12'b0000_0000_0000;//NOP 
 

Simulation result: 

 

Figure 5.4 Simulation result-2, Experiment-1 
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CPU_2:  

Operation:  

Calculates 1 + 1 and sends the result to CPU_3, later when data arrives form CPU_1, it is 

sent to the CPU_3. 

Code: 

   mem[0]=12'b1100_0000_0001; //load 8'h01 into w 
   mem[1]=12'b0000_0010_0110;//w --> portb 
   mem[2]=12'b1100_0000_0001; //load 8'h01 into w 
   mem[3]=12'b0001_1110_0110; //Add w + portb --> portb 
   mem[4]=12'b0000_0000_0000;//NOP 
   mem[5]=12'b0000_0000_0000;//NOP 
   mem[6]=12'b0000_0000_0000;//NOP 
   mem[7]=12'b0000_0000_0000;//NOP 
   mem[8]=12'b0010_0000_0101;//w <-- porta 
   mem[9]=12'b0000_0010_0110;//w --> portb 
   mem[10]=12'b0000_0000_0000;//NOP 
   mem[11]=12'b0000_0000_0000;//NOP 
   mem[12]=12'b0000_0000_0000;//NOP 
   mem[13]=12'b0000_0000_0000;//NOP      

 

Simulation result: 

 

Figure 5.5. Simulation result-3, Experiment-1 
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CPU_3   

Operation: 

Calculates  2 + 3 and stores it in portb, later when data ( 1 + 1) arrives form CPU_2 it is 

added to the above result (2 +3 ) in portb and stored back into portb ( 07 ). When the 

second and last data arrives from CPU_2 ( 07 ) it  added to the previous result in portb ( 

07 ) and stored back into portb ( 0E ). 

Code: 

   mem[0]=12'b1100_0000_0010; //load 8'h02 into w 
   mem[1]=12'b0000_0010_0110;//w --> portb 
   mem[2]=12'b1100_0000_0011; //load 8'h03 into w 
   mem[3]=12'b0001_1110_0110; //Add w + portb --> portb 
   mem[4]=12'b0000_0000_0000;//NOP 
   mem[5]=12'b0010_0000_0101;//w <-- porta 
   mem[6]=12'b0001_1110_0110; //Add w + portb --> portb 
   mem[7]=12'b0000_0000_0000;//NOP 
   mem[8]=12'b0000_0000_0000;//NOP 
   mem[9]=12'b0000_0000_0000;//NOP 
   mem[10]=12'b0000_0000_0000;//NOP 
   mem[11]=12'b0010_0000_0101;//w <-- porta 
   mem[12]=12'b0001_1110_0110; //Add w + portb --> portb   
   mem[13]=12'b0000_0000_0000;//NOP 
   mem[14]=12'b0000_0000_0000;//NOP 
   mem[15]=12'b0000_0000_0000;//NOP 
   mem[16]=12'b0000_0000_0000;//NOP 
   mem[17]=12'b0000_0000_0000;//NOP 
 

Simulation result: 

 

Figure 5.6. Simulation result-4, Experiment-1 

 Thus from the above Figures the computation and communication capability of the 

processor is established. 



 

 44

 

5.1.1.3 Experiment-2 

The unidirectional link was changed to a bi-directional bus and an I/O module 

was added to handle PE-to-PE communication. The configuration is shown in Figure 5.7 

below. This experiment is conducted using implementation-1 of RISC8. 

 

 

 

 

 

 

 
Figure 5.7. Multiprocessor configuration for Experiment-2 

 

 Moving Average Window Problem: The problem involved computing the average of a 2-

Dimensional image data. The data is an 8 X 8 matrix and the window size for finding the 

average was 3 X 3. All the elements in that window were added and stored into the 

position occupied by the top left corner element.  For the elements on the edges the 

window cannot have nine elements so the rest of the elements are assumed to be zeros. 

The data is distributed equally among four processor thus each processor contains a  

4X 4 matrix. The Figure 5.8 below illustrates the explanation above by showing  a 

sample data and  the window for the first element and the edge element of the result 

matrix. 

 

CPU_0 CPU_3 

CPU_1 CPU_2 
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Figure 5.8. Illustration of Moving Average Window Problem 
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 The windows in Figure 5.8 above show the elements under consideration for each 

window. The small squares to which they are mapped show the position in the final result 

matrix, which has the same size as the original data. The partitions show the data 

distribution among four processors. Each processor can calculate 16 averages of which 

four are complete sums and 12 are partial sums. These partial sums require data from 

other processors so  each processor requests communication. Out of the 12 partials sums 

only five of these will be completed within each processor thus each processor will have 

nine complete sums by the end of the algorithm. Thus, we have 36 complete sums for an 

8 X 8 matrix and window size of 3 X 3. Modifications were done to the RISC8 processor 

to have two implementations of RISC8, which differed in the way they implement 

communication.  

 

Result  

The moving avaerage problem algorithm was executed and each processor generated  

four complete sums and 12 partial sums. Communication events among these four 

processor then enabled the completion of the rest of the five sums in each processor. 

 

Observations: 

Receiving data: 

It takes two clock cycles to get the value on the port into the  register PortA, which is part 

of the register file. 
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  Figure 5.9. Simulation result-1, Experiment-2 

 

The Figure 5.9 above illustrates that the value on east port takes two clock cycles to come 

onto the register porta. 

 

Sending data: 

In order to send one 8-bit data,  Implementation-1 takes three clock cycle  

o In first cycle  PortC is used to conFigure ports  

o In the second cycle data is stored in accumlator 

o In third cycle data is sent to output port register from accumlator 

o In fourth cycle data will appear on port  
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This above mentioned sequence is verified in the Figure 5.10 below 

 

 

  Figure 5.10. Simulation result-2, Experiment-2 

 

 

5.1.1.4. Multicomputer System using RISC8 

 The Multicomputer system built is shown in the Figure 4.4. It has a node with a 

Processor and a Network Interface to connect the processor to the network of Routers. 

The expansion ports of the RISC8 are used for the purpose of interfacing to the network. 

The expansion ports have been explained in section 4.2.1.  The functionality of the 

system has been tested in three phases. First the Processor- Network Interface side is 

tested for sending and receiving packets. Next the Network Interface and the Network are 

tested for sending packets to random destinations. In the last phase the whole System is 

integrated and tested by sending packets from one source to random destinations. 

 

Phase1:  Test between the Processor and the Network Interface has been conducted by 

testing the send and read separately 
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Send :   The source executes the program shown below in the code. All the other 

Processors in the Network consume the packet as soon as it appears in the Network 

Interface.  

 

C Code: 

// Directives to the compiler 

#pragma char porta  @ PORTA  // porta points to PORTA 

#pragma char portb  @ PORTB // portb points to PORTB 

#pragma char portc  @ PORTC // portc points to PORTC 

#pragma char header @ 0x7C   // header indicates that the data in expdout[7:0] is header 

#pragma char data   @ 0x7D  // data indicates valid data in expdout[7:0] 

#pragma char tail   @ 0x7E   // tail indicates that expdout contains tail 

#pragma char read_d @ 0x7F // read_d indicates read from input buffer 

#pragma bit nf      @ PORTA.0 // bit 0 of PORTA is Not Full signal from input buffer 

#pragma bit ne      @ PORTA.1 // the bit 1 is the Not Empty signal 

void main(void){ 

// code to send a packet 

   while(nf == 0){ 

      ; 

    } 

   header = 4; //the value 0x 04 is sent as header, 0x104 by network interface 

   while(nf == 0){ 

      ; 
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    } 

   data = 5; // value 0x 05 is sent as 0x 005 

   while(nf == 0){ 

      ; } 

   tail = 6; // value 0x 06 is sent as tail, 0x 206 by network interface 

}// ends the main program 

 

Result : The above C-program was compiled using MPLAB to a hex format, which is 

converted into a memory BFM in Verilog using the “hex_pram.c” file developed by us.  

The Figure 5.11 below shows the data being written into the buffer of network interface. 

When the address 0x 7C appears in the 'expaddr' and 'expwrite' is asserted, the data in the 

expdout is considered as the header and a ‘01’ is added to the data. This data is then 

stored in the buffer indicated by Queue in the timing diagram.  
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Figure 5.11. Timing diagram illustrating the send sequence 

 

Read:  To read data from the network interface the processor uses ‘ne’ signal to check for 

the input buffer to have new data. It then asserts the 'expread' signal, which will output 

data onto 'expdin' bus.  

 

Code : The following code will read a data form the  

#pragma char porta  @ PORTA 

#pragma char portb  @ PORTB 

#pragma char portc  @ PORTC 

#pragma char header @ 0x7C 

#pragma char data   @ 0x7D 

#pragma char tail   @ 0x7E 

#pragma char read_d @ 0x7F 

#pragma bit nf      @ PORTA.0 

#pragma bit ne      @ PORTA.1 

void main(void){ 

// code to read a packet 
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  //wait for the input buffer to have a value, indicated by ne =1  

   while(ne!=1){ 

      ;   

    } 

    portb = read_d; // read data  

   while(ne !=1){ 

      ; 

    } 

   portb = read_d; 

 

   while(ne !=1){ 

     ; 

    } 

   portb = read_d; 

} //end of main program   

 

Results: 

The Figure 5.12 shows the timing diagram of  the sequence in reading a data 

value from network. The Router passes the data on 'DOut_Ej' bus, which is stored in the 

input buffer of network interface. The ‘ne’ signal is set indicating availability of data in 

the buffer.  
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Figure 5.12. Timing diagram illustrating the read sequence 

 

The processor senses the ‘ne’ signal and reads the data from the input buffer by asserting 

the 'expread' signal. As the Figure 5.13 above shows three reads occur.  

 From the above results we have established that the RISC processor is suitable of 

interfacing to the network through the network interface. 

 

Phase2: 

The network is formed from an array of routers, which are fully connected. In 

order to have the flexibility in changing the array size and also to avoid rewriting the 

connections in the top module for simulations, a C-program has been written that will 

generate the array and also define the connection among the routers and the network 

interfaces. This C-file is given in the Appendix. Simulations were done to determine the 

working of the interface signals, which helped in the network interface development.  

 

Simulaiton1: 

 The first simulation was done to check if the connectivity among the routers is proper. 

Checking if the path selection resulted in the smallest route did this.  Four packets were 
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sent from node 0 to node 49. The path taken was node 0 to node 59, node 59 to node 49. 

All the packets traveled through the negative Y direction. 

 

Figure 5.13. Depicts the Path Taken By Four Packets From node 0 to node 49 

 

 

Simulation 2: 

The next simulation was done to check if there were any packets lost. We performed a 

simple experiment of sending 8 data flits each to all the nodes from one single node.  The 

successful transmission ensures reliability to some extent. To distinguish among packets 

sent to each node, we encoded the position of the node with respect to the array and sent 

it in each packet. It is clear from Figure 5.14 that packet  0x 100, 0x 002, 0x003 are 

destined to node 00.  
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Figure 5.14 Final Destination of Packets 

Thus the Network side has been verified . The last phase is to verify the whole system 

 

Phase 3:  The last phase in the testing has been to connect all the components in a top 

module and test it by sending packets to random locations. 

 

 

 

Code:  The source Processor sends one header and eight data packets including the tail by 

executing the following code 

 

/ /code to generate file to be sent to ni 

#pragma rambank 1  

int8 i, x, y, temp; 
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//temp3, image_index, mask_index, y_index, m1, m2, n1, n2, mask[9]; 

#pragma char porta  @ PORTA 

#pragma char portb  @ PORTB 

#pragma char portc  @ PORTC 

#pragma char header @ 0x7C 

#pragma char data   @ 0x7D 

#pragma char tail   @ 0x7E 

#pragma char read_d @ 0x7F 

#pragma bit nf      @ PORTA.0 

#pragma bit ne      @ PORTA.1 

void main(void){ 

// code to send packet to consecutive locations 

    temp = 0; 

    for(x=0;x<2;x++) 

    { 

     for(y=0;y<2;y++) 

     { 

       while(nf!=1) 

       { 

         ; 

       } 

       header = x * 16 + y ;       //send the header 

       while(nf!=1) 
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       { 

         ; 

       } 

//data1     

       data = temp  ;   

        while(nf!=1) 

       { 

         ; 

       } 

//data2 

       data = temp + 1;   

  

       while(nf!=1) 

       { 

         ; 

       } 

//data3 

       data = temp + 2;   

 

       while(nf!=1) 

       { 

         ; 

       } 
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//data4 

       data = temp + 3; 

 

       while(nf!=1) 

       { 

         ; 

       } 

//data5 

       data = temp + 4; 

 

       while(nf!=1) 

       { 

         ; 

       } 

//data6 

       data = temp +5;          

    

       while(nf!=1) 

       { 

         ; 

       } 

//data7 

       data = temp  + 6; 
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       while(nf!=1) 

       { 

         ; 

       } 

//data8 

      tail = temp + 7;  

 

     }//for ends 

    }//for ends 

 

//consume all packets that are sent 

    while(1) 

    { 

      while(ne!=1) 

      { 

         ; 

      } 

      portb = read_d; 

    } 

   

} 
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All the other processors in the network execute the following code to consume all the 

packets that are sent to them. 

 

Code: 

// code to consume all the packets sent 

#pragma char porta  @ PORTA 

#pragma char portb  @ PORTB 

#pragma char portc  @ PORTC 

#pragma char header @ 0x7C 

#pragma char data   @ 0x7D 

#pragma char tail   @ 0x7E 

#pragma char read_d @ 0x7F 

#pragma bit nf      @ PORTA.0 

#pragma bit ne      @ PORTA.1 

 

void main(void){ 

// code to continuously read a packet 

   while(1){ 

     while(ne==0){ 

     ; 

     } 

    portb = read_d;// the flits read are displayed on PortB  

   }    
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}// end of main program 

 

The Figure 5.15 below shows the Source processor 24 sending the data 0x00 with an 

address of  0x7C implying header. The Network Interface recognizes this as the header 

and concatenates a ‘01’ to the 8-bit value to make it a 10-bit flit. The subsequent data are 

sent to 0x7D implying data flits and so a ‘00’ is appended to the data. For the last data 

‘10’ is appended when the address is 0x7E as shown in Figure 5.16. 

 

 

 

 

 

 

 

Figure 5.15. System testing, header flit formation  

 

 

Figure 5.16. System testing,  tail flit formation 
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The Figure below shows all the flits reaching the destination. All the packets take the 

same route. The values taken are displayed on PortB. 

 

 

 

 

 

 

 

Figure 5.17. System testing,  packets reaching destination 
 
 
 
Thus in three phases the proper functionality of the Multicomputer System is verified.  
 
 

Summary 

 Experiments have been done and the following results have been observed 

- Gained experience with the core, experiment 1 and 2 

- Verified computational and communication capability of core, experiment1 

- Verified the functionality of modified core, experiment 2 

- To verify the individual components of the System, experiment on multicomputer 

Configuration 

- To verify the complete Multicomputer system, experiment on multicomputer 

Configuration 
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 5.1.2. LEON 

  To perform simulations the LEON VHDL model has to be compiled to the 

simulation tools format, which in this  case is Active-HDL. Some changes had to be 

made in some of the modules of the model in order to ensure proper compilation.  VHDL 

model have to be compiled in the following order  

- amba.vhd 

- target.vhd 

- device.vhd 

- config.vhd 

- sparcv8.vhd ( the library  IEEE.std_logic_arith.all had to be included in this 

module) 

- iface.vhd 

- macro.vhd 

- debug.vhd 

- ambacomp.vhd 

- multlib.vhd 

- tech_generic.vhd 

- tech_atc35.vhd 

- tech_atc25.vhd 

- bprom.vhd 

- tech_virtex.vhd 

- tech_fs90.vhd 

- tech_map.vhd 
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- fpulib.vhd 

- fp1eu.vhd  

- mul.vhd 

- div.vhd 

- clkgen.vhd 

- rstgen.vhd 

- iu.vhd 

- regfile.vhd 

- icache.vhd 

- dcache.vhd 

- cachemem.vhd 

- acache.vhd 

- cache.vhd 

- proc.vhd 

- apbmst.vhd 

- ahbarb.vhd 

- lconf.vhd 

- wprot.vhd 

- ahbtest.vhd 

- ahbstat.vhd 

- timers.vhd (had to include IEEE.std_logic_arith.all and also changed 

std_logic_vector(TPREC(..)) to conv_std_logic_vector(TPREC(..)) ) 

- uart.vhd ( the above change should be done in this module also) 
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- irqctrl.vhd 

- irqctrl2.vhd 

- ioport.vhd 

- mctrl.vhd 

- pci_is.vhd 

- pci_arb.vhd 

- pci_esa.vhd 

- mcore.vhd 

- leon_pci.vhd 

- leon.vhd 

Mixed simulation has been done and so the VHDL module 'leon' is instantiated in the 

Verilog top module just as any other Verilog module is done with the module name and 

an instance name after it. The example of 'leon' module is given below 

 

leon L1(resetn, clk, errorn, address, data, ramsn, ramoen, rwen, 

        romsn, iosn, oen, read, writen, brdyn, bexcn, pio, wdogn, 

        test); 
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5.2. Synthesis Results 

Synthesis of the design is done in the pre-layout stage as illustrated by Figure 2.1. 

Synthesis is used to get an estimate of the timing and area of the design before the layout 

is done in order to check if the design complies with the constraints set. A synthesis tool 

uses wire load models (wlm) to calculate the capacitance, resistance, and wire area within 

a synthesis block. These values are only estimates since synthesis tools cannot predict the 

actual placement of cells and routing of nets.  

 

5.2.1. Technology Libraries 

A technology library is compiled using a library compiler into the format of the 

tool; in this case with Synopsys it is ”.db”. The library contains the information such as 

attributes and environment in which the process is performed. The environment is the 

process operating conditions, which determine the approximate delay values and area of 

the design. The interconnect model is defined by a “tree_type” attribute, which can take 

three values as best_case_tree, worst_case_tree or balanced_tree.  In the worst_case_tree 

the load pin is most distant from the driver, in best_case_tree type the driver is next to the 

load pin and in the balanaced_tree type the load pins are separate and at equal distance 

from the driver. The synthesis results of area are measured in cell units, which is 11.54 

um2  for G-11p process technology. 

For the purpose of Logic synthesis G11-p technology libraries have been used.  

G11-p cell based ASICs are LSI Logic’s highest performance 2.5v and 1.8v products [4]. 

It can have up to 8.1 million usable gates with effective gate length of 0.18um (Leff), 

8Mbits RAM on chip and up to 6 metal layer achieving system on chip. The next level of 
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process technology is the G12-p where the gate count reaches 33 million enabling 

multiple systems on chip with a gate length of 0.13um and 16Mbits of RAM. Table 5.1 

below gives the technology constants of G11-p technology.  

 

 

Table 5.1. Technology constants of G11-p 

Quantity Value Units 

Standard Load 0.0111995 pF 

Grid Size 0.9 mm 

Cell Width (Standard Cell) 12.6 mm 

Cell Unit* 11.34 mm2  

* A cell unit is the area used by a cell one grid tall and a standard cell width wide. 

 

 

 

 

 

5.2.2 RISC8  

 The hierarchy of the RISC8 CPU is given in the appendix. The following Table 

summarizes the results of synthesizing the unmodified RISC8 core 

 

 

 



 

 68

Table 5.2.  Synthesis Results of RISC8 (unmodified) in G11-p process technology 

Design / module name Area (um2) %  Timing (ns) 

cpu 741734.176 100.0 7.61 

alu 16430.787 2.2 2.27 

idec 12935.753 1.7 1.56 

regs 565576.841 76.24 2.84 

dram 563834.663 76 2.06 

exp 18859.577 2.5 1.02 

 

 

Observation:  

- 75% of the cpu area is occupied by the memory 

- All the other components except memory occupy 6.4%  

- The logic around these components inside the cpu is  17.36 % (100 - 76.24 - 6.4) 

- From the timing results we can say that the maximum frequency of operation 

could be approximately 130MHz (1 / 7.61ns) 

 

Implementation-1 

A communication module (io module) is added to the RISC8 core in 

Implementation-1. Table 5.3 below shows the area of this single module. 

  

Table 5.3. Synthesis Results of I/O Module in Implementation-1 in G11-p process 
technology 

Design / module name Area (um2) Timing (ns) 
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Io 7803.222 0.18 

 

 

Implementation-2 

In implementation-2 the communication module is given three additional 

registers. The Table 5.4 below shows the area of this single module. 

 

Table 5.4.  Synthesis Results of I/O Module in Implementation-2 in G11-p process 
technology 

Design / module name Area (um2) Timing (ns) 

Io 31166.187 0.42 

 

Observation:  

- Implementation-1 is 25% of implementation-2 in other words implementation-2 is 

4 times larger than implementation-1. 

The difference between implementation-1 and implementation-2 is the addition of three 

registers and also a state machine intended to do one, two or three 8-bit data transfers.  

 

5.2.3. LEON 

 The description for the modules names of LEON VHDL model can be found in 

the appendix. The following Table gives the area of the various components that make up 

the 'leon' VHDL model after synthesis with the library  “lcbg11p_nom.db” from LSI 

Logic. 

Table 5.5. Synthesis Results of LEON in G11-p process technology 
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Design  Area (um2) % Timing (ns) 

Leon 1780211.87 100.00 0.80 

Clkgen 308.871 0.00 0.12 

Ahbarb 8876.787 0.49 0.81 

Ahbmst 90967.053 5.10 7.00 

Bprom 90804.687 5.10 4.14 

Proc 1223437.261 68.00 2.00 

Icache 82209.923 4.61 2.58 

Dcache 280007.551 15.72 4.01 

Iu 853623.897 47.95 6.96 

Irqctrl 64018.228 3.59 0.70 

Ioport 73441.906 4.12 0.89 

Timers 137051.192 7.69 1.51 

Uart 66652.617 3.74 0.88 

ahbstat 31115.836 1.75 0.58 

ahbtest 66520.476 3.73 7.00 

rstgen 1366.086 0.00 0.20 

mctrl 251249.466 14.11 2.33 

Router 2460926.998 138.00 1.95 

Ni 95303.833 5.35 1.23 

 

 

Observation:  
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- The majority of the real estate is taken by processor (Proc), which contains the 

integer unit (Iu), data cache controller (Dcache) and the memory controller 

(Mctrl). 

- Dcache and Icache refer to the cache controllers and not memories themselves. So 

the need for control logic is more in data cache than instruction cache. 

- The worst critical path of 7.00 ns is obtained for Ahbtest and Ahbmst modules 

- The critical path of  'leon' module is quite less at 0.80 

 

Estimation of Multicomputer System area 

 An attempt to synthesize the whole system failed due to limitation of the tool. To 

get an estimate the following procedure has been used. The Multicomputer system is 

formed by replication of the Processor, Network Interface and the Router. By calculating 

the area of this building block an estimate can be obtained. In order to get an estimate of 

the interconnect area the following assumption was made. It is a fact that the interconnect 

area cannot reduce beyond a point with decrease in feature size as the resistance of the 

interconnect increases with decrease in area (R = ρ * L/A). Thus with decrease in feature 

size the ratio of interconnect area to cell area increases. Since the area of the building 

block includes the area of interconnect within each module the external and overhead 

interconnect area has to be estimated. Based on the above assumption the interconnect 

area can be estimated to be around 25% of the chip. 

  With a 1cm2 chip we will have 0.25cm2 for external and overhead interconnect 

and so 0.75cm2 for the cells. With 4.27 mm2 area for the building block in the case of 
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LEON, the size of the System can be 16 (17.56 rounded). With 3.23 mm2 for RISC8 the 

System size is 24 (23.12 rounded). 

 

5.2.4. Discussion 

The general observation from the above synthesis results is about the percentage of area 

memory and Router occupy in the System. For RISC8 memory is almost 75% of the 

processor area. In such a scenario an increase in memory on chip would reduce the area 

for processors. So the number of processors needed on the chip limits the amount of 

memory. The Router also occupies a large area, which is comparable to the processors. 

So the System size would have to be a trade-off between the Communication Network 

size, memory on chip and the number of processors. 

The off- chip memory access bandwidth depends upon the pins available for the 

chip used. Since RISC8 is 8-bit RISC architecture, there can be a large number of 

processors. But LEON cannot have the advantage, as LEON is 32-bit architecture. The 

off-chip access bandwidth is configurable in LEON but then reducing the access 

bandwidth would mean more number of cycles to access each instruction or data. LEON 

can also access or download program instructions as srecords from a UART but the 

access is obviously slow. 
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6. CONCLUSIONS 

This thesis describes the work we have done in the context of building a system. The 

major contribution is  

- Building of a single chip multicomputer 

-  Finding a processor core for experimentation  

- Investigating the various network interfaces and building one based on the 

research 

- Developing two configurations of RISC8, one with direct connection and the 

other with a network 

- Investigating the LEON processor to find a way of connecting it to the network in 

order to form a multicomputer system 

- Showing the environment, like the tools and software, that is need to build the 

system 

- Obtaining simulation and synthesis results for the components that form the 

multicomputer system.  

- Attempting to synthesize the whole system with the nodes and the network 

 

From the above work we gained significant experience in building a system and 

building an environment for this purpose.  
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Future Scope  

From the results we obtained it can be seen that with the present technology it has 

been possible to integrate a multicomputer system along with the communication 

network. However, we have also discussed the tradeoff in the amount of memory off-chip 

and the number of processors. Future process technology will enable integration of large 

systems with 100s of processors and large on-chip memory onto a single chip. From our 

failure to synthesize the whole system we realize that synthesis tools that can handle large 

designs are needed to compile large designs and produce area and timing results.  
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APPENDIX 

A.1.  VHDL model:  

 TABLE A.1 LEON model hierarchy 

Entity/Package File name Function 

LEON leon.vhd LEON top level 

entity 

LEON_PCI leon_pci.vhd LEON/PCI top 

level entity 

LEON/MCORE mcore.vhd Main core 

LEON/MCORE/CLKGEN clkgen.vhd Clock generator 

LEON/MCORE/RSTGEN rstgen.vhd Reset generator 

LEON/MCORE/AHBARB ahbarb.vhd AMBA/AHB 

controller 

LEON/MCORE/APBMST apbmst.vhd AMBA/APB 

controller 

LEON/MCORE/MCTRL mctrl.vhd Memory 

controller 

LEON/MCORE/MCTRL/BPROM bprom.vhd Internal boot 

prom 

LEON/MCORE/PROC proc.vhd Processor core 

LEON/MCORE/PROC/CACHE cache.vhd Cache module 

LEON/MCORE/PROC/CACHE/CACHEMEM cachemem.vhd Cache ram 
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LEON/MCORE/PROC/CACHE/DCACHE dcache.vhd Data cache 

controller 

LEON/MCORE/PROC/CACHE/ICACHE icache.vhd Instruction cache 

controller 

LEON/MCORE/PROC/CACHE/ACACHE acache.vhd AHB/cache 

interface module 

LEON/MCORE/PROC/IU iu.vhd Processor integer 

unit 

LEON/MCORE/PROC/MUL mul.vhd Multiplier state 

machined 

LEON/MCORE/PROC/DIV div.vhd radix-2 divider 

LEON/MCORE/PROC/FP1EU fp1eu.vhd parallel FPU 

interface 

LEON/MCORE/PROC/REGFILE regfile.vhd Processor register 

file 

LEON/MCORE/IRQCTRL irqctrl.vhd Interrupt 

controller 

LEON/MCORE/IOPORT ioport.vhd Parallel I/O port 

LEON/MCORE/TIMERS timers.vhd Timers and 

watchdog 

LEON/MCORE/UART uart.vhd UARTs 

LEON/MCORE/LCONF lconf.vhd LEON 

configuration 
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register 

LEON/MCORE/AHBSTAT ahbstat.vhd AHB status 

register 

 

 

TABLE A.2 LEON packages 

Package File name Function 

TARGET target.vhd Pre-defined configurations 

for various targets 

DEVICE device.vhd Current configuration 

CONFIG config.vhd Generation of various 

constants for processor and 

caches 

SPARCV8 sparcv8.vhd SPARCV8 opcode 

definitions 

IFACE iface.vhd Type declarations for 

module interface signals 

MACRO macro.vhd Various utility functions 

AMBA amba.vhd Type definitions for the 

AMBA buses 

AMBACOMP ambacomp.vhd AMBA component 

declarations 

MULTLIB multlib.vhd Multiplier modules 
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FPULIB fpu.vhd FPU interface package 

DEBUG debug.vhd Debug package with 

SPARC disassembler 

TECH_GENERIC tech_generic.vhd Generic regfile and pad 

models 

TECH_ATC25 tech_atc25.vhd Atmel ATC25 specific 

regfile, ram and pad 

generators 

TECH_ATC35 tech_atc35.vhd Atmel ATC35 specific 

regfile, ram and pad 

generators 

TECH_MAP tech_map.vhd Maps mega-cells according 

to selected target 

 

This hierarchy can be better visualized using the Figure 3.2. The files of our concern are 

target.vhd and device.vhd. "target.vhd" contains the various configurations for each of the 

components from which we can select the LEON configuration   

 

 

 

 

A.2 Configuring LEON: 

The following features of LEON are configurable  
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- Cache 2K – 64Kbytes  

- Optional Coprocessor 

- Optional Floating point Unit 

- Ram and ROM sizes ( upto 512MB ROM and 1GB RAM) 

- 8 bit or 16 bit operation of bus 

The memory configuration is used to configure the prom and I/O access. The following is 

the description of each field. 

- [3:0]: Prom read wait states. Defines the number of wait states during prom read 

cycles (“0000”=0,“0001”=1,... “1111”=15).   

- [7:4]: Prom write wait states. Defines the number of wait states during prom write 

cycles (“0000”=0, “0001”=1,... “1111”=15). 

-  [9:8]: Prom with. Defines the data with of the prom area (“00”=8, “01”=16, 

“10”=32). 

-  [10]: Reserved 

-  [11]: Prom write enable. If set, enables write cycles to the prom area. 

-  [17:12]: Reserved 

-  [18]: External address latch enable. If set, the address is sent out unlatched and 

must be latched by external address latches. 

-  [19]: I/O enable. If set, the access to the memory bus I/O area are enabled. 

- [23:20]: I/O wait states. Defines the number of wait states during I/O accesses 

(“0000”=0,“0001”=1, “0010”=2,..., “1111”=15). 

-  [25]: Bus error (BEXCN) enable. 

-  [26]:Bus ready (BRDYN) enable.  
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- [28:27]: I/O bus width. Defines the data with of the I/O area (“00”=8, “01”=16, 

“10”=32). 

 

 

A.3 Hex to Memory BFM Converter: 

 The C-program shown below is used to convert the output hex file obtained from 

MPLAB to a memory BFM compatible with the RISC8 core. 

 

hex_pram.c: 

#include <stdio.h> 

#include <stdlib.h> 

main() 

{ 

   FILE *fptr1, *fptr2; 

   char hex_file[20], line[44], pram_file[20]; 

   int x=0,index=0; 

 

   printf("Give the file name to read:"); 

   scanf("%s",hex_file); 

 

   // transfer the data to pram only if  

   // file is opened without error 

   if((fptr1=fopen(hex_file,"r"))!=NULL){ 



 

 82

       printf("Give the output file name:"); 

       scanf("%s",pram_file); 

       fptr2=fopen(pram_file,"w+"); 

    

    // initial statements in teh file 

       fprintf(fptr2,"// 

// Synchornous Data RAM, 12x2048 

// 

// Replace with your actual memory model.. 

// 

module pram_00 ( 

   clk, 

   address, 

   we, 

   din, 

   dout 

); 

 

input  clk; 

input [10:0] address; 

input  we; 

input [11:0] din; 

output [11:0] dout; 
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// synopsys translate_off 

parameter word_depth = 2048; 

 

reg [10:0] address_latched; 

 

// Instantiate the memory array itself. 

reg [11:0] mem[0:word_depth-1]; 

initial 

  begin ");//end of first part 

 

 

       // read from the file till  

       // the EOFis encountered 

       while( fscanf(fptr1,"%s",line)!=EOF){ 

           printf(" \n\t %s",line);  

           x=9; 

          

           // write the memory values to pram file 

           while(line[x+2]!='\0'){ 

 

fprintf(fptr2,"mem[%d]=12'h%c%c%c;\n",index,line[x+3],line[x],line[x+1]); 

               x=x+4; 
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               index++; 

           }//ends while(line[.... 

       }//ends while(fscanf... 

     

    //  the last instruction after sleep 

    //  should be a nop 

       fprintf(fptr2,"mem[%d]=12'h000;\n end",index-1); 

 

 

     // write the second part 

       fprintf(fptr2,"// Latch address\n 

always @(posedge clk)\n 

   address_latched <= address;\n 

   \n 

// READ\n 

//assign dout = mem[address_latched];\n 

assign dout = mem[address];\n 

\n 

// WRITE\n 

always @(posedge clk)\n 

   if (we) mem[address] <= din;\n 

\n 

// synopsys translate_on\n 
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\n 

endmodule\n"); 

       fclose(fptr2);//closes pram_file     

   } 

   else{ 

       printf("unable to open the file:  %s",hex_file); 

   }//ends if-else 

   printf("\n"); 

   fclose(fptr1); 

} 

 

A.4. Router Array Generator 

  In order to have the flexibility in the size of the router array and to avoid rewriting 

the connection between the router, network interface and a processor core, we developed 

the following two files, ro_array.c and roa_pic.c. The executables of these files take the 

array size and name of the output file as the input. 
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ro_array.c: This file generates the array of routers along with network interfaces.   

 

#include <stdio.h> 

 

 

main() 

{ 

  FILE * fptr; 

  char ver_file[20]; 

  int size, i,j,pos,l,r,t,b; 

  int modulus( int x, int y); 

  printf("\n Give the size of the array\n (Ex: For 16 x 16 size is 16):"); 

  fflush(stdin); 

  scanf("%d",&size); 

  if(size<2 || (size%2 !=0)) 

  { 

     printf("\n\n The size has to be an even number greater than or equal to 2\n"); 

     exit(1); 

  } 

  printf("\n Give output file name:"); 

  fflush(stdin); 
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  scanf("%s",ver_file); 

   

  //create a file  

   fptr = fopen(ver_file, "w+"); 

   if(fptr == NULL) 

   { 

     printf(" \n error in opening a file"); 

   } 

    

  fprintf(fptr,"\n module top; 

reg           Clk, Rst; 

reg[3:0] HalfWidth;    //used to sel. the short route inside dim ring 

reg[3:0] WidthM1;   //the right (top) end node number"); 

   

   for(i=0;i<size;i++) 

   { 

    for(j=0;j< size;j++) 

    { 

      pos = i  + j * size; 

 

   // the defining of ports 

      fprintf(fptr," \n 

reg[7:0] NodeAddr%d;     //assume a 8 bits addr, 2+8 bits flit/phit",pos); 
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      fprintf(fptr," \nwire[9:0] D%dIn_Inj;",pos); 

      fprintf(fptr," \nwire  d%dWt_Inj;",pos); 

      fprintf(fptr," \nwire  d%dNF_Inj;",pos); 

      fprintf(fptr," \nwire[9:0] D%dOut_YP, D%dOut_YN, D%dOut_XP, D%dOut_XN, 

D%dOut_Ej;",pos,pos,pos,pos,pos); 

      fprintf(fptr," \nwire[2:0] u%dWt_YP,  u%dWt_YN,  u%dWt_XP,  

u%dWt_XN;",pos,pos,pos,pos); 

      fprintf(fptr," \nwire u%dWt_Ej;", pos); 

      fprintf(fptr," \nwire[2:0] u%dNF_YP,  u%dNF_YN,  u%dNF_XP,  

u%dNF_XN;",pos,pos,pos,pos); 

      fprintf(fptr," \nwire  u%dNF_Ej;", pos); 

      fprintf(fptr," \nwire[1:0] u%dE_YP,   u%dE_YN,   u%dE_XP,   

u%dE_XN;",pos,pos,pos,pos); 

     } 

   } 

 

 

 

  for(i=0;i<size;i++) 

  { 

    for(j=0;j< size;j++) 

    { 
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      pos = i + j * size; 

      l = modulus((i-1), size)  + j * size; 

      r = modulus((i+1), size)  + j * size; 

      t = modulus((j+1), size) *  size + i; 

      b = modulus((j-1), size) *  size + i; 

    

 

  // instantiation of modules 

      fprintf(fptr, "\n\n ni ni_%d(Clk,Rst, D%dIn_Inj,d%dWt_Inj,d%dNF_Inj, 

D%dOut_Ej,u%dWt_Ej,u%dNF_Ej);",pos,pos,pos,pos,pos,pos,pos); 

      fprintf(fptr,"\n Router r_%d(Clk,Rst,NodeAddr%d, HalfWidth, WidthM1,",pos,pos); 

      fprintf(fptr," \n     D%dOut_YP, D%dOut_YN, D%dOut_XP, D%dOut_XN, 

D%dIn_Inj,",b,t,l,r,pos); 

      fprintf(fptr," \n     u%dWt_YP,  u%dWt_YN,  u%dWt_XP,  u%dWt_XN,  

d%dWt_Inj,",b,t,l,r,pos);  

      fprintf(fptr," \n     u%dNF_YP,  u%dNF_YN,  u%dNF_XP,  u%dNF_XN,  

d%dNF_Inj,",b,t,l,r,pos); 

      fprintf(fptr," \n     u%dE_YP,   u%dE_YN,   u%dE_XP,   u%dE_XN, ",b,t,l,r); 

      fprintf(fptr," \n     D%dOut_YP, D%dOut_YN, D%dOut_XP, D%dOut_XN, 

D%dOut_Ej,",pos,pos,pos,pos,pos); 

      fprintf(fptr," \n     u%dWt_YP,  u%dWt_YN,  u%dWt_XP,  u%dWt_XN,  

u%dWt_Ej,", pos,pos,pos,pos,pos); 
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      fprintf(fptr," \n     u%dNF_YP,  u%dNF_YN,  u%dNF_XP,  u%dNF_XN,  

u%dNF_Ej,", pos,pos,pos,pos,pos); 

      fprintf(fptr," \n     u%dE_YP,   u%dE_YN,   u%dE_XP,   u%dE_XN);",  

pos,pos,pos,pos); 

    }//end of loop for j 

  }// end of loop for i  

  fprintf(fptr,"\n\ninitial  

 begin 

  HalfWidth  <= 4'd%d; 

  WidthM1    <= 4'd%d; 

  Clk <= 1'b0; 

  Rst <=1'b0;",size/2,size); 

 

  fprintf(fptr,"\n end 

 

always 

 begin 

  #5 Clk = ~Clk; 

 end 

 

initial 

 begin 

  #10 Rst <=1'b1; 
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  #10 Rst <=1'b0; 

  

  #500 

  $finish; 

 end "); 

 

  fprintf(fptr," \n\n endmodule\n"); 

  fclose(fptr); 

} // end of main prog  

      

int modulus(int i, int j) 

{ 

  int x; 

  if((i%j)<0) 

  { 

    x =  j  + (i % j); 

  } 

  else 

  { 

   x = i%j; 

  } 

  return x; 
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} 

 

 

 

 

roa_pic.c: This file generates the top module for a multicomputer system with the array 

of routers connected to the network interface along with a processor. The input is the 

array size and output file name. 

 

#include <stdio.h> 

 

main () 

{ 

  FILE * fptr; 

  char ver_file[20]; 

  int size, i,j,pos,l,r,t,b; 

  int modulus( int x, int y); 

  printf("\n Give the size of the array\n (Ex: For 16 x 16 size is 16):"); 

  fflush(stdin); 

  scanf("%d",&size); 

  if(size<2 || (size%2 !=0)) 

  { 

     printf("\n\n The size has to be an even number greater than or equal to 2\n"); 
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     exit(1); 

  } 

  printf("\n Give output file name:"); 

  fflush(stdin); 

  scanf("%s",ver_file); 

   

  //create a file  

   fptr = fopen(ver_file, "w+"); 

   if(fptr == NULL) 

   { 

     printf(" \n error in opening a file"); 

   } 

    

  fprintf(fptr,"\n module top; 

reg           Clk, Rst; 

reg[3:0] HalfWidth;    //used to sel. the short route inside dim ring 

reg[3:0] WidthM1;   //the right (top) end node number"); 

   

   for(i=0;i<size;i++) 

   { 

    for(j=0;j< size;j++) 

    { 

      pos = i  + j * size; 
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   // the defining of ports 

      fprintf(fptr," \n 

reg[7:0] NodeAddr%d;     //assume a 8 bits addr, 2+8 bits flit/phit",pos); 

 

      fprintf(fptr," \nwire[9:0] D%dIn_Inj;",pos); 

      fprintf(fptr," \nwire  d%dWt_Inj;",pos); 

      fprintf(fptr," \nwire  d%dNF_Inj;",pos); 

      fprintf(fptr," \nwire[9:0] D%dOut_YP, D%dOut_YN, D%dOut_XP, D%dOut_XN, 

D%dOut_Ej;",pos,pos,pos,pos,pos); 

      fprintf(fptr," \nwire[2:0] u%dWt_YP,  u%dWt_YN,  u%dWt_XP,  

u%dWt_XN;",pos,pos,pos,pos); 

      fprintf(fptr," \nwire u%dWt_Ej;", pos); 

      fprintf(fptr," \nwire[2:0] u%dNF_YP,  u%dNF_YN,  u%dNF_XP,  

u%dNF_XN;",pos,pos,pos,pos); 

      fprintf(fptr," \nwire  u%dNF_Ej;", pos); 

      fprintf(fptr," \nwire[1:0] u%dE_YP,   u%dE_YN,   u%dE_XP,   

u%dE_XN;",pos,pos,pos,pos); 

      fprintf(fptr," \nwire 

nf%d,ne%d,dt0%d,dt1%d,expread%d,expwrite%d;",pos,pos,pos,pos,pos,pos); 

      fprintf(fptr," \nwire[7:0]expdin%d,expdout%d;",pos,pos); 

      fprintf(fptr," \nwire[6:0]expaddr%d;",pos); 

      fprintf(fptr," \nwire[10:0]paddr%d,debugpc%d;",pos,pos); 
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      fprintf(fptr," \nwire[11:0]pdata%d,debuginst%d;",pos,pos); 

      fprintf(fptr," \nreg [11:0]din%d;",pos); 

      fprintf(fptr," \nreg we%d;",pos); 

      fprintf(fptr," 

\nwire[7:0]portain%d,portbout%d,portcout%d,debugw%d,debugstatus%d;",pos,pos,pos,p

os,pos,pos); 

     } 

   } 

 

  for(i=0;i<size;i++) 

  { 

    for(j=0;j< size;j++) 

    { 

      pos = i + j * size; 

      l = modulus((i-1), size)  + j * size; 

      r = modulus((i+1), size)  + j * size; 

      t = modulus((j+1), size) *  size + i; 

      b = modulus((j-1), size) *  size + i; 

    

 

  // instantiation of modules 
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      fprintf(fptr,"\n\n cpu 

cp%d(Clk,Rst,paddr%d,pdata%d,portain%d,portbout%d,portcout%d,",pos,pos,pos,pos,p

os,pos); 

      

fprintf(fptr,"expdin%d,expdout%d,expaddr%d,expread%d,expwrite%d,debugw%d,debug

pc%d,",pos,pos,pos,pos,pos,pos,pos); 

      fprintf(fptr,"debuginst%d,debugstatus%d);",pos,pos); 

      fprintf(fptr,"\n pram_00 

p%d(Clk,paddr%d,we%d,din%d,pdata%d);",pos,pos,pos,pos,pos); 

      fprintf(fptr, "\n ni 

ni_%d(Clk,Rst,portain%d[0],portain%d[1],portain%d[2],portain%d[3],expdin%d,expdou

t%d,expaddr%d,expread%d,expwrite%d,",pos,pos,pos,pos,pos,pos,pos,pos,pos,pos); 

      fprintf(fptr," D%dIn_Inj,d%dWt_Inj,d%dNF_Inj, 

D%dOut_Ej,u%dWt_Ej,u%dNF_Ej);",pos,pos,pos,pos,pos,pos); 

      fprintf(fptr,"\n Router r_%d(Clk,Rst,NodeAddr%d, HalfWidth, WidthM1,",pos,pos); 

      fprintf(fptr," \n     D%dOut_YP, D%dOut_YN, D%dOut_XP, D%dOut_XN, 

D%dIn_Inj,",b,t,l,r,pos); 

      fprintf(fptr," \n     u%dWt_YP,  u%dWt_YN,  u%dWt_XP,  u%dWt_XN,  

d%dWt_Inj,",b,t,l,r,pos);  

      fprintf(fptr," \n     u%dNF_YP,  u%dNF_YN,  u%dNF_XP,  u%dNF_XN,  

d%dNF_Inj,",b,t,l,r,pos); 

      fprintf(fptr," \n     u%dE_YP,   u%dE_YN,   u%dE_XP,   u%dE_XN, ",b,t,l,r); 
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      fprintf(fptr," \n     D%dOut_YP, D%dOut_YN, D%dOut_XP, D%dOut_XN, 

D%dOut_Ej,",pos,pos,pos,pos,pos); 

      fprintf(fptr," \n     u%dWt_YP,  u%dWt_YN,  u%dWt_XP,  u%dWt_XN,  

u%dWt_Ej,", pos,pos,pos,pos,pos); 

      fprintf(fptr," \n     u%dNF_YP,  u%dNF_YN,  u%dNF_XP,  u%dNF_XN,  

u%dNF_Ej,", pos,pos,pos,pos,pos); 

      fprintf(fptr," \n     u%dE_YP,   u%dE_YN,   u%dE_XP,   u%dE_XN);",  

pos,pos,pos,pos); 

    }//end of loop for j 

  }// end of loop for i  

  fprintf(fptr,"\n\ninitial  

 begin 

  HalfWidth  <= 4'd%d; 

  WidthM1    <= 4'd%d; 

  Clk <= 1'b0; 

  Rst <=1'b0;",size/2,size); 

  fprintf(fptr,"\n end 

always 

 begin 

  #5 Clk = ~Clk; 

 end 

 

initial 
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 begin 

  #10 Rst <=1'b1; 

    

  #10 Rst <=1'b0; 

  

  #500 

  $finish; 

 end "); 

 

  fprintf(fptr," \n\n endmodule\n"); 

  fclose(fptr); 

} // end of main prog  

      

int modulus(int i, int j) 

{ 

  int x; 

  if((i%j)<0) 

  { 

    x =  j  + (i % j); 

  } 

  else 

  { 

   x = i%j; 
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  } 

  return x; 

} 

 

 

 

 

 


