Requirements for any FPGA/HPC Application Development Tool Flow

... if you want any reasonable fraction of the FPGA’s potential performance

Tom VanCourt
Martin C. Herbordt

Computer Architecture and Automated Design Lab

http://www.bu.edu/caadlab
What is FPGA/HPC exactly?

- **High performance computing**
 - Computational chem.
 - Electromagnetics
 - Bioinformatics
 - Traffic modeling
 - Astrophysics
 - ...

- **Field Programmable Gate Arrays**
 - App. specific processors on demand
 - Massive fine-grained parallelism
 - Drivers of silicon process development
What’s so hard about it?

- Performance computing ≠ logic design

 Standard languages hide parallelism*

 FPGA tools address logic designers

- Contradictions in FPGA applications

 Applications should be widely applicable
 … but finely tuned to each particular usage

 Require customization by application specialist
 … but require unfamiliar hardware constructs

 Demand full use of hardware resources
 … use is app-specific, resources are FPGA-specific

*Jeroen Voeten, ACM Trans. CAD 6(4)533-552, Oct 2001
What’s wrong with C to gates?

“Unfortunately, and despite 40 years of parallelizing compilers for all sorts of machines, [optimization] algorithms don't work terribly well.” Ian Page, 2004

- The best you get is C code in gates

 Good HW algorithm isn’t SW algorithm

- C distributes algorithms in time

 FPGAs distribute algorithms in space

 … and a whole industry is dedicated to reinventing the von Neumann bottleneck
Example: Size-3 subsets

- **C style:**

 for i = 0 to N
 for j = 0 to i
 for k = 0 to j
 // use x[i], x[j], x[k]

- **HW-oriented solution:**
Example: 3D Correlation

- Serial processor: Fourier transform \mathcal{F}

 $$A \otimes B = \mathcal{F}^{-1}(\mathcal{F}(A) \times \mathcal{F}(B))$$

- FPGA: Direct summation

 RAM FIFO

$F(a,b)$
Example: Trilinear Interpolation

- C style: Sequential RAM access

 \[(x,y,z)\]

- HW style: App-specific interleaving

 \[(x,y,z)\]
Sizing applications to FPGAs

- Desired size of computing array:
 As big as possible – *whatever that means*

- Depends on:
 - FPGA capacity
 - Application details
 - Computing array
C Coding Style vs. Performance

- Hardware algorithms are different

 Require non-SW algorithms
 Require non-von Neumann memory
 Require non-obvious data paths
 Require careful precision analysis

- Explicit degree of parallelism is a bug
 No commercial tools address all factors

- App. specialists aren’t logic designers
 Need both – efficient HW & app. details
The Requirements

- Escape from the C code model
 GPUs? Device organizes control & memory
 ... application is leaf calculations only

- Support two developer groups:
 Logic designers create efficient structures
 App specialists tailor it to specific usage

- Full use of FPGA’s computing resources
 App-specific, FPGA-specific array sizes