
 
 
 
Families of FPGA-Based Algorithms for Approximate String Matching∗ 
 
 

                                                           
∗   This work was supported in part by the National Science Foundation through award 9702483 and the 

NIH through award RR020209-01; it was also facilitated by donations of software and equipment from 
Xilinx Corporation. 

 

Tom Van Court 
Boston University, ECE Dept. 

tvancour@bu.edu 
 

Martin C. Herbordt 
Boston University, ECE Dept. 

herbordt@bu.edu 

Abstract 
Dynamic programming for approximate string matching is a large family of different 

algorithms, which vary significantly in purpose, complexity, and hardware utilization. Many 
implementations have been reported, but have typically been point solutions: highly specialized 
implementations that address only one or a few of the many possible options. We report a set of 
three component types that address different parts of the DP string matching problem.  
Multiple, interchangeable implementations are available for each component type. This allows 
each application to choose the feature set required, then make maximum use of the FPGA 
fabric according to that application’s specific resource requirements. Synthesis estimates show 
a 4:1 improvement in time-space performance, depending on the options chosen for a specific 
matching task. 
 

1. Introduction 

Approximate matching (AM) between strings is important in many applications. In text 
databases, it allows searching on words that may be misspelled, that have variant spellings, or 
that are rendered into English in different ways. Bioinformatics applications use AM to find 
similarities between DNA (nucleotide) or protein (amino acid) sequences that have diverged 
through mutation or evolution. Hamming distance, the number of differing characters, is one 
way to measure differences between two strings, but does not tolerate insertions or deletions 
(indels). More generalized edit distances, with indels as well as character substitutions, are 
commonly handled using dynamic programming (DP) techniques. 

Although hardware design for DP-based approximate string matching has been well-studied 
over the last 20 years [1],[2],[3],[4],[5],[6],[7],[8],[9], little is in general use. Especially, in the 
mid- to late-80s, special purpose hardware for genome analysis looked about to take off [3].  
But there were two problems:  the development of fast heuristic algorithms (BLAST being the 
best known) and the brittleness of the hardware solutions.  The first of these is no longer an 
issue:  although the various versions of BLAST remain the most widely sequence processing 
programs, MD-based algorithms are also firmly established in a complementary role.  The 
problem of brittleness remains, however.  The issue is as follows: MD-based AM is not a single 
algorithm, but rather a family of algorithms. As a result, there is too great a gulf between what 
biologists actually do and what designers of application specific hardware have supplied. 

 Actual DP AM usages vary widely in their input sets, scoring functions, recurrence 
relations, output of interest, and so on. Typical hardware realizations implement just one set of 
parameters and behavioral variations, often without stating which assumptions and variations 



 
 
 
have been chosen. This does not meet the needs of the many potential users, it limits the 
applicability of the realization, and it locks out customizations that may be needed during the 
exploratory phase of a string application. 

 This paper presents a family of architectures that implement many different DP AM 
algorithms. The architecture defines three component types that address three major categories 
of distinctions between different algorithms. Any one realization of a DP AM accelerator 
consists of one compile-time choice of component definition in each of type, plus parameter 
settings where appropriate. Users of the string matching hardware get maximum freedom of 
choice in algorithms this way, without cost in clock rate or hardware allocation due to unused 
features or over-generalization.. 

Section 2 of this paper reviews DP AM hardware implementations from recent decades, and 
shows the general outline of the algorithm family. Section 3 decomposes the DP AM problem 
along three axes of behavior. It identifies component types that capture each of these categories 
of behavior, and shows how a DP string matching system is built in terms of the three abstract 
component types. Section 4 describes specific implementations of each component type. This 
section also addresses finer levels of parameterization for customizing the detailed behavior of 
each component type, and solutions to problems in implementing this family design using only 
standard VHDL. We conclude by reporting time and space performance for a small subset of 
the string matching systems that can be built from the proposed component libraries, showing a 
4:1 space-time performance range for matching systems with different options. The main 
conclusions are that interchangeable component families are feasible and that they offer good 
opportunities for performance management. 

2. Previous work 

When the Needleman-Wunsch (NW) algorithm for DP AM was published in 1970 [10], it 
soon became the standard technique for AM in biological sequence matching. It also spawned 
many variations, including the Smith-Waterman (SW) technique for local alignment, “end 
space free” variants [11] for overhangs, and a theoretically unbounded number of gap-penalty 
strategies [12]. Because of its regular structure, limited data types, and simple computation, it 
has been a target for hardware acceleration at least since 1986 [1],[2],[3],[4],[5],[6],[7],[8],[9].  

Each variation on DP AM answers a different biological question. It is puzzling, therefore, 
that so few reports on DP AM acceleration state just what was accelerated or its biological 
significance. Only one implementation [8] appears to address more than one matching task, and 
even that is limited to SW nucleotide comparisons with scoring constants limited to 0 or 1. At 
least eight different evolutionary models underlie scoring for DNA string comparison, phrased 
in terms of two, four, or more free parameters, not counting gap scoring models [13]. Amino 
acid scoring is at least as complex. This creates a gulf between accelerator design and the 
biologist’s control over what question is being answered. The combinatorics of the problem 
explain part of the gap: there are just too many useful variations. If a fully generalized 
accelerator could be designed, it would lose efficiency due to feature bloat. The second reason 
for the gap between is that biologists often have difficulty expressing their requirements in 
mathematical terms explicit enough for implementation [14]. No one implementation can 
address all AM problems efficiently, so a family of implementations is required.  



 
 
 
3. DP string matching. 

We follow the usual practice of considering DP AM as a rectangular grid of computation 
cells, with positions along each axis corresponding to character positions in the two strings. It is 
well known that the DP computation can proceed in a wave-front fashion, along a diagonal 
across that grid. Only the computation cells along that diagonal need to be represented in 
hardware. Each step re-allocates the computation hardware to the next diagonal in the grid. 

There are three major ways in which DP string matching algorithms differ from each other. 
First and lowest-level is the component that defines the character rule. This embodies the type 
of each character in the string. It also defines the substitution matrix that rewards exact or near 
matches and penalizes mismatches between two characters. The second difference between 
algorithms is the matching cell, the component that implements one unit of the 2D recurrence 
relation by which whole strings are compared. Any matching cell can work with any string rule, 
since the recurrence relation depends on alignment score values and not on the type of the 
strings being matched. The highest level component is the sequencer, which controls the basic 
flow of string data and matching results through the system. The sequencer, in turn, works the 
same way irrespective of the matching cell used. 

3.1 Character Rule components 

A character rule implements the abstract data type representing the basic symbol in the 
strings being compared. One string, the reference string, has each of its characters stored in a 
character rule instance. The other string, the test string, flows systolically past the reference 
string for comparison. The data portion of this abstract type is the actual representation of the 
character. In bioinformatics applications, the most common data types are: 

⋅ Amino acids, twenty common ‘characters’ in a protein’s one-dimensional structure,  
⋅ Nucleotides: A, C, G, and T (in DNA) or U (in RNA), 
⋅ Nucleotide wildcards, typically the IUPAC nucleotide ambiguity codes, and 
⋅ Codons, the nucleotide triplets that encode amino acids in the genome. 

The character rule’s substitution matrix is the scoring function that measures goodness of 
match between corresponding characters in the two strings. Different substitution matrices 
represent models of evolution, chemical function, statistical features, and evolutionary distance 
between the sequences. Matrices may be parameterized, as in the Kimura matrix for DNA 
where a parameter represents uneven AT/GC background probabilities [13]. 

3.2 Matching Cell components 

The matching cell is the recurrence relation that defines the DP matching algorithm. 
Equation 1 shows the recurrence relation for the NW global alignment algorithm [12]. Here Sij 
is the score for comparing test and reference strings up to character positions i and j, where 
position 0 is before the first character. The s(x,y) function is the substitution matrix value 
comparing character x in the test string to character y in the reference string. Penalty value Sgap 
represents the cost of skipping one character, for example when matching ‘carts’ to ‘cats’.  

First, note that this recurrence does not itself use the test and reference string data – it uses a 
function that uses them. That means that the matching cell definition has no knowledge of the 
character type or inner structure of the s(x,y) function; it needs to know only the range of scores 
returned by s. Second, there is a separate instance of the character rule component for each 
matching cell. This allows many character comparisons to be evaluated in parallel. Third, the 



 
 
 
Sgap values may be non-trivial functions of the gap length. Affine gap penalties are common, 
and have the form Sgap={Ginit if length = 0, else Gch}. The Ginit term penalizes opening of a gap, 
and Gch penalizes each increment of gap length. Finally, the i=0 and j=0 expressions vary 
according to scoring policies that skip the beginning of one or both strings. Similar rules, not 
shown, can also apply to the ends of the strings.  

 if ( i,j) = 0,0 0  
Si,j =  else if i = 0 S0,j-1 - Sgap  
 else if j = 0 Si-1,0 - Sgap Eq. 1 
 Si-1,j-1 + s(xi, yi) 
 Si-1,j - Sgap 
 

 
else max 

Si,j-1 - Sgap 

 

The matching cell also generates backtracking state. Once the score for the best alignment 
has been found, traceback data determines the character relationships that led up to that score. 
For example, strings abcde and abcabxde might be aligned in two ways depending on scoring 
policy. Traceback state determines which alignment was best (capitalization shows matches): 

ABCabxDE  or  abcABxDE 
ABC---DE    ---ABcDE 

NW global (end to end) and SW local (best substring to substring) alignment have different 
recurrence relations. Local alignment uses a form of saturated arithmetic for scoring, where 
negative alignment scores are clamped to zero. The bigger difference is in the backtracking 
state needed for recovering the best alignment. SW matching may find substrings anywhere as 
the best local match. Traceback state must remember the path through current substring 
matching as in NW, but must also remember the globally best substring score and where it 
occurred. This is best implemented as a different matching cell altogether. Rules for 
backtracking must also be different because of the different results generated, so backtracking is 
logically part of the matching cell component. 

3.3 Sequencing  component 

The third component in DP string matching distinguishes between two major uses of 
matching: scoring and alignment. Scoring is a one-pass algorithm that just reports goodness of 
match scores, for example in phylogenetic applications [15]. Alignment performs that forward 
scoring pass, then a second backward pass to recover the exact character and gap positions that 
gave the best overall score.   

NW traceback: 
End to end alignment
of complete strings 

SW traceback: 
Locate best substring, 
then align substrings 

Figure 1: NW vs. SW backtracking rules



 
 
 

The sequencing component directs the flow of data in each case. Clearly, the alignment 
sequencer is more complex than the scoring sequencer. The scoring sequencer can discard the 
traceback state and logic that generates it, but the alignment sequence must store the traceback 
information. When the forward pass is complete, the backtracking sequencer re-reads the stored 
traceback information in LIFO order. 

The matching cell’s definition does not depend on the type of character data being matched, 
as long as the matching cell can pass characters of arbitrary type to the character rule. Likewise, 
the sequencer can be defined independently of the matching cells that it coordinates. The data 
types of scores (saturating or not) and traceback state (for global or local alignment) are 
irrelevant to the sequencer. All that matters to the sequencer is that there are scoring and 
traceback data, and that the matching cell translates saved traceback state into an alignment. 

3.4 String matching accelerator 

A DP string matching accelerator is built from three independent component types: a string 
rule, a matching cell, and a sequencer, as shown in Figure 2. This independence comes from the 
fact that much of the data passed between them is opaque to the other components. A 
component that handles data opaquely may transfer or store the data, but can not perform any 
other operation on it. Unlike transparent data, opaque data has no accessible inner structure. 
Even the number of bits in the value may be unknown to the component that carries it, though 
the size may be known implicitly by the compilation tools. 

Figure 2 is a simplified diagram of the traceback sequencer component. Other logic, not 
shown, handles the host interface, end-of-string logic, and other housekeeping functions. Note 
that this component is not a ‘leaf’ component; it is a control component that aggregates and 
coordinates inner, leaf components. The ‘Recent Scores’ registers and ‘Traceback LIFO’ RAM 
blocks store data values defined by the matching cell. Even though they are defined by the 
sequencer and inside it, the sequencer knows only the names of the opaque data types. The 
sequencer uses these storage elements to hold data that is specific to the matching cell, and that 
is only ever passed between matching cells. The numbered connections in Figure 2 are: 
1. Traceback results (transparent). During the second pass, the matching cell interprets the 

stored traceback information as a path through the 2D DP array. 
2. Test string characters (opaque), being streamed past the systolic matching array. 
3. Reference string characters (opaque). This is used only for setting up the reference string. 

This signal does not necessarily carry the same data type as in the test string. For example, 
if the test string contains nucleotides then the reference string may hold IUPAC wildcards. 

4. Comparison scores (transparent). This is a signed numeric value indicating goodness of 
match between a reference string symbol and a test string symbol. 

5. Traceback state (opaque). During the forward pass, this records whether skipping or 
matching a character gave a better matching score. It may include other state: for example, 
the SW matching cell must first work back to the best substring match, then report on that 
substring alignment. 

6. Scoring data (opaque). These values contain data needed for recording the best match, 
including scores of nearby characters, data for computing gap scores, etc. Different 
matching cells, implementing different policies defining ‘best’, require different data for 
computing the best score. This is a VHDL record that contains transparent and opaque data 
elements. The transparent data includes the numeric score representing the best match, i.e. 
the scalar result required by the host application. 



 
 
 

Lines 1-3 send data to or accept data from the host. The scoring sequencer (not shown) is 
simpler than the traceback sequencer. It does not contain the Traceback RAM or line 1 for 
reporting the traceback path. Figure 2 shows that one instance each of the character rule and 
matching cell components, plus book-keeping data, form a single unit. The systolic matching 
array consists of a linear sequence of these blocks. The number of blocks will normally be the 
largest supported by available resources. The exact number depends on the resources required 
by each block, the resources claimed by the sequencer and overhead logic, and the capacity of 
the FPGA in which the array is implemented. 

 

3.5 UML representation 

We implement the DP AM application in VHDL, which is not an object oriented (OO) 
programming language. Still, some features of OO design can be represented with VHDL. The 
VHDL ‘component’ declaration, for example, defines the interface to an entity without 
specifying an implementation. That corresponds to the OO notion of an abstract class. Any one 
entity and architecture that implements the component interface corresponds to a concrete class.  
Structural VHDL is based on hierarchies of components containing other components, which 
corresponds to nested object composition. These mappings allow a UML class diagram to 
represent the logical structure of our application, as in Figure 3. Object names in that figure are 
descriptive only, and do not necessarily appear as programming symbols in the VHDL code. 
The number of matching cells is indeterminate, since it depends on resource availability in the 
FPGA and the resources claimed by each instance of each cell types chosen. 
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45
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Trace-
back 
LIFO 

6 6

Figure 2: Traceback sequencer component structure 



 
 
 

Many more character rules exist than are shown. DNA strings may be aligned using Jukes-
Cantor, Kimura, Tamura-Nei, or other rules [10]. Proteins may be aligned using BLOSUM, 
PAM, and other substitution matrices [16]. 

4. Component Implementation 

The core of the DP AM logic consists mainly of the three component types described above. 
The challenge is to encapsulate the differences between implementations of each component 
type, so that switching one component type has no effect on other system components.  

4.1 Component type selection 

Careful use of VHDL allows one component definition to handle many disparate concrete 
implementations. For example, our matching cell component declaration includes: 
    component match port(    Fragment 1 
        prev1, prev2:   in score1; 
        prev12:         in score2; 
        ...    
        tbOut:          out traceback); 

The prev1, prev2, and prev12 values represent the Si-1,j , Si,j-1, and Si-1,j-1 matching cell 
results. The score1 type records the Si,j-1 or Si-1,j score and score2 is the Si-1,j-1 score. The 
definitions of the score1 and score2 data types are not defined here, because they differ for 
NW and SW algorithms. NW matching uses declarations somewhat like the following: 

subtype score2 is     Fragment 2 
integer range –MAXVAL to MAXVAL;     

    type score1 is record    
         scoreVal: score2;        
         gap1, gap2: boolean;       
     end record score1; 
    subtype traceback is tbDir; 

The score1 type records more than just a matching score. For affine gap scoring, it also 
notes whether a gap has already been opened and in which string. Traceback data indicates 
whether the i, j, or (i,j) direction produced the best score. SW matching requires more state: 
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Figure 3: Logical structure of DP application family 



 
 
 
   subtype alnScore is     Fragment 3 

natural range 0 to MAXVAL; 
type score2 is record   

    scoreCur, scoreBest: alnScore;  
     end record score2; 
    type traceback is record 
         toCur, toBest: tbDir;        
         isBest: boolean;   
     end record traceback;       

The score1 record is syntactically the same as before, even though the score2 value 
within it has a different definition. SW alignment scores (unlike NW scores) are non-negative, 
as shown by alnScore. The score2 record notes the alignment score for the substring being 
processed and also the globally best alignment score, as seen from the current point. SW 
traceback data notes the direction of this substring’s best alignment score, whether the current 
position is the best score known so far, and the direction towards the best substring alignment 
previously known. The important fact here is that these NW and SW type definitions are 
interchangeable in the sequencer, where they are used as opaque types. 

VHDL can not handle this change of type definition within the architecture/configuration or 
generic parameter model. One practice [17] would handle such differences by declaring the 
component port signals as std_logic_vector bitstring values. Scatter and gather logic in 
the entity body would break out or re-assemble fields within the bitstring signals. Pervasive use 
of bitstrings is effectively the same as using untyped data, however. It makes the intent of each 
signal impossible to determine without examination of all origins and uses of that value – a 
maintenance nightmare, reminiscent of abuses of PL/1’s unspec() or C type casting. VHDL 
is a strongly typed language, and we prefer to use that feature of the language. 

We change matching cells by replacing the pair of files that defines the cell. The first of 
those files is the matching cell’s package definition, including the types shown. The second file 
contains the component body. The component definition in Fragment 1 is in a separate file and 
that is not replaced – it just uses the definitions in the replaced files. The same technique is used 
to select among sequencer and character rule implementations.  

4.2 Component hierarchy 

In common usage, the terms ‘component’ and ‘leaf component’ seem interchangeable. 
Traditional thinking holds that “Reuse is in the first place a matter of reusing functionality, not 
structure” [18]. Parameterization is defined in terms of “… feature[s] that can be modified … 
without affecting the application’s essential functionality,” where examples include buffer sizes 
or ROM dimensions [19]. 

In this application, the sequencers are reusable non-leaf components that define structure. 
They are reused by selecting the inner components they aggregate, which critically modify the 
functionality. Using components for structure and using behavior as a parameter is common in 
software design. This specific form of structure reuse demonstrates the Strategy design pattern 
[20], in which control flow and low-level behavioral elements are independently swappable. 
Compile-time selection of strategy objects is an admissible form of the design pattern, and is 
suited to hardware implementation. Other authors have also recognized the value of design 
patterns in hardware design [21][22][23], so one may look forward to support for these high-
level design constructs in the future. 



 
 
 
4.3 Component customization 

VHDL compile-time customization is typically based on generic parameters. Generic 
parameter values may be selector values that choose between different component behaviors or 
may be numeric values. Character rule components use generic values to control the 
substitution matrices. Matrices usually map log-probabilities into some range of integer scores, 
using some parameterized function. Many models have additional parameters describing 
statistical or biological assumptions. The Jukes-Cantor model, for example, is defined in one 
parameter that lumps all evolutionary effects together [10]. The Tamura-Nei model has at least 
six parameters describing nucleotide and mutation probabilities. 

Model-specific parameters become difficult to represent in standard VHDL. The component 
declaration defines a list of generic parameters. All of that component’s architectures must use 
that one set of generics. If any architecture requires a new generic, that must be reflected in the 
component declaration and in all other architectures. It is clear, from the examples given, that 
the Jukes-Cantor and Tamura-Nei models require different lists of generic parameters. If other 
matrices were added in the future, they could require different numbers of generics with yet 
other meanings. That could mean that the requirements of each character rule affect the 
implementations of all other character rules.  

The Dependency Inversion Principle [24] of design states that interfaces are the stable 
architectural elements and concrete implementations are subsidiary to the interface definitions. 
Changing the component interface for each new implementation would violate this principle. It 
would also violate the Open Closed Principle, that the system is open to new component 
implementations but closed to modification of known-good components. For now, we address 
this problem by using one string-valued generic parameter for the character rule component. 
That string encodes control values of any number and type. Each character rule implementation 
parses that one generic differently, using functions written in standard VHDL. This allows 
flexible lists of control values within an inflexible list of generic parameters. 

We use the same scheme for parameterizing the matching cells. Our implementation of NW 
supports different policy options for comparisons where the end of one string overhangs the end 
of the other. These options do not apply to SW matching. 

A better solution would use VHDL’s facilities for checking generic parameter numbers, 
types, and values. Instead, this solution requires all checking to be done by the component 
architecture that parses the control string. This solution does, however, support any future 
parameter set using a fixed interface definition. 

5. Conclusions 

We have implemented the scoring sequencer, SW and NW matching cells, and a selected set 
of character rules. It would be infeasible to test all possible combinations: scoring vs. 
alignment, NW (with 15 end-rule variations) vs. SW, and eight character rule implementations 
that differ in more than parameter values. That yields 256 different implementations, not 
counting different substitution matrices (e.g. BLOSUM vs. PAM) or different numbers of bits 
in the scoring data paths.  

These tests synthesize several different combinations of cell types, in order to evaluate chip 
utilization and basic clock rates allowed by each combination. For purposes of this study, the 
design blocks have not been tuned for maximum performance. Instead, we explore performance 
gains due to design flexibility. Assumptions about ranges of score values can vary the width of 
the score datapaths, but were held constant in these tests. The repeated unit consists of a 



 
 
 
matching cell and an instance of the character rule component, so results are reported for the 
pair. The ‘Cells’ column in table 1 reports the number of these cells (assuming no overhead 
logic) that would fit into a Xilinx Virtex-II Pro XC2VP30 FPGA. 

The IUPAC wildcard character rule allows the reference string to accept any of the 15 non-
null subsets of nucleotides at each character position, so compares four-bit wildcard encodings 
to two-bit nucleotide encodings. RAM table character rules have substitution tables that can be 
reloaded in a running system.  A ‘fixed table’ is symmetric substitution matrix implemented as 
ROM lookup or logic evaluation, according to compiler choice. It is possible that different 
values of table entries would have led to different resource utilization, but this has not been 
explored. ‘Exact match’ and ‘IUPAC wildcard’ character rules are implemented as logic 
functions, not lookup tables. 

Table 1: Performance Estimates (Synthesized) 
Matching Cell Character Rule String 

Type 

Logic  

(slices) 

Clock 

(ns) 

Cells per 

XC2VP30 

Speed 

GCUPS 

NW Exact match DNA 109 12.9 125 9.68 

NW IUPAC wildcard DNA 108 13.7 126 9.19 

NW Fixed table DNA 111 14.6 123 8.42 

NW RAM table DNA 108 16.8 126 7.50 

SW Exact match DNA 190 13.3 72 5.41 

SW Fixed table DNA 193 15.9 70 4.40 

SW Exact match protein 205 13.0 66 5.07 

SW Fixed table protein 239 25.5 57 2.23 

Gate counts vary over a range at least 2:1, and cycle times vary nearly 2:1, according to the 
string matching task chosen. In other words, a hardware accelerator for the simplest kind of 
comparison gives a 4:1 advantage in space-time product over the most complex comparisons. A 
related performance measurement is billions of cell updates per second (GCUPS), the product 
of cell count and frequency. 

These results can not easily be compared with other implementations. For example, [9] 
reports a hand-tuned and -placed system using another Xilinx FPGA. That reports 814 GCUPS, 
although the authors note that the number was never reached in practice because of slow system 
interface logic. That implementation was highly inflexible, however. Any change in the 
alphabet, substitution matrix, or gap penalty would have required new hand layout. Only fixed 
gap penalties could be supported, not affine gap scores. The system generated only scores, not 
full alignments. Also, although it reports a “Smith-Waterman” implementation, the logic cell 
appears to hold only enough state for a global (Needleman-Wunsch) alignment, with no 
possibility of local alignment or of different strategies for overhanging ends.  

5.1 Future directions 

There are large numbers of configuration options, such as NW end costs and score bit-widths 
that can also be varied; costs have not been established for all combinations. New character 
rules are possible, such as codons vs. amino acids. They raise new issues, such as the possibility 
of gap penalties that penalize codon frame shifts. These implementations all allow the reference 
strings to be reloaded in a running system. Comparisons would be simpler and faster, however, 
if the reference strings were hard-coded into the logic of the character rule cells as in other 



 
 
 
systems [8],[9]. The current implementations are not highly tuned, so resource usage and clock 
rates may improve in the future. In the long run, this mechanism offers an unprecedented 
vehicle for exploring tradeoffs of hardware efficiency vs. application features. 

Smith-Eggerton (SE) repeated matching [12] is an interesting variation, but is based on a 
calculation wavefront that lies vertically across the DP grid. These DP calculations are based on 
a wavefront running diagonally across the logical grid. SE could be probably accommodated 
with a different organization of the DP grid, but we have not investigated the changes that 
would be required. We have examined a modified SE algorithm with a diagonal wavefront, but 
have not fully characterized that algorithm’s string-matching performance. 

5.2 Summary 

Hardware implementations of approximate string matching algorithms have typically ignored 
the variety of tasks to which DP matching is applied. We show that a family of hardware 
components, tuned for interoperability with each other, is a practical way to offer a wide variety 
of options. We have also shown that, by tailoring each component to a specific task, that the 
“generality penalty” can be avoided: each string matching application pays only to the cost of 
its own requirements, not the cost of other possible options. Considering both clock rate and 
number of computation units available, tailored matching cells offer a 4:1 range in time-space 
performance.  

We also observed that several object-oriented design principles were very helpful in this 
implementation, including the Open-Closed principle, the Dependency Inversion principle, and 
use of the Strategy design pattern. These were directly applicable to standard VHDL and a 
standard development environment. This gives real cause for optimism about the transferability 
of modern software design techniques to large, complex hardware design, and suggests several 
ways in which minor tool changes could have significant effect on design productivity. 
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