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ABSTRACT
The three dimensional Fast Fourier Transform (3D FFT) is widely
applied in various scientific applications. Distributed 3D FFTs re-
quire global communication: this becomes a serious concern when
strong scaling is required as in long timescale molecular dynam-
ics simulations. In this paper, we propose a parameterized 3D
FFT design that targets at a 3D-torus FPGA-based network of var-
ious sizes. Characteristics include direct FPGA-FPGA communi-
cation links, support for various internal switch designs, and use of
table-based routing which saves chip area and routing cycles. We
find that even assuming extremely conservative parameters, we are
able to run the 163 FFT in 3.9µs, 323 FFT in 5.46µs, 643 FFT in
9.52µs, and 1283 FFT in 25.72µs. These results indicate that clus-
ters based on commodity FPGAs are likely to be appropriate when
strong scaling is needed in applications limited by the 3D FFT.

Keywords—3D FFT, FPGA, High Performance Computing, Low-
Latency Communication

1. INTRODUCTION
The three dimensional Fast Fourier Transform (3D FFT) is es-

sential to numerous applications in diverse domains. In Molecular
Dynamics (MD) simulations the 3D FFT reduces the complexity
of computing the long range interactions. In molecular docking,
the 3D FFT computes the scores for ranking the different confor-
mations of molecular complexes [13, 23]. In imaging the 3D FFT
accelerates algorithms that decrease scan time [14].

Especially interesting to this work is when the 3D FFT is both
on the critical path and operating in a fixed sized problem domain,
i.e., when strong scaling is needed. An example is MD simulations
of biomolecules. These often have from a few 10s of thousands to
a few 100s of thousands of particles and need to execute for E+9 to
E+15 timesteps (fs) and beyond. The non-FFT part of the compu-
tation scales well and takes roughly 1s per timestep per CPU core.
With a 1K core cluster, the non-FFT MD simulation of a protein
takes about 10 days for 1µs simulated time (E+9 timesteps). To
get into the ms range requires, e.g., 100K cores and 100 days. The
problem is that, as the cluster size increases, and while the prob-
lem size remains fixed, the compute time per timestep necessarily
decreases. In these examples they are 1ms and 10 µs, respectively.

These calculations define the time budget for the 3D FFT in pro-
tein simulation: preferably in the µs range of compute time for FFT
sizes of from 163 to 1283 [22, 28]. Given the communication la-
tencies of commodity networks, achieving these numbers poses a
substantial challenge. The two ways to address the problem are to
reduce the number of communicating nodes, e.g., by using accel-
erators, and to reduce the communication latency. In conventional
clusters these are generally in conflict: accelerators must traverse
extra hops in order to cooperate. This problem was solved by DE
Shaw by building a dedicated ASIC-based computer, Anton [21].

FPGAs are an alternative. There are several reasons why they

are appropriate. First, they are commodity parts. Second they are
ideally suited for both FFT [2, 10, 27] and non-FFT [4, 5, 6] parts
of MD computations. Third, FPGAs’ Multi-Gigabit Transceivers
enable low-latency and high-bandwidth FPGA-to-FPGA connec-
tions [3, 25]. And finally, the intrinsic flexibility and reusability
of FPGAs offers an acceptable development cost when compared
with ASICs.

In this paper, we propose and evaluate scalable 3D FFT designs
with a 3D-torus FPGA-based network. Our contributions as fol-
lows.

1. By fully utilizing the device-specific features on the FPGA,
such as Multi-gigabit transceivers (MGT) and high-speed FFT
IPs, our 3D-FFT design is able to achieve the same order of
magnitude of latencies as Anton [28], and in some cases sur-
pass them.

2. We create a framework to generalize the communication pat-
terns for 3D FFTs with arbitrary number of points and for
3D-torus networks of arbitrary size.

3. We investigate two kinds of switch architectures, ring and
crossbar, and compare their resource utilization and impact
on overall performance.

4. We use table-based routing to route the packets. All the rout-
ing paths for each packet are precomputed offline and stored
in routing tables. This saves both chip area for routing logic
and routing cycles.

5. We have created a full-system cycle-accurate simulator that
can simulate not only 3D FFTs, but also other applications
on real FPGA-based clusters. Parameters include FPGA chip
resources and FPGA-to-FPGA link latency and bandwidth.

The rest of the paper is organized as follows. In Section II the algo-
rithms of the 1D and 3D FFTs are reviewed. In Section III the net-
work architecture used in our design is described; this involves net-
work topology, table-based routing, and switch architectures (ring
and crossbar). In the next section, the implementation details are
presented including the framework to generalize the communica-
tion pattern for the 3D FFT. We then show the experimental results
and comparison with other designs. Finally, we make our conclu-
sions and briefly describe future work.

2. 3D FFT OVERVIEW
The 3D FFT data can be viewed as a cube of points, where each

point represents a point of data in an FFT calculation. AnN3 point
3D FFT can be expressed with Equation 1.

F (kx, ky, kz) =

N−1∑
z=0

N−1∑
y=0

N−1∑
x=0

f(x, y, z)W xkx
N W

yky
N W zkz

N (1)

where WN = e−i 2π
N .



In practice the 3D FFT is generally calculated by decomposing it
into 1D FFTs computed successively in each dimension. Since the
3D FFT has N3 data points, each of the three dimensions requires
N2 N-point 1D FFTs for a total of 3N2 1D FFT calculations. By
convention, the 1D FFTs are first computed on the x dimension,
then on the y dimension, and last on the z dimension. Each dimen-
sion must wait for the previous dimension to finish before it can
start.

3. NETWORK ARCHITECTURE
The network in our design is built from nodes wired together in

a 3D torus. For the network switches, we investigate two designs:
ring and crossbar, as shown in Figure 2 and Figure 3. Both use
table-based routing.

3.1 Table-based Routing
Table-based routing can be implemented in two ways: source

routing and node-table routing [16]. Both are widely used in net-
work routers [7, 16, 18]; we use node-table routing. In node-table
routing, the routing table has an entry for each incoming packet.
The corresponding entry for each packet is determined by the in-
dex field in the packet header. Each entry in the table contains the
corresponding index of the table at the next node, as well as the
exiting port number in the current node.

Figure 1 illustrates how a packet is routed. The local process-
ing unit injects a packet (tagged with index 1) into the network.
The routing table logic on the local port removes the dated index
field from the packet, and tags it with a new header. This contains
the exit port number as well as the routing table entry index on
next node. In this example, the packet’s exit port number on Node
A is X+. The packet then leaves Node A from the X+ port with
new table index field, whose value is 2. According to the 3D-torus
topology, it then enters the X- port of Node B. In the same manner,
it will get a new index field with value 2, and will be routed to Y-
port of Node C. At Node C, its destination port is LOCAL, which
means that Node C is the destination of this packet.
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Figure 1: The table-based routing scheme

3.2 Ring-based Switch
Rings have linear area cost and constant fan-in/fan-out and so

have been adopted in many small-scale, multi-core architectures
including the IBM Cell [20] and Intel Xeon Phi [12]. Here we use a
seven-node ring topology based on a light-weight ring-based router

microarchitecture [15]. We augment the design by incorporating
support for offline routing [17].

Since the design is a 3D-torus, there are six links for each node.
As shown in Figure 2, on the chip there are seven routers, six to
handle the internode communication and one to deal with the traf-
fic to and from the local processor. The seven routers are connected
with a bidirectional ring. Actually the bidirectional ring is com-
posed of two separate bidirectional buses. One bus is the data bus
managing the intranode communication. The other is the control
bus to manage the flow control including the generation of back
pressure (to the previous router when the FIFO in the next router is
full). In the Figure 2, note that the two ports for the same dimen-
sion (e.g., +x and -x) are placed next to each other. This is because
most of the time the packet stays on the same dimension.

Inside the router, there are three input FIFOs: one for injecting
the packet either from other nodes or from the local processing unit,
and two for input traffic from the two different directions of the
ring. These latter two FIFOs each contain a single register. As
we said before, we use table-based routing in our design. Packets
outside the ring contain a short header which indexes the table in
the next node. When injected into a new node, the router looks
up the entry corresponding to the index on the packet header in the
routing table. Besides the exit port number and index, the entry also
contains a priority field; this helps arbitrate contending packets.
The priority policy is currently farthest first. The router is flexible
enough to support nearly arbitrary and fine-grained policies.

After attaching a new tag to the incoming packet, the packet is
routed on the shortest path, clockwise or counterclockwise, to the
exit port. If the packet has a higher priority than a packet already
in the ring, and the input FIFO in the next router is not full, then
the current router will deliver the packet to next router (and so on),
until the packet reaches the exit router. At the exit router, if the
packet has higher priority than the packet on the other direction
which is going to exit at the same router, it will leave this node first
and be sent to the other adjacent node through the MGT. If there is
no congestion, the time spent on each router will be 1 clock cycle.
In general each packet will spend 2-4 cycles on each node.

3.3 Crossbar-based Switch
Compared to the ring design, the crossbar trades off area for

speed. It implements a seven-to-seven, non-blocking switch that
uses priority-based destination-tag routing, where the switch set-
tings are determined using the priority information contained within
the data packet. This size is selected for similar reasons to the ring-
based switch: we need one link for communicating with the local
processing unit and six for the directions of 3D-torus. The block
diagram is shown in Figure 3.

To incorporate the routing table into the crossbar design, we in-
troduce an input handler unit where the input data undergo the same
tagging process as in the ring-based switch. An additional source
tag is added which acts as the select signal for the crossbar. As the
tagged data exit the input handler, they are grouped together and
enter the crossbar. Tagged data are examined to make sure destina-
tion tags match the corresponding output. All verified data are then
compared based on their priority tag; data with the same priority are
selected on a left-first basis. Once the output data are determined,
the source tag acts as a internal select to configure the multiplexer
and create a data path from the source to the destination. For ex-
ample, say two packets, one injected from -y port and another from
+y port, are both trying to exit from -z port. If the one from -y port
has higher priority, then the packet from -y will get through to -z
first, while the one from +y will be held in a FIFO and wait.

The crossbar switch enables all-to-all non-blocking communica-
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Figure 2: (a) 7 node ring topology and (b) router microarchi-
tecture for on-chip ring topology

tion. Thus each input can get to its destination output in 1 cycle as
long as there is no congestion.

4. IMPLEMENTATION
In this section we describe (i) the framework to generalize the

communication pattern for the 3D FFT, (ii) the problem decompo-
sition and data mapping, and (iii) a formula to estimate the latencies
for various 3D FFTs ranging from 163 to 1283.

As described in the background section, the N3 3D-FFT can
be decomposed into three phases, one per dimension. Each phase
involvesN2 N -point 1D-FFTs. Between each pair of phases, there
exists a communication phase to transpose the whole 3D array to
get the data ready for the 1D-FFT on the next dimension. Following
[28], we refer to the communication phase between X and Y as
the XY corner turn and between Y and Z as the YZ corner turn.
In [28], the authors summarize the communication pattern of XY
corner turn and YZ corner turn for two specific cases: 323 FFT
and 643 FFT on 3D-torus network with 83 nodes. In our work, we
extend these two patterns to a general case of 2n×2n×2n 3D FFT
on 3D torus network of 2m × 2m × 2m nodes (see Figure 4).

In Figure 4, the first two lines show the most straightforward
mapping of N3 data points onto an M3 torus cube, where N =
2n and M = 2m. There are then two cases for the permutation
patterns: n < 2m and n ≥ 2m. Both of them require that 3m ≤
2n, which guarantees that there is at least one 1D FFT on one node.
This is because there are 23m nodes in total and 22n 1D FFTs on
each dimension, which means there are 22n−3m 1D FFTs per node.

In Figure 4, there is a communication phase called X-fold, which
takes place before computing the X dimension FFTs. This step
transposes data from the initial mapping to get ready for this com-
putation. In our design, this step is done offline, so the X-fold
phase in Figure 4 does not cost any clock cycles. The permutations
for the XY and YZ corner turns are also shown in Figure 4. Each
expression determines the exact location of each datum on the net-
work and has five overscored terms. The first three terms (in the
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Figure 3: (a) The network switch with crossbar architecture,
(b)Inner structure of input handler, and (c) details in each mux

parentheses) are binary expressions of the coordinates of the node
that the data belongs to. The fourth term denotes the index of the
22n−3m 1D FFTs in that node. The fifth term denotes the index of
the 2n points of the 1D FFT input data on that node.

We now illustrate how the permutations work (XY corner turn
and YZ corner turns). Let n = 6 and m = 3.

Binary expression for data (11,47,19)

= x5x4x3x2x1x0, y5y4y3y2y1y0, z5z4z3z2z1z0

= (001011)2, (101111)2, (010011)2

= 11, 47, 19

Initial Mapping:

(x5x4x3, y5y4y3, z5z4z3)

= (001)2, (101)2, (010)2

= 1, 5, 2

After X fold:

(z2z1z0, y5y4y3, z5z4z3), y2y1y0, x5x4x3x2x1x0

= ((011)2, (101)2, (010)2), (111)2, (001011)2

= (3, 5, 2), 7, 11

After XY corner turn:

(z2z1z0, x5x4x3, z5z4z3), x2x1x0, y5y4y3y2y1y0

= ((011)2, (001)2, (010)2), (011)2, (101111)2

= (3, 1, 2), 3, 47

After YZ corner turn:

(y2y1y0, x5x4x3, y5y4y3), x2x1x0, z5z4z3z2z1z0



Original data (3D array): 

             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
Initial Mapping: 

(             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)                                    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
When     : 

After X-fold: 

(                        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
After X compute and XY corner turn: 

(                        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
After Y compute and YZ corner turn: 

(                        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
 

When     : 

After X-fold: 

(                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)                        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
After X compute and XY corner turn: 

(                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)                        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
After Y compute and YZ corner turn: 

(                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)                        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
 

 Figure 4: Generalized mapping 2n × 2n × 2n 3D FFT problem on 3D 2m × 2m × 2m torus network And data permutation pattern
during two communication phases (XY corner turn and YZ corner turn).

= ((111)2, (001)2, (101)2), (011)2, (010011)2

= (7, 1, 5), 3, 19

This example shows data movements when mapping a 643 3D
FFT onto an 83 torus. The original X , Y , and Z indexes for this
datum are 11, 47, and 19 respectively. It will be mapped to the node
whose coordinates are (1,5,2). After the X-fold, the coordinate of
the node becomes (3,5,2), and the data will be mapped to the 7th
1D FFT IP. The relative address of this data on this IP is 11. In our
design, the X-fold is done offline, therefore physically the initial
location of this data is the 11th slot on the 7th IP on Node(3,5,2).
After the XY corner turn, the datum is sent to the 47th slot on the
3rd IP on the Node(3,1,2). Finally the YZ corner turn puts the data
on the 19th data slot on the 3rd IP on the Node(7,1,5). Based on
this generalized permutation pattern, we can derive the number of
packets that will be transmitted during each phase and how large
each packet will be. These are displayed in Table 1.

Table 1: The number of packets to be sent in each communica-
tion phase and the size of the packets

Turn FFT Size Torus Size condition packets/node Data/packet
xy turn 23n 23m 2m > n 23m−n 22n−3m

xy turn 23n 23m 2m ≤ n 2m 22n−3m

yz turn 23n 23m 2m > n 2n 22n−3m

yz turn 23n 23m 2m ≤ n 22m 22n−3m

To get a better sense of what would be the best network size for
any particular 3D FFT, we created a generalized formula to estimate
the latency of the entire 3D FFT computation. As the entire pro-
cess can be decomposed into computations and communications,
we can look at these two parts separately.

The computation latency is straightforward and can be easily
found in Altera documentation [2]. The communication on the 3D
torus is more complicated: the break-down of the estimate of the
communication latency is shown in Table 2. Since the data through-
put is limited by the bandwidth of the MGTs, we need to account
for the time to output all the data on one node. This is calculated
using the total number of data points per node and the bandwidth

of the internode links. Based on the general case above, the num-
ber of points per node should be 23n−3m. The delay on the links
is another important factor of the overall latency and is calculated
based on the length of the longest path in the generalized routing
pattern described above.

Table 2: Estimated latency of communication in microseconds
for various problem and network sizes

Turn FFT
Size

Torus
Size

Conditions Estimation Formula
BW: Bandwidth, LD: Link Delay

xy turn 23n 23m 2m > n 23n−3m

BW +(22m−n−1+2m−1)×LD

xy turn 23n 23m 2m ≤ n 23n−3m

BW + (2m−1) × LD

yz turn 23n 23m 2m > n 23n−3m

BW + (2m) × LD

yz turn 23n 23m 2m ≤ n 23n−3m

BW + (2m) × LD

5. EXPERIMENTAL RESULTS
We built a cycle-accurate simulator to gather experimental re-

sults for our design. The simulator is configured with practical pa-
rameters based on the capabilities of current FPGA devices. The
torus size in this paper is restricted to 8×8×8 and 4×4×4, both
of which are practical configurations in state-of-the-art technolo-
gies [8]. Compared with the 3D mesh, the 3D torus has a shorter
diameter, which is beneficial in reducing all-to-all communication
latency. Each node in the torus contains an FPGA. Each FPGA has
a network switch and a local processing unit (as illustrated in Fig-
ure 2 and Figure 3). Each processing unit contains a number of 1D
FFT IPs; this number is determined by the FFT size and the chip
area. The 1D FFT IPs we adopted in our design are generated using
Altera FFT MegaCore [2]. Latency and the maximum number of
IPs that fit on a high-end Altera FPGA are shown in Table 3. The
Altera FFT IP has the best latency in streaming mode: for an N
point 1D FFT, the latency cycles is N cycles. The first output da-
tum is ready as soon as last input datum is read in. Besides the 3D
FFT, this simulator is also capable of simulating any application for
which the communication pattern is given.



Table 3: Altera FFT MegaCore latency and max number of IPs
could fit on an Altera Stratix V 5SGSMD8

1D FFT
Size

Latency
(cycles)

DSP Blocks
Used

Max # of IPs
per node

Total # of
DSP Blocks

16 16 8 245 1963
32 32 16 123 1963
64 64 16 123 1963
128 128 24 82 1963

The node-to-node connections in our design use the Multi-Gigabit
Transceivers. Using the vendor-supplied light-weight low-overhead
protocol, the end-to-end communication latency of MGT is around
20-40 clock cycles in current technology [1, 26]. In our model,
we conservatively pick 50 cycles as the node-to-node latency value
and an internal clock frequency of 100MHz (the IP itself runs at
250MHz or more). This means that the node-to-node communica-
tion latency is fixed at 500ns. For internode bandwidth, we assume
51.2 Gbps, which is a plausible configuration for a single link im-
plemented with 2 MGTs [3]. We assume single-precision floating
point throughout.

We compared our two switch architectures during synthesis and
post place & route using Quartus; the PP&R mapping results are
shown in Table 4. The ring-based router does not show much ad-
vantages in chip area; this is because we only have seven ports for
each router type. With more ports, as would be required to sup-
port a higher dimensional network, the resource requirements of
crossbar would soon outstrip those for the ring.

Table 4: Switch architecture resource utilization on an Altera
Stratix V 5SGSMD8

Switch Architecture # of Logic # of Registers
Ring 2485 3568

Crossbar 3312 2672

The performance results gathered after simulations are displayed
in Table 5. Problem sizes ranging from 163 to 1283 were simulated.
Note that the best network size crosses over from 43 to 83 between
FFT sizes of 323 and 643. There is no simulation of the 163 FFT
for the 83 cluster because that would require fewer than 1 FFT per
FPGA per dimension. The estimated latencies are also included in
Table 5 for comparison. In fact, the estimates are quite close to the
simulation results. Note that there is not much difference between
crossbar and ring. This is mostly because the crossbar reduces the
latency by only a few cycles per hop compared with the ring, while
the link latency is 50 cycles per hop. The benefit from using the
crossbar for these networks and data sizes is therefore trivial com-
pared to the impact of the link latency. One thing to notice is that
when the FFT size is large, the crossbar has worse performance
than the ring. The reason is that when the FFT size gets large, ac-
cording the communication pattern, all of the traffic tends to go into
one dimension, making most of the crosspoints underutilized. For
FFT sizes of 1283 (and larger), congestion becomes critical (see
Table 1), but also allows for the table based scheme to show most
benefit.

In Table 6, we compare our results with results from CPUs,
GPUs, ASICs, and other FPGA implementations. Except for ASIC
(Anton) all are for single sockets. We find that communication
overhead does not overwhelm the calculation and that performance
of our design is faster than performance on CPUs and GPUs by at
least one order of magnitude (achieving strong scaling for the tar-
get applications). Also, the FPGA cluster performance is similar to

Table 5: Latency in microseconds for various problems sizes
and network sizes. Simulations assume 10ns cycle time.

FFT Net. IPs per Switch Estimated Simulated
Size Size Node Arch. Latency Latency
163 43 4 Ring 3.67us 3.98us
163 43 4 Xbar 3.67us 3.86us
323 43 16 Ring 5.27us 5.46us
323 43 16 Xbar 5.27us 5.30us
323 83 2 ring 7.65us 8.44us
323 83 2 Xbar 7.65us 8.23us
643 43 32 Ring 16.76us 16.76us
643 43 32 Xbar 16.76us 15.50us
643 83 8 Ring 9.23us 9.52us
643 83 8 Xbar 9.23us 9.32us
1283 43 64 Ring 88.79us 101.11us
1283 43 64 Xbar 88.79us 106.75us
1283 83 32 Ring 20.11us 25.72us
1283 83 32 Xbar 20.11us 26.74us

that of Anton [28]. For the 643 FFT, the design presented here is
faster than Anton [28] by about 30%.

6. RELATED WORK
We now review other work implementing 3D FFTs on FPGAs.

In [24], the authors focus on accelerating the 3D FFT by redesign-
ing 1D FFT IP using Hard Embedded Blocks (HEB). However,
their 1D FFT IP is still slower than the Altera’s IP. The authors in
[19] reduce the data transfer time of XY corner turn and YZ corner
turn by using a runtime configuration method called Coarse Grain
Reconfigurable Architecture (CGRA). However, their method does
not scale well. When problem size increases, the running time in-
creases exponentially. In [11], the authors provide an effective 3D
FFT implementation on a single FPGA. Preliminary work by one
of the authors [9] investigates some switching issues in more depth
but does not account for congestion. We have extended that here.

7. CONCLUSION AND FUTURE WORK
In this paper we present a design of mapping 3D FFTs onto an

FPGA-based cluster with a 3D torus, direct connections between
FPGAs, and offline routing. Even with extremely conservative as-
sumptions, we demonstrate strong scaling. The overall conclusion
is to demonstrate the viability of FPGA clusters for long timescale
MD simulations of even modest sized proteins.

There is much room for improvement. First, as the cluster gets
large the use of the FPGA becomes sparse. This enables the use
of much faster 1D FFT IPs (broadside) that would be limited only
by the FPGAs’ internal bandwidth. Second, our design does not
include any overlap of communication and computation. And third,
in this paper we use strict XYZ routing. Our off-line (table-based)
scheme, however, allows for routing that is nearly congestion free.
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