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ABSTRACT

Field-Programmable Gate Arrays (FPGAs) are becoming in-
creasingly attractive as computation engines: they are cur-
rently being integrated into supercomputers as application
accelerators. In order for widespread use of FPGA-based
accelerators to be practical, however, design tools must re-
solve a number of conflicting needs: application-specific
tuning versus wide applicability, stability of software invest-
ment versus use of the most recent and powerful acceleration
hardware, and customization of complex computing struc-
tures by end users who lack logic design skills. We describe
how the LAMP tools address these conflicts and report per-
formance results from experiments in creating families of
application accelerators.

1. INTRODUCTION

Recent generations of FPGAs offer computation resources
that include hundreds of arithmetic units with aggregate com-
putational capability of over ���� operations per second, and
on-chip memories with aggregate bandwidth over 1 tera-
bit/sec. FPGAs are very attractive as computation platforms
for a wide variety of calculations, including computational
chemistry [1], string processing [2], and others. Despite iso-
lated successes, however, FPGAs are not widely used as ac-
celerators for general computing.

We present Logic Architecture Model Parameterization
(LAMP), a tool suite that addresses some of the conflicting
requirements in FPGA-based application acceleration. The
first contradiction is that an accelerator’s logic design must
be highly tuned to its specific application in order to achieve
the ���� to ����� speed-ups desired, but must still be gen-
eral enough to handle wide ranges of applications. The sec-
ond is that end-users of application accelerators must be able
to modify algorithms at will, but efficient accelerator design
requires significant hardware expertise. The third is that ac-
celerator users want to use the full capacity of the most pow-
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erful FPGAs available, but do not want to change their ac-
celerator designs when porting to larger FPGAs. These con-
tradictions emerge from a few observations about real appli-
cations: first, that applications occur in wide families, but
efficient logic designs are point solutions; second that appli-
cation expertise and logic design skills nearly never appear
in the same person; and third, that FPGA capacity increases
steadily over time, but current design tools do little to sup-
port application scalability.

The LAMP tool suite meets these needs (i) by allowing
the logic designer to easily define related domains of appli-
cations that share common computation structure (LAMP
Models), (ii) by breaking the dependency relationship be-
tween the application’s end user and the FPGA logic de-
signer, and (iii) by automating the mechanisms for increas-
ing parallelism up to the limit set by the FPGA’s resource
constraints. Through the rest of this article, we show how
LAMP addresses the combined goals of high performance,
flexibility in the computations addressed, end-user control
over the application details, and automated scaling of logic
resource utilization.

2. OBSERVATIONS FROM APPLICATIONS AND
RESULTING REQUIREMENTS

We have chosen two broad families of applications as exam-
ple targets for FPGA-based acceleration using LAMP. Each
of these is an application domain, representing an entire
range of variations within one computational framework.
Modeling Rigid Molecule Interactions (MRMI) [4]: 3D
correlation is a well-established technique for estimating the
strength of interactions between two molecules, and for de-
termining what relative offset and rotation gives the best in-
teraction [5, 6, 7]. We have shown that FPGA acceleration
using direct summation can give ���� to ����� speed-ups
compared to PC-based serial code [1]. Direct summation
can also handle multiple and non-linear chemical phenom-
ena difficult or infeasible for transform-based techniques.
Approximate String Matching using Dynamic Program-
ming (DP) [2]: These are staple computations in bioinfor-
matics and text processing. Hundred of variations on these
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Fig. 1. a) UML class diagram for part of the DP application family. Parameter values modify behaviors, substitution matrices
[3] and scoring functions. b) Shows a possible GUI for DP.

algorithms exist, however, differing in their alphabets, use
of wildcards, character scoring functions, gap penalties, end
gap policies, etc. Figure 1a shows part of the DP class struc-
ture while Figure 1b shows part of a possible DP end-user
GUI. Note in particular that the user is allowed not only to
vary simple parameters, but also to choose functions and
even to create simple functions in a high level language.
The implications for a DP accelerator generator are that it
must support generation and swapping of modules, includ-
ing those with differing parameter lists, together with the
Hardware Description Language (HDL) module interface is-
sues that this entails.

From our experience with creating accelerators for these
computational applications [2, 4] and several others [8, 9,
10, 11, 12], we make a number of observations.
1. Applications come in families, not point solutions.Be-
sides the issues just described, some others are that applica-
tions may allow for arbitrary scoring functions [8], objective
functions [11, 4, 12], or chemical force models [4]. This
observation about application families also concurs with the
high degree of complex parameterization of widely used com-
pute intensive applications; e.g., BLAST, CHARMM, and
others are complex systems having dozens, if not hundreds
of parameters.
2. Can’t instantiate the whole family at the same time.
Unlike a software system, application instances usually must
be instantiated as needed. Therefore ...
3. Control must be provided, but leaf-nodes supplied
by the user. The control structure, the communication, the
memory access patterns, and the I/O must all be created by
the logic designer, while often only the user can create the
leaf nodes.
4. Generally, multiple skill sets are required. (i) With-
out an application specialist, it is impossible to know what
is truly required in an application and what is merely an im-
plementation artifact. For example, in MRMI, the standard
technique uses FFTs with complex double precision float-

ing point even though the goal is a correlation result, often
using only two bits of information per datum. (ii) The opti-
mal algorithm for a serial computer or MPP is often not the
optimal algorithm for an FPGA. In almost all of our applica-
tions the algorithm was changed from that in the reference
code; of many examples, the Steiner system implementation
in [11] was particularly non-obvious. (iii) FPGA-specific
logic design is sometimes required to prevent performance
losses of ��� or more. One example was in MRMI where
it was essential to efficiently implement FIFOs using block
RAMs to pad rows for 3D rotations.
5. FPGAs and FPGA systems evolve; scaling cannot be
done by resynthesis alone.It is desirable to use the FPGA
system’s resources fully for each application instance, inde-
pendent of the needs of any other instance, and independent
of the particular FPGA. In particular, unlike with most High
Level Language (HLL) based programs, recompilation for
a new platform (perhaps with simple parameter changes) is
not likely to be sufficient to properly use the new resources,
even if it is a simple increase in identical attributes.

As a result of the observations made in previous work,
we determined the following set of requirements for LAMP:

1. Good interfaces between specialists, including sup-
port for customization of the accelerator by the end-
user independent of the logic designer.

2. Use of existing EDA tools as much as possible.
3. No circuit-level design.
4. Scalability through recompilation and resynthesis only.
5. Reuse of control and communication; allow broad pa-

rameterization, including behaviors as parameters at
the leaf nodes.

6. Extensions to EDA tools to support requirement 5.

3. UNIQUE LAMP SYSTEM FEATURES

1. System Design — Inversion of Flow-of-Control
In contrast to many graphical systems, we invert the flow-



of-control. Common graphically oriented systems provide
the leaf elements (convolvers, FFT units, etc.) with the ap-
plication specialist specifying the control and the data flow
connecting the blocks. LAMP-based systems provide the
control and the dataflow and allow the application specialist
to provide the behaviors for the leaf nodes. Of course the
application specialist is still allowed to use existing (param-
eterized) modules as leaf nodes.

Viewing this another way, what LAMP-based systems
provide corresponds to the outer loops, loop interfaces, and
major data structures that express the essential dependencies
of an application family. Although the general range of cal-
culations to be addressed is up to the application specialist
initially (perhaps through a formal specification), the logic
designer creates the LAMP-based system that represents the
entire range of calculations within that application domain.
The application specialist then specifies particular applica-
tions as desired. This extends the approach taken by the
version of SA-C described in [13]. There, SA-C supports
a single loop construction (for template-based image pro-
cessing) and allows the internals to be varied; we provide
a framework for generalized loop construction (i.e., LAMP)
while still allowing the internals to be varied. Note that this
approach provides firm boundaries between application spe-
cialists and logic designers. It is also what software devel-
opers have been doing for years: The connection between
the domain model and the application-specific logic roughly
matches Java’s AWT or the Strategy design pattern [14].
2. Tool Extension – Functional behaviors as parameters
To support the functionality just outlined, LAMP extends
the underlying HDL to allow functional behavior to be ex-
pressed as a component parameter, and to allow kinds of
reuse not currently possible within the HDL’s accepted stan-
dard. Existing HDLs have type systems that do not meet
LAMP’s requirements. For example, VHDL components
allow only changes of port array and integer ranges, pro-
hibiting many kinds of component reuse, and cannot accept
functions as parameters. Balboa requires port types of leaf
components to be defined before creating connections be-
tween them, and does not address non-leaf components [15].
Some systems limit inheritance hierarchies to fixed structure
and depth [16]. Other HDLs [17] omit critical OO features
from their synthesizable subsets. Java and other standard
programming languages deal with highly variable object in-
teractions, unlike the relatively fixed component interactions
in synthesized logic. LAMP’s parameter type system ad-
dresses all of these issues. It

� supports parameter types that define logic functions,
� enables kinds of component reuse that are not possi-

ble within VHDL’s architecture/configuration mecha-
nism,

� allows abstract type definitions, so that implementa-
tion details can be deferred to the particular Applica-
tion Instance,

� supports arbitrary levels of partial Model refinement
and concretion,

� specifies and integrates OO inheritance rules into the
basic synthesizable feature set, and

� addresses static component interactions as a source of
novel type safety relationships.

3. Automatic Scaling
Fortunately, accelerators for many applications consist of
regular arrays of PEs, memories, etc., which can generally
be expanded in one or more dimensions, with no change
to the fundamental structure of the computation. There are
many complicating factors, however, including the dimen-
sion of the computation, the relationships among phases of
computation, and the varying types of resources required
and available. In general, automatic scaling solutions can
be complex as even a simple, linear computation array may
involve non-linear terms for broadcast networks for control
signals or for larger worst-case sums. LAMP’s approach to
these difficulties is to isolate the estimation logic in easily re-
placeable software components and to enlist the designer’s
aid in composing the scaling expressions. Estimation algo-
rithms can be updated as new techniques become available.

4. LAMP SYSTEM DESIGN
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Fig. 2. LAMP design tool flow.

The system design of the LAMP design tool suite is
shown in Figure 2. Some key terminology: a single LAMP
Model created by a logic specialist corresponds to a single
end-user environment for a family of applications; when the
end-user specifies a single application using that environ-
ment, a Model Instanceis instantiated.
(1) Logic designer’s input. These are created using XML-
based LAMPML (LAMP Markup Language) and standard
HDL. The heart of the system is the Annotated HW Model,
or just Model. The Model specifies the communication paths,
control mechanisms, and host interface elements that are
constant across all members of the application family. These
accelerator structures are expressed in standard VHDL (in
our current environment), annotated using LAMPML tags.



These tags, which are based on the Application Abstraction,
show where application-specific features affect the logic de-
sign. The Model also includes the periphery logic that con-
nects the FPGA core to its board and host environment.

The Application Abstraction is the bridge between the
application specialist and the logic designer. Like a physi-
cal bridge, it connects the two. It also narrows the connec-
tion to a single point of contact between them, blocking the
incidental facts of each implementation that could uninten-
tionally have affected the other. In particular it is an abstract
description of the data types and functions that that are left
undefined by the Model; i.e. which are to be supplied by the
application specialist or end-user.

The FPGA Resource Descriptionhas the amount of
each computing resource (cells, block RAMS, hard multipli-
ers, etc.) available on a given FPGA (and eventually, cluster
of FPGAs) and is used in automatic scaling. The abstract
definition of the FPGA Resource Description can be used to
define the general form of resource allocation expressions,
without need for exact values until the actual FPGA is cho-
sen.

(2) LAMP Programming Environment. The Program-
ming Environment naturally accepts input from the appli-
cation specialist; however, (and most significantly) it also
accepts input from the Application Abstraction. The latter
identifies the functions and data types that are used, but un-
defined, in the Model (corresponding to the white-space in
the application illustrations in the previous section). The
Programming Environment uses the input from the Appli-
cation Abstraction to create a semi-graphical user interface
through which information is supplied to the Model.

(3) User Input. The application specialist makes configu-
ration choices at the Programming Environment’s graphical
UI. The user enters function selections and/or data type def-
initions and function definitions in a simple C-like represen-
tation, filling in text fields within the GUI. The programming
environment saves the human-readable form of input for UI
purposes, but converts it into validated LAMPML for further
processing.

(4) LAMPML Intermediate Format. Although the LAMP-
ML Intermediate Format is editable text data in XML for-
mat, very few users would find it a natural or convenient
way of expressing application logic. The LAMPML inter-
mediate format is readily machine readable, however, and
separates the input and parsing issues from the compiler’s
internal processing. This corresponds to the compiler’s in-
termediate code, a step between a compiler’s front end and
back end that is normally not visible to the user.

(5) LAMP Compilation Tools. The LAMP Compilation
Tools accept the Model, defined in terms of the Application
Abstraction, and combine it with the LAMPML from of the
user input (item 4 in Figure 2). This phase includes syn-
thesis estimation and scaling, allowing the largest possible
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Fig. 3. LAMP UML class diagram.

computation array for the logic resources available and re-
quired. The output from this compilation is Figure 2’s item
6, the synthesizable HDL. These tools do the real work of
combining the application-specific code (optimization data
and functions) with the hardware model. This stage inte-
grates user logic with the HDL application framework. It
also performs synthesis estimates for the code provided by
the user, and evaluates estimation functions provided in the
hardware model. Together with the FPGA Resource De-
scription, these imply the largest number of computational
units that the available FPGA fabric can support. The com-
pilation phase also generates interface code for the host pro-
gramming environment. This small amount of code, cur-
rently presented in ANSI C, establishes the common data
formats shared between the host application and the hard-
ware accelerator. These code fragments supplement the hard-
ware vendor’s device drivers.
(6) Synthesizable HDL output. LAMP tools do not per-
form HDL synthesis directly, but rather create synthesizable
HDL. This leaves synthesis, place-and-route, etc. to other
EDA tools. This has the advantage of (mostly) keeping the
LAMP tools and hardware model independent of specific
FPGAs, allowing easier porting and scaling. It also allows
LAMP to take advantage of the lower-level compiler opti-
mizations available in current HDL tools.
(7) Standard synthesis tools.LAMP works with any avail-
able synthesis tools; it has no architectural dependency on
any particular HDL or compiler. That said, it is understood
that tool-dependent pragmas or VHDL attributes in synthe-
sizable HDL code may be critical for achieving performance
and resource allocation goals. To date, those tool-dependent
features have all been managed within the Model.
(8) Application-specific accelerator.The output is a binary
image (“bit file”) for implementing the accelerator in the tar-
get FPGA. It is possible to create and reuse multiple bit files
to serve different purposes.

Application accelerators constructed with LAMP have



Table 1. Performance of LAMP-generated MRMI accelera-
tors. Speed is in ��� score/accumulate operations per second
(GSAC/s). FPGA is a Xilinx XC2VP70.

Force Voxel Logic Clock PEs Speed
law (bits) (slices) (ns) (� �

�) GSAC/s
K-K 2 11 20.8 2744 (���) 131.9
GSC 2 11 19.4 2744 (���) 141.9
PSC 7 21 21.7 1331 (���) 61.3
ACP 5 44 32.7 729 (��) 22.2
ES 6 35 26.1 729 (��) 27.9

SNorm 7 16 21.6 1331 (���) 61.7

the structure shown by the UML [18] class diagram in Fig-
ure 3. A Model Instance, an actual accelerator in this ap-
plication family on this actual hardware, is a binding of re-
source and application concretions to the Annotated Hard-
ware Model. Once the Model is defined, these relationships
are constant across all actual implementations of accelera-
tors for this family of applications. The FPGA Resource De-
scription is instantiated from the FPGA Resource Abstrac-
tion and together with a particular FPGA Resource Concre-
tion. Likewise, the specifics of any one application are pro-
vided by the user in the application concretion.

5. EXPERIENCE USING LAMP

We now describe our experience with using LAMP to con-
struct the two reference application families: MRMI and DP.
Both are at the highest level systolic arrays, but have very
different patterns of memory reference and communication.
Important to this discussion is that this variation also ex-
tends to various applications within each family.

Table 1 and Table 2 contain results from a sample of the
various accelerators created with the MRMI LAMP Model
and the DP LAMP Model, respectively. Some of the axes of
variation in DP (not all shown) are global versus local align-
ment, DNA versus protein, match type, termination rule,
and parameterized substitution table. The two major axes
of variation in MRMI are the choice of force law and the
evaluation function (not shown). In Table 1, K-K represents
the force law used by Katchalski-Katzir’s team [7], based on
a two-bit encoding for each voxel in each molecule. GSC is
just slightly more complicated than K-K, but PSC uses addi-
tional information about each voxel’s number of neighbors
[5]. ACP is a simplified form of atomic contact potential
combined with collision detection. ES is based on collision
detection and electrostatic forces. SNorm uses geometric ef-
fects based on surface normal vectors [6]. Dozens of other
laws could also have been addressed.

We now discuss four issues: programmability, perfor-
mance, performance plus flexibility, and generality.
1. Programmability. Perhaps the most critical issue is how
much logic-designer time it takes to create an FPGA ac-
celerator for a complex application family. MRMI and DP

were each created in less than six months by a graduate stu-
dent with modest circuit design experience. However, the
most important metric is not design-hours; rather, it is the
number of design-hours per accelerator use. In this context,
we now compare the LAMP approach with standard HDL-
based logic design.

In creating LAMP Models, the HDL subset of the Model
must still created. In fact, creating these HDL modules for
generality is somewhat more complex than creating the mod-
ules for point solutions. The benefits, however, are substan-
tial. The first is that dozens to hundreds of accelerators can
now be generated and optimized to the capacity of the FPGA
with no further intervention by the logic designer. These ac-
celerators can, of course, be generated by any number of in-
dependent end users, and as their own experiments require.
The second benefit occurs if logic designer intervention is
again needed for a unique new feature. Since the structures
are already in place, little additional time is required beyond
the design of the particular component.
2. Performance. The Tables report implementations for a
Xilinx XC2VP70 FPGA. For MRMI, each PE handles one
voxel scoring operation per clock cycle. We report both the
number of PEs and the edge dimension of the cubical com-
putation array implemented. The array limits the size of the
smaller molecule, but multiple passes can be used to han-
dle the molecule in parts. For MRMI, the speed-ups over a
3.06GHz Intel Xeon PC range from ���� to �����. For
DP, the speed-ups range from ��� to ����.
3. Performance plus flexibility. The speed-ups are satisfy-
ing given the logic design effort and the importance of the
applications. However, for any one application instance (es-
pecially in DP), a hand-crafted circuit-level solution would
certainly yield even better performance. Perhaps our key
result is that this is of little consequence: time and again,
high-performance point solutions have been introduced, but
found to be too brittle for production use. In contrast, we
achieve speed-ups of two to three orders of magnitude over
entire ranges of family members.
4. Generality. This addresses the question: for an applica-
tion family, should a single accelerator be built that does ev-
erything, i.e., that supports all of the applications within the
family, or should accelerators be generated and optimized
independently? To answer this question, observe that in the
former case, the accelerator structure must always run at the
rate of the slowest application instance. This means that
other applications pay a performance penalty. For DP this
is roughly a factor of 4; for MRMI a factor of 6. This ar-
gues strongly for customizable families of accelerators, and
therefore tools that address families of problems.

6. CONCLUSION

We have presented LAMP, a tool suite for generating FPGA-
based coprocessors, especially for compute-intensive appli-



Table 2. Performance of LAMP-generated DP accelerators. Speed is in character comparisons per second (CC/s). FPGA is a
Xilinx XC2VP70. PC has a 3.06GHz Intel Xeon CPU.

Task Data Match type Logic: Slices Clock PEs Speed Speed
per PE (ns) ��

� CC/s FPGA/PC
global DNA Exact match 109 12.9 125 9.68 215�
global DNA IUPAC wildcard 108 13.7 126 9.19 204�
global DNA Fixed table 111 14.6 123 8.42 187�
global DNA RAM table 108 16.8 126 7.5 167�
local DNA Exact match 190 13.3 72 5.41 186�
local DNA Fixed table 193 15.9 70 4.4 152�
local protein Exact match 205 13 66 5.07 175�
local protein Fixed table 239 25.5 57 2.23 77�

global ASCII Exact equality (Xeon PC) 0.33 1 0.045 1�
local ASCII Exact equality (Xeon PC) 0.33 1 0.029 1�

cations. The key results are that using LAMP, we have had
success in generating families of optimized accelerators, rather
than point solutions; that this generality was achieved with
modest marginal logic design effort; and that speed-ups of
two to three orders of magnitude over a PC were consistently
obtained.

Our current work is focused on increasing the capabili-
ties of the LAMP tools. We are also prototyping Models for
other application domains, especially those involving differ-
ent scaling laws and resource utilization.
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