Connecting the Dots: New “Atom Calligraphy” Technology Could Lead to Mass-Produced Nanodevices

One of the biggest obstacles on the road to mass-producing nanoscale devices ranging from integrated [...]circuits to biosensors is a persistent inability to precisely manipulate nanomaterials to build reliable, functional products at a reasonable cost. The main challenge has been to pattern materials at precise locations in a repeatable manner over relatively large areas. Conventional approaches have proven inconsistent, wasteful and expensive.

To meet this challenge, Professor David Bishop (ECE, Physics, MSE) and collaborators at Boston University and Bell Laboratories have developed a low-cost, microelectromechanical system (MEMS)-based machine that directs atoms onto a surface through different-sized holes—each no more than 50 nanometers across—on silicon plates. These MEMS plates can move with nanometer precision to create exacting patterns over surfaces of more than 400 square microns, roughly the area of a human white blood cell. Shutters positioned a micrometer or so above each MEMS plate enable high-speed control of where and when atoms are deposited.

The researchers have produced lines, bridges, rings, infinity symbols, BU logos and many other nanoscale metal patterns by depositing gold and chromium atoms through the holes while moving the plates. The machine and the concept behind it are described in Nano Letters.

Tags: College of Engineering, eng, mems, nanotechnology

Report abuse


No comments yet - post one below!

Post your comment