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According to the Distributional Hypothesis, infants acquire phonemes by 

mapping tokens into some phonetic space and noting peaks in frequencies in this 

space, inferring that high-frequency clusters correspond to phoneme categories 

(Maye et al. 2002). Although this bottom-up processing account has been 

influential among acquisitionists, a number of researchers have noted that natural 

utterances of vowels exhibit wide phonetic variability, suggesting the need for 

top-down sources of information, such as the infant’s developing lexicon 

(Swingley 2009). This study seeks to quantitatively compare the distributional 

learnability of various types of phonemes (stops, fricatives, glides, and vowels) as 

spoken by a single speaker of French. An Expectation-Maximization Algorithm 

as implemented by the MCLUST package in R is used to estimate a purely 

distributional learner, and two metrics are used to evaluate the performance of this 

distributional learner: “Classification Accuracy” and “Psychophysical Distance 

Between Means.” This study concludes that (1) distributional information varies 

widely for different phonemes, and (2) since neither metric converges in their 

results, more research should be done to determine which, if any, of these metrics 

best reflects the behavior of a human learner. Results suggest that other sources 

of information, such as top-down sources, must be relied upon more heavily when 

acquiring vowels than when acquiring stops, in order to correctly predict the order 

of acquisition of phonemes that infants show. 

 

1. Introduction*  

 

Infants show language-specific discrimination of consonants around 8-12 

months of age (Werker & Tees 1984, Eilers et al. 1979, Eimas et al. 1971), and 

language-specific discrimination of vowels even earlier, around 6-8 months of age 

(Kuhl et al. 1992). For example, while both English-learning and Hindi-learning 

infants will discriminate the retroflex /ʈa/ from the dental /t̪a/ at 6-8 months of age, 

around 8-12 months of age, these infants will show language-specific 

discriminatory abilities: the English-learning infants will no longer discriminate 
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between these two sounds, whereas the Hindi-learning infants will continue to do 

so (Werker & Tees 1984). All of this occurs before infants have built a very 

sizable lexicon, comprehending only about 36 words by the age of 8 months, and 

86 words by the age of 12 months (Caselli et al. 1995), suggesting that language-

specific discrimination of contrastive phonemes cannot be dependent on infants 

noticing relevant minimal pairs (see also infants’ failure to treat pairs of words as 

minimal pairs despite being given semantic evidence to the contrary; Stager & 

Werker 1997, Thiessen 2007).  

In order to explain this early language-specific discrimination, acquisitionists 

have suggested a number of sources of information utilized by the language 

learner when forming sound categories. The most widely-known of these many 

sources of information is known as the Distributional Hypothesis (Maye et al. 

2002, Guenther and Gjaja 1996). According to the Distributional Hypothesis, 

infants acquire early language-specific discrimination by mapping tokens into 

some n-dimensional phonetic space and inferring that clusters in this space 

correspond to sound categories, even if they do not initially end up utilizing these 

sound categories in lexical learning. Other sources of information include the role 

of semantics (Hayes-Harb 2007) and the role of overall lexical shape, devoid of 

any semantic information (Feldman et al. 2013). 

The goal of this study is to quantitatively compare the distributional 

learnability of stops (/k g/), fricatives (/s ʃ/), glides (/j ɥ w/), and vowels (/i y u/) 

within a single speaker of French, in order to determine if distributional learning 

alone is sufficient to correctly predict the order of acquisition of phonemes that 

human learners show. 

 

2. Background 

2.1. The Distributional Hypothesis 

 

According to the Distributional Hypothesis, a language learner maps tokens 

into some phonetic space, and uses their relative frequencies to infer the number 

of sound categories (s)he is being exposed to. Language learners exposed to a 

bimodal distribution of tokens along some phonetic dimension(s) will infer that 

there are two sound categories, whereas language learners exposed to a 

monomodal distribution will infer that there is only one. Therefore, in a purely 

distributional-based learning account, the language learner’s job is to 1) extract 

sounds from a stream of speech, 2) map out each extracted sound into some 

phonetically-based n-dimensional space, 3) keep track of past sounds (s)he has 

mapped within this space, and 4) infer that each region of high frequency tokens 

represents a phoneme in the ambient language. Artificial learning tasks show that 

language learners are capable of these computations. Maye et al. (2002) find that 

infants exposed to a simplified artificial language with a bimodal distribution of 

tokens ranging between a voiceless unaspirated stop [t] and a pre-voiced stop [d] 

inferred that there were two categories, whereas a group exposed to a language 

with a monomodal distribution inferred that there was only one category. This 



finding has been replicated for the stimuli [g] – [k], [a] – [ɑ], [i] – [ɪ], and [ç] – [ʂ] 

(Hayes-Harb 2007, Gulian et al. 2007, Cristià et al. 2011). 

 

2.2. Distributional Learning is only one of many sources of information for 

language learners 

 

While these artificial learning experiments show that language learners are 

able to make the statistical calculations required for the Distributional Hypothesis, 

a number of researchers have recently pointed out that the distributions in natural 

language exhibit too much phonetic overlap for distribution to be the only source 

of information that language learners rely upon. Hayes-Harb (2007) shows that 

language learners utilize semantic information when determining boundaries 

between phonemes (e.g. participants who are shown that [ga] means ‘pot’, but 

[ka] means ‘mouse’ are more likely to treat [g] and [k] as different phonemes than 

participants who are shown [ga] and [ka] both mean ‘pot’). Feldman et al. (2013) 

shows that overall lexical shape, devoid of any semantic information, also affects 

a language learner’s acquisition of phoneme categories (e.g. participants who hear 

[a] and [ɔ] in similar lexical contexts [lita] and [litɔ] are more likely to treat [a] 

and [ɔ] as single phonemes than participants who hear them in different lexical 

contexts [lita] and [gutɔ]). Each of these is just one of many sources of 

information which a language learner makes use of when carrying out the difficult 

task of categorizing incoming information, and each may be weighted differently 

in learners’ minds. For example, Hayes-Harb (2007) compares the effect of 

semantic information with the effect of distributional information on the 

formation of phonemes, finding semantic information to have a stronger effect 

than distributional information, and Moeng (2015) compares the effect of lexical 

shape to distributional information, although results were inconclusive. 

This paper will reference both “sources of information” and “(acoustic) 

cues.” These concepts are similar in that they both acknowledge that learners often 

take many factors into account when creating and utilizing categories, but each 

applies to different steps of the categorization process. “Source of information” 

will refer to the factors taken into account by the learner when (s)he is in the 

process of creating and acquiring phoneme categories. One of these sources of 

information is Distributional Learning. Other sources are the earlier-referenced 

semantic information and lexical shape information. “(Acoustic) cue” will refer 

to some acoustic aspect of a sound which is taken into account when language 

users are deciding which already-existing category or phoneme a sound belongs 

to, such as Voice Onset Time, or formant values. 

 

2.3. Are different phonemes acquired differently? 

 

Because language learners utilize multiple sources of information when 

acquiring sound categories, there is the chance that different types of phonemes 

(e.g. stops, fricatives, glides, and vowels) are acquired with a heavier or lighter 

reliance upon each of these sources of information. For example, if distribution is 



weighted (i.e. relied upon) x amount by an infant acquiring phonemes, and other 

sources of information (semantics, lexical shape, etc.) are weighted y amount by 

the infant, are these weights kept constant for all types of phonemes? Is there 

reason to believe that language learners do not use the same blanket approach in 

acquiring all types of phonemes? 

This question is worth pursuing, as some proposals predict that language 

learners process different types of phonemes in different ways. For example, 

proponents of what is known as the CV Hypothesis argue that there is a categorical 

distinction between the processing of consonants and vowels (Nespor et al. 2003, 

Bonatti et al. 2005, Toro et al. 2008, Havy & Nazzi 2009), rather than two ends 

of a sonority spectrum or a convenient name for a bundle of features (Caramazza 

et al. 2000). Ramus et al. (1999) and Mehler et al. (1996) suggest that infants treat 

vowels as speech but consonants as “unanalyzed noise.” 

 Another reason to compare the distributional strength of different types of 

phonemes is that arguments which have been made against the Distributional 

Hypothesis point to the great amount of category overlap that vowels exhibit, 

arguing that this phonetic overlap is so high that, without other sources of 

information, a language learner could not possibly pick out categories based on 

frequency distributions alone. For example, Figure 1 shows 11 English 

monophthongs. According to a distributional account, 11 clusters should be 

visible, and yet this does not seem to be the case due to the wide phonetic overlap 

between each vowel.  

 

 

Figure 1. The problem of overlapping categories for a purely distributional 

account. Figure from Swingley (2009) maps out 11 English monophthongs. 

According to a distributional account, 11 clusters should be visible. 

 

However, this argument against the distributional account seems to have only 

been made for vowels. A study by Lisker and Abramson (1964) suggests that 

stops differing in VOT do not pose the same problem as vowels do to 

distributional learning, as stop VOTs do not seem to overlap to the extent that 

vowel formants do. As seen in Figure 2, English speakers are exposed to a 

distribution with two prominent peaks and one smaller peak. We could imagine 

either a model in which language learners only notice the more prominent peaks 

in frequency (that is, peaks in frequency that fall above some threshold), or a 



model in which language learners notice all local maxima in frequency (3 in this 

case), and then, through some second step, collapse phoneme categories which 

are in complementary distribution into a single category. By comparison, Dutch 

speakers (Figure 2, right), who have a single phoneme associated with velar stops, 

are exposed to only a single peak in frequency. 

 

  

Figure 2. In a figure plotting VOT for velar oral stops, we see two or three clear 

peaks form in the English-speaking data (left), and only one peak form in the 

Dutch data. Figures adapted from Lisker and Abramson (1964). 

 

This is precisely the type of distribution a purely distributional hypothesis 

would expect: a language with two phonemes exhibits two (or three) frequency 

peaks, while a language with a single phoneme exhibits only a single peak in 

frequency. 

While a visual comparison of Figures 1 and 2 suggests that stops would be 

better learned by a distributional learner than vowels, this study seeks to make a 

quantitative comparison of stops and vowels, along with fricatives and glides, by 

evaluating the results of a Gaussian fitting model. In addition, the measurements 

made to create Figures 1 and 2 were taken from different studies and different 

elicitation methods. This study will compare various types of phonemes, all of 

which are produced by a single speaker in a single language in the same discourse 

style, in order to most accurately compare the distributions of these phonemes. 

 

3.  Research Questions 

 

The goal of this paper is to answer the question: How do the distributions of 
stops, fricatives, glides, and vowels compare? 

To answer this question, natural utterances of stops /k g/, fricatives /s ʃ/, 

glides /j ɥ w/, and vowels /i y u/ were measured in French child-directed speech. 

Each is a phoneme in French, so a distributional learner would expect each to 

exhibit a clear peak in frequency. 

 

4.  Methods 

 

Because this study focuses on the type of input the infant receives, 

measurements are made on child-directed speech. Phonetic cues were measured 

from the speech of one male in his early 30’s speaking European French from the 

Yamaguchi corpus in CHILDES (Yamaguchi 2007, MacWhinney 2000). The 

Yamaguchi corpus contains naturalistic dialogue of a mother and father 



interacting with their infant, recorded at roughly one-month intervals across the 

span of 3 years. Files were chosen from approximately halfway through this 3-

year span in hopes that the speakers were by then comfortable with being recorded 

and were acting (and speaking) naturally. 

1-2 salient phonetic cues were measured for each phoneme type: voice onset 

time (VOT) for stops, center of gravity (CoG) for fricatives, and the second and 

third formants (F2 and F3) for vowels and glides. 

When measuring voice onset time, the onset of voicing was determined to be 

the point at which the waveform began to exhibit clear periodic behavior, and the 

stop release was marked at the point where intensity increased. Stops in codas 

were not included in measurements. 

Regarding vowel and glide measurements, vowel formants were measured at 

the midpoint of the vowel. Glides were marked where there were clear visible 

formants in the spectrogram, and a low-intensity, periodic waveform. In order to 

avoid as much coarticulation from neighboring vowels as possible, glide formant 

measurements were made at the farthest point from the glide’s neighboring 

vowel(s), which differed based on the glide’s phonological environment: formants 

for glides were measured 10% of the way into the phoneme if the glide followed 

a consonant and preceded a vowel, 90% of the way in if it followed a vowel and 

preceded a consonant, and 50% of the way in if it was intervocalic.  

All measurements were made using the speech analysis software Praat 

(Boersma & Weenink 2001). Identities of underlying phonemes were based on 

phonemic transcriptions (marked as “%mod” within CHILDES) as marked by the 

transcriber of the Yamaguchi corpus. A total of 2007 phonemes were measured. 

It should be noted that the choice to measure only one or two salient cues 

does not mean that it is believed that any of these cues alone will be sufficient for 

a learner. As noted earlier, there are likely many sources of information that the 

language learner must draw upon when determining phonemes belonging to his 

or her language, only one of which is distributional in nature. The purpose of this 

study is not to claim that distribution alone is sufficient, but rather to determine 

the relative strengths of distributional information across different types of 

phonemes within a single language. 

 

5. Analysis 

 

Section 5.1 presents the categories learned by the machine learner next to the 

actual phoneme categories. Section 5.2 evaluates how well the leaner learned each 

of these categories using two metrics introduced here: Classification Accuracy 

and Psychophysical Distance Between Means. 

 

5.1. Learned Gaussian distributions of stops, fricatives, glides, and vowels 

 

Gaussian distributions for each phoneme were estimated with the 

Expectation-Maximization (EM) algorithm as utilized by the MCLUST package 

in R (R Core Team 2015, Fraley et al. 2012, Fraley & Raftery 2002). This 



unsupervised machine learner was given no information as to the number of 

categories to be learned, and discovered parameters such as orientation, variance, 

and mean without any outside input.  

For the stops, the machine learner was given only one dimension: VOT. 

Actual and learned stop categories are shown in Figure 3. The machine learner 

discovered three categories when there were only two phonemes. Because each 

of the three learned categories contained quite a few tokens, this study looked 

more closely at the members within each category and their phonological 

environment. It was found that many of the phonemes in the third category were 

/k/ followed by a high vowel or glide. As /k/ has been shown to have greater VOT 

following high tense vowels (Klatt 1975, Port & Rotunno 1979), this study looked 

at /k/ following high vowels/glides (“kH,” dark green) separately from the 

elsewhere-/k/ (/k/ everywhere other than before a high vowel/glide, light green). 

Note that the discovery of too many categories is not considered problematic for 

a distributional account, as the discovery of complementary distribution can later 

collapse these into a single phoneme category (see the discussion concerning 

Figure 2). 

 

  
Figure 3. Actual phonemes (left) and learned categories (right) for the stops /k/, 

/k/ preceding high vowels and glides (‘kH’), and /g/. 

 

  
Figure 4. Actual phonemes (left) and learned categories (right) for the fricatives 

/s/ and /ʃ/. 
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 For the fricatives, the machine learner was only given center of gravity 

measurements. Actual and learned fricative categories are given in Figure 4. The 

machine learner correctly discovered two categories: one corresponding to /s/ 

(light purple) and one corresponding to /ʃ/ (dark purple). 

 

  
Figure 5. Actual phonemes (left) and learned categories (right) for glides. 

 

  
Figure 6. Actual phonemes (left) and learned categories (right) for vowels. 

 

For vowels and glides, the distributional machine learner was given two 

dimensions: F2 and F3. Actual and learned categories of vowels and glides are 

shown in Figures 5 and 6. The distributional learner correctly discovered three 

vowel categories, as indicated in the bottom right panel of Figure 6. However, the 

learner discovered an extra (sparsely-populated) fourth category when given the 

glide distributions, as shown in Figure 5.  

 

5.2. Evaluating the distributional learner’s performance 

 

This section evaluates the “learnability” of each of these phonemes by 

assessing how accurate the previous section’s learned Gaussian categories are. 

The learnability of each phoneme was judged along two metrics: (1) by 



calculating what will be referred to here as Classification Accuracy, the percent 

of phonemes that were correctly classified by the machine learner (roughly 

following the methodology of Adriaans & Swingley (2012)), and (2) by 

calculating what will be referred to here as Psychophysical Distance Between 

Means, the perceptual distance between the actual mean of each phoneme 

category and the learned Gaussian category mean. The justification behind 

Classification Accuracy as a metric of learnability is that, the better a category has 

been learned, the more accurately it will correctly classify actual tokens into the 

learned category. The justification behind Psychophysical Distance Between 

Means as a metric of learnability is that, the better a category has been learned, 

the closer the learned “prototype” or category mean will be to the actual category 

mean. 

 

Table 1.  Classification Accuracy for stops, fricatives, glides, and vowels 

(percent of phonemes correctly classified by the machine learner). 

Type Phoneme 
Classification Accuracy 

(% Correctly Classified) 

Stop 

/k/ elsewhere 91%  (138/152) 

/k/ before [high] 59%  (30/51) 

/k/ overall 83%  ((138+30)/(152+51)) 

/g/ 80%  (28/35) 

Fricative 
/s/ 58% (355/615) 

/ʃ/ 97% (95/98) 

Glide 

/j/ 71%  (257/361) 

/ɥ/ 75%  (24/32) 

/w/ 85%  (167/196) 

Vowel 

/i/ 73%  (477/651) 

/y/ 58%  (176/304) 

/u/ 68%  (154/225) 

 

Classification Accuracy, the percent of phonemes correctly classified, is 

indicated in Table 1. For example, 80% of all /g/s measured were correctly placed 

into the learned “g” category by the machine learner. According to this metric, the 

/y/, /u/, /ʃ/, and /k/ before high vowels performed poorly, being placed into the 

correct category only 58%, 68%, 58%, and 59% of the time, respectively (see 

Adriaans and Swingley (2012) for similar numbers regarding a metric similar to 

Classification Accuracy for English vowels). All other phonemes (/k g s j ɥ w i/) 

were placed into the correct learned category 71% - 91% of the time, with the 

“elsewhere-/k/” and /g/ performing the best, being correctly classified 91% and 

80% of the time, respectively. 

The second metric for learnability, Psychophysical Distance Between Means, 

is designed to measure how well the learner learned the acoustic location of the 

prototypical phoneme category. This involved measuring the distance between 

the actual mean of the phonetic variable given to the machine learner (VOT for 



stops, CoG for fricatives, F2 and F3 for glides and vowels), and the learned mean 

of that same phonetic variable according to the Gaussian distribution discovered 

by the machine learner. In order to compare acoustic distance between an actual 

and learned VOT to an actual and learned formant value, acoustic distances were 

converted into psychophysical, or perceptual, distances. To do this, acoustic 

distances between the actual and learned averages were divided by the length of 

1 Just-Noticeable Difference (JND).  

 

Table 2. Psychophysical Distance Between Means between the actual and 

learned category center for stops, fricatives, glides, and vowels. 

Type Phoneme 

Actual  

Category 

Mean 
 

(ms, Hz) 

Learned 

Category 

Mean 
 

(ms, Hz) 

 

 

|Actual-Learned| 
 

(ms, Hz) 

Psychophysical 

Dist. Btwn. Means 

|Actual-Learned| 
 

(JNDs) 

Stop 

/k/ 
33 ms 

(VOT) 

31 ms 

(VOT) 
2 ms 

0.09 – 0.13 JND  

(2/23), (2/16) 

/k/-high 
55 ms 

(VOT) 

62 ms 

(VOT) 
7 ms 

0.30 – 0.44 JND  

(7/23), (7/16) 

/g/ 
-29 ms 
(VOT) 

 -39 ms 
(VOT) 

10 ms 
0.43 – 0.63 JND  
(10/23), (10/16) 

Glide 

/j/ 

1817 Hz 

(F2) 

1847 Hz 

(F2) 
30 Hz 

1.1 JND  

(30/28) 

2785 Hz 
(F3) 

2889 Hz 
(F3) 

104 Hz --- 

/ɥ/ 

1713 Hz 

(F2) 

1752 

(F2) 
39 Hz 

1.5 JND  

(39/26) 

2429 Hz 
(F3) 

2437 Hz 
(F3) 

8 Hz --- 

/w/ 

1191 Hz 

(F2) 

1114 

(F2) 
77 Hz 

4.5 JND  

(77/17) 

2479 Hz 
(F3) 

2436 Hz 
(F3) 

43 Hz --- 

Fricative 

/s/ 
4347 Hz 
(CoG) 

5583 Hz 
(CoG) 

1236 Hz --- 

/ʃ/ 
2604 Hz 

(CoG) 

2619 Hz 

(CoG) 
15 Hz --- 

Vowel 

/i/ 

1883 Hz 

(F2) 

1956 Hz 

(F2) 
73 Hz 

2.5 JND  

(73/29) 

2771 Hz 

(F3) 

2858 Hz 

(F3) 
87 Hz --- 

/y/ 

1704 Hz 

(F2) 

1654 Hz 

(F2) 
50 Hz 

2.0 JND  

(50/25) 

2423 Hz 

(F3) 

2296 Hz 

(F3) 
127 Hz --- 

/u/ 

1205 Hz 

(F2) 

1032 Hz 

(F2) 
173 Hz 

12 JND  

(173/15) 

2529 Hz 

(F3) 

2456 Hz 

(F30 
73 Hz --- 

 



JNDs were taken to be 16-23 ms for VOTs† (16 ms for across-category 

discrimination, 23 ms for within-category discrimination; values from the bilabial 
stops [p]-[b] from Hazan et al. (2009: Table 1)), and 1.5% of the learned formant 

average for F2 (Kewley-Port & Watson 1994). Psychophysical Distances 

Between Means were not obtained for fricatives or for F3 values for vowels and 

glides, as JND values were not found by the author. 

According to this metric, learners perform more poorly the greater the 

Psychophysical Distance Between Means. Learners can be considered to perform 

well if Psychophysical Distance Between Means falls below the level of 

discrimination (i.e. under 1 JND). As can be seen in Table 2, stops performed well 

according to this metric‡, while glides and vowels did not. 

 

Table 3. Summary of performance of the machine learner. The top of the table 

indicates phonemes which were learned well by the learner, according to each 

metric. 

Classification 

Accuracy (↓) 
 Type Phoneme  

Psychophysical 

Dist. Btwn. 

Means (↑) 

 Type Phoneme 

97% Fricative /ʃ/  0.06 Stop /k/ 

91% Stop /k/  0.2 Stop /k/-high 

85% Glide /w/  0.29 Stop /g/ 

80% Stop /g/  1.1 Glide /j/ 

75% Glide /ɥ/  1.5 Glide /ɥ/ 

73% Vowel /i/  2 Vowel /y/ 

71% Glide /j/  2.5 Vowel /i/ 

68% Vowel /u/  4.5 Glide /w/ 

59% Stop /k/-high  12 Vowel /u/ 

58% Fricative /s/     

58% Vowel /y/     

 

 Table 3 summarizes the performance of the distributional learner as measured 

by each of these two metrics, with phonemes which were learned well at the top 

of the table (as indicated with higher numbers for Classification Accuracy and 

lower numbers for Psychophysical Distance Between Means) and phonemes 

which were learned poorly at the bottom of the table. It should be noted that, 

although these two metrics were designed to measure the same thing (that is, 

learner performance) these two metrics did not always converge. For example, 

                                                           
† Because stops exhibit categorical perception along the VOT dimension, with within-

category members being perceived as being more similar to one another than across-

category members (Eimas et al. 1971), both within-category and across-category JND 

values were used, resulting in a range of possible Psychophysical Distances Between 

Means. 
‡ For both JND values derived from within-category members and JND values derived 

from across-category members, Psychophysical Distance Between Means was below 1 

JND, and therefore should not be a perceivable difference of category means.  



while /k/ before high vowels performed well according to the metric of 

Psychophysical Distance Between Means, it performed poorly according to 

Classification Accuracy. 

 

6.  Conclusion 

 

By looking at different types of phonemes drawn from the same set of 

utterances, this study attempted to compare distributional qualities of stops, 

fricatives, glides, and vowels taken from natural child-directed speech. However, 

it was found that the two metrics used to measure the performance of the 

distributional learner did not converge on a single ranking, with Psychophysical 

Distance Between Means conforming more to the intuition that stops exhibit 

distributions that are highly conducive for a distributional learner, as we might 

imagine given Figure 2. Because the Distributional Hypothesis is such an 

influential proposal, it is believed the field will benefit from further work to 

determine how to best measure distributional learner performance.  

With that caveat in mind, it generally seemed to be the case that stops 

performed more poorly than vowels according to both metrics. Before detailing 

the implications of this finding, it should be noted that this study gave vowels a 

distributional advantage over stops, by giving the machine learner two acoustic 

dimensions to work in for vowels (F2 and F3), and yet only a single dimension 

for the stops (VOT). Because there is the possibility for greater and more accurate 

category distinction when given more acoustic dimensions on which to 

differentiate two given tokens, feeding multiple cues to the machine learner 

should have strengthened the distributional learnability of vowels. And yet, even 

when given this multiple-cue advantage over the stops, vowels still performed 

worse than the stops. 

The above observation that vowels exhibit weak distributional information 

(at least, with F2 and F3 as its dimensions) is significant because, unless the wrong 

phonetic cues were chosen for this study, if we again assume that distribution is 

weighted x amount and other sources of information (semantics, lexical shape, 

etc.) are weighted y amount, for all phoneme categories, we would expect vowels, 

with their weaker distributions to be acquired later than other phoneme types. And 

yet when we observe actual infants, vowels exhibit language-specific 

discrimination earlier (around 6-8 months) than consonants. To explain both the 

earlier language-specific discrimination of vowels as well as the poorer 

performance of vowels in terms of distribution, other sources of information must 

more than make up for the lack of distributional strength in vowels. In other 

words, it must be the case that other sources of information are more heavily 

weighted (i.e. relied upon more) for stops than for vowels. This paper motivates 

further investigation of the relative roles of different sources of information across 

more phoneme types, since this may have implications regarding the methods 

learners utilize when acquiring different phoneme types. 
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