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1 INTRODUCTION 
 
The motion of the visual scene across the retina, termed optic flow 

(Gibson, 1950), contains a wealth of information about our dynamic 
relationship within the environment. Perceptual information regarding 
heading, time to contact, object motion and object segmentation can all be 
recovered to various degrees by analyzing the complex motion components of 
optic flow; for review see (Andersen, 1997, Lappe, et al., 1999). While the 
usefulness of such information for visually guided actions and navigation is 
clear, the complex neural mechanisms underlying its processing and 
extraction remain, for the most part, poorly understood. 

As our understanding of the ecological importance of visual motion 
processing has increased over the last 40 years, so to has research into the 
perceptual mechanisms and cortical areas where optic flow processing may 
occur (Andersen, et al., 2000; Bremmer, et al., 2000; Duffy, 2000; Lappe, 
2000; van den Berg, 2000); for review see (Vaina, 1998). Studies of the 
anatomical and physiological pathways in cortex have identified a coarse 
hierarchy of visual motion processing in which the primary visual cortex (V1) 
and adjacent visual areas, such as V2 and V3, send afferent projections to 
motion sensitive cells in the middle temporal (MT) cortex. From MT, cells in 
turn project to later visual motion areas including the medial superior 
temporal (MST) cortex and ventral intraparietal (VIP) cortex among others 
(Boussaoud, et al., 1990; DeYoe & Van Essen, 1988; Felleman & Van Essen, 
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1991; Maunsell & Van Essen, 1983; Van Essen & Maunsell, 1983). Within 
this coarse hierarchy, neurons exhibit a progressive increase in receptive field 
size and in their ability to encode more complex forms of visual information 
that facilitates the ability of visual motion areas to deal more directly with the 
complexity of the visual scene. Understanding the computational structures 
that underlie this progressive increase in information complexity and their 
relationship to our perception of the visual scene has been a primary goal of 
visual motion research and motivates much of the work presented here.  

A current challenge in computational neuroscience is to elucidate the 
architecture of the cortical circuits for sensory processing and their effective 
role in mediating behavior. In the visual motion system, biologically 
constrained computational models are playing an increasingly important role 
in this endeavor by providing an explanatory substrate linking psychophysical 
performance and the visual motion properties of single cells.  

Early in the visual motion pathway, research examining the neural 
structures within cortical areas such as V1 and MT has begun to probe the 
computational and functional role of neural connectivity between and within 
cortical regions (Carandini & Ringach, 1997; Chey, et al., 1998; Grossberg & 
Williamson, 2001; Koechlin, et al., 1999; Lund, et al., 1993; Malach, et al., 
1997; Stemmler, et al., 1995; Teich & Qian, 2002). Recently, neural models 
based on the motion properties of these areas have been developed to examine 
the link between neural structures and perceptual performance on 
psychophysical tasks (Chey et al., 1998; Grossberg & Williamson, 2001; 
Koechlin et al., 1999). 

In the work presented here, we apply a similar methodology to examine 
the structure and function of optic flow-based processing of the wide-field 
motion patterns encountered during self-motion. By combining human 
perceptual performance with biologically constrained neural models our aim 
is to elucidate the neural structures and computational mechanisms associated 
with optic flow processing of the visual scene. Specifically what neural 
structures within visual cortex are sufficient to encode and process the 
perceptually relevant motion patterns typically encountered during self-
motion through the environment?  

 
 

1.1 Visual Motion Processing in Cortex 
 
Given the wide variety of visually perceived motions we experience as we 

move through the world, one might expect that the visual system should 
contain specialized detectors sensitive to the motion components (e.g. radial, 
circular, planar, etc.) associated with optic flow. Human psychophysical 
studies support this form of specialization. Perceptual performance in tasks 
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examining motion pattern detection and discrimination indicate the existence 
of specialized detectors sensitive to radial, circular, and planar motion 
patterns across a wide range of psychophysical techniques (Burr, et al., 1998; 
Freeman & Harris, 1992; Meese & Harris, 2001ab, 2002; Morrone, et al., 
1995, 1999; Regan & Beverley, 1978, 1979; Snowden & Milne, 1996, 1997; 
Te Pas, et al., 1996). Perceptually, these motion pattern mechanisms have 
been shown to integrate local motions along complex trajectories to obtain 
global motion percepts over wide visual fields (Burr et al., 1998; Morrone et 
al., 1999).  

 
 
1.1.1 Motion Pattern Processing 

 
Neurophysiological studies in non-human primates support the existence 

of such mechanisms and, together with anatomical studies, indicate a coarse 
visual motion hierarchy that begins in V1 and extends into posterior parietal 
cortex (Boussaoud et al., 1990; DeYoe & Van Essen, 1988; Felleman & Van 
Essen, 1991; Maunsell & Van Essen, 1983; Van Essen & Maunsell, 1983). 
Within posterior parietal cortex several cortical areas have been identified, 
including the dorsal division of MST (MSTd), VIP and area 7a, whose 
neurons exhibit preferred responses to motion pattern stimuli and contain 
qualitatively similar visual motion properties (Duffy & Wurtz, 1991a,b, 1995, 
1997b; Graziano, et al., 1994; Schaafsma & Duysens, 1996; Siegel & Read, 
1997; Tanaka, et al., 1989). In light of these similarities and given the relative 
abundance of motion pattern studies in MSTd we focus our subsequent 
discussion of the physiology on this region with the understanding that the 
underlying computational mechanisms and visual motion properties are not 
necessarily unique to this area. 

Single cell studies in MSTd have identified cells that respond over large 
regions of the visual field (~60o) and exhibit preferred responses to simple 
motion pattern components of optic flow characterized by coherent radial, 
circular, and planar motions (Duffy & Wurtz, 1991a,b, 1995, 1997b; 
Geesaman & Andersen, 1996; Graziano et al., 1994; Lagae, et al., 1994; 
Orban, et al., 1992; Saito, et al., 1986; Tanaka et al., 1989, 1989). The 
distribution of preferred motion patterns represented within MSTd spans a 
continuum in the stimulus space formed by radial, circular, and spiral motions 
that is biased in favor of expanding motions (Geesaman & Andersen, 1996; 
Graziano et al., 1994). Moreover, many cells in this area also respond to 
planar motions, suggesting a more extensive set of preferred motions that 
includes the four planar directions of motion (up/down, left/right) (Duffy & 
Wurtz, 1991a,b, 1997b).  

Within this multi-dimensional plano-radial-circular space, cells respond 
across a wide range of stimulus speeds and exhibit speed tuning profiles best 
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characterized by their filtering properties (i.e., low-pass, linear, high-pass), 
(Duffy & Wurtz, 1997a; Orban, et al., 1995). The preferred pattern responses 
of these neurons are scale and position invariant to small and moderate 
variations in the stimulus size, location of the center-of-motion (COM), and 
the visual cues conveying the motion (Geesaman & Andersen, 1996; Graziano 
et al., 1994; Tanaka et al., 1989). For larger variations and with tests using 
non-optimal stimuli, cell responses degrade continuously (Duffy & Wurtz, 
1995; Graziano et al., 1994). This sensitivity to the global speed and motion 
pattern information contained within optic flow has led to speculation that 
cells in MSTd could be used to encode flow based heading through the visual 
scene.  

Combined neurophysiological and psychophysical studies in the 
MT/MST complex provide indirect support for such a representation, 
suggesting a strong link between the patterns of neural activity and motion 
based perceptual performance. Microstimulation of local neural clusters has 
been shown to reliably bias perceptual judgments in favor of the stimulated 
neural cluster’s preferred visual motion properties (Britten & van Wezel, 
1998; Celebrini & Newsome, 1995; Salzman, et al., 1990, 1992). Analyses of 
psychophysical performance versus single cell responses support these 
findings and indicate a correlation between the intensity of a cell’s response 
and the corresponding perceptual judgment (Britten, et al., 1992, 1996; 
Celebrini & Newsome, 1994). While such studies do not necessarily imply 
that perception occurs within the affected visual areas per se, they do suggest 
that the motion processing on which perception is based occurs in these areas. 
 
 
1.1.2 Neural Structures within Cortical Areas 
 

In early visual motion areas, such as the primary visual cortex (V1) and 
MT, single cell studies have identified a variety of intrinsic neural structures 
(Gilbert, et al., 1996; Gilbert & Wiesel, 1985, 1989; Gilbert, 1983, 1985, 
1992; Grinvald, et al., 1986; Kisvarday, et al., 1997; Lund et al., 1993; 
Malach et al., 1997; McGuire, et al., 1991; Ts'o, et al., 1986). Extensive 
modeling of the local horizontal connections inherent in these structures, both 
in V1 (Ben-Yishai, et al., 1995; Stemmler et al., 1995; Worgotter, et al., 1991) 
and MT (Koechlin et al., 1999; Liu & Hulle, 1998), suggest the existence of 
complex interconnected architectures whose most basic connections can 
impart considerable computational power to simulated neural populations. 
Combined psychophysical and computational studies support these findings 
and further suggest that horizontal connections may play a significant role in 
encoding the visual motion properties associated with various psychophysical 
tasks (Adini, et al., 1997; Chey et al., 1998; Koechlin et al., 1999; Nowlan & 
Sejnowski, 1995; Stemmler et al., 1995). As the importance of such local 
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interactions has become clearer, attention has begun to focus on their likely 
structure and function in higher visual areas as well (Amir, et al., 1993; 
Edelman, 1996; Miikkulainen & Sirosh, 1996; Sakai & Miyashita, 1991; 
Taylor & Alavi, 1996; Wiskott & von der Malsburg, 1996). 

 
 
1.2 Neural Coding of Visual Information 

 
In the cortex, the interpretation of psychophysical and physiological data 

within a common neural framework is dependent on how the information is 
represented; for review see (deCharms & Zador, 2000). Although precise 
temporal codes are capable of transmitting large amounts of information 
between individual neurons, there is good evidence that cortical neurons 
represent information using a coarse population code of redundant units 
(Shadlen & Newsome, 1998, 1994; Softky, 1995; Softky & Koch, 1993).  

Indirect support for information transfer via populations of noisy cortical 
units has come from computational studies across a wide range of processing 
modalities including motor planning for reaching (Georgopoulos, et al., 1986, 
1988; Lukashin & Georgopoulos, 1993, 1994; Lukashin, et al., 1996; Salinas 
& Abbott, 1994, 1995), orientation discrimination, and motion direction 
discrimination (Sundareswaran & Vaina, 1996; Vaina, et al., 1995; Zemel, et 
al., 1998; Zohary, 1992). In each case, the sensory information encoded 
across neural populations has been shown to be computationally sufficient to 
extract perceptually useful information from the underlying neural 
representation. Theoretical studies support these empirical results, 
demonstrating near optimal encoding of perceptually relevant stimulus 
properties for a variety of population coding techniques (Seung & 
Sompolinsky, 1993; Snippe, 1996). 

While there is wide spread support for population codes in biological 
systems, optimal methods for decoding the neural information remain unclear. 
A variety of decoding techniques have been proposed including Bayesian 
inference (Foldiak, 1993; Oram, et al., 1998), population vector analysis 
(Seung & Sompolinsky, 1993), maximum likelihood (Pouget, et al., 1998), 
center of mass (Snippe, 1996), and probability density estimation (Sanger, 
1996; Zemel et al., 1998). However, the computational efficiency and 
biological plausibility of these methods are often at odds with one another, 
preventing general acceptance for any one technique.  
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1.3 Computational Models of Motion Pattern Processing 

 
The use of theoretical models and computer simulations in conjunction 

with other experimental modalities provides a powerful approach that can be 
used to probe the types of neural structures that may exist in the brain and 
their role in mediating perception. Biologically constrained models can, for 
example, be used to establish whether the hypothesized neural structures are 
computationally sufficient to account for the experimental results derived 
from psychophysical and neurophysiological studies. More importantly, the 
assumptions built into these models (both implicit and explicit) often provide 
predictions regarding the underlying computational mechanisms that can, in 
turn, be used to guide experimental research.  

The existence of qualitative similarities between the visual motion 
properties observed in MT and MST and the computational mechanisms 
believed to underlie visual motion perception has motivated the development 
of a wide range of biologically constrained models intended to link 
perception, neural structure, and function within a common computational 
framework. While some of these models have been developed to quantify the 
characteristics of motion pattern tuning and their emergent properties 
(Beardsley & Vaina, 1998; Beardsley, et al., 2003; Pitts, et al., 1997; Wang, 
1995, 1996; Zhang, et al., 1993), others have focused on identifying the 
computational mechanisms sufficient to extract perceptually meaningful 
motion attributes, particularly those associated with estimates of self-motion 
(Grossberg, et al., 1999; Hatsopoulos & Warren, 1991; Lappe & Rauschecker, 
1993, 1995; Lappe et al., 1996; Perrone & Stone, 1994, 1998; Royden, 1997; 
Zemel & Sejnowski, 1998). For example, using a winner-take-all template 
model of self-motion estimation, Perrone and Stone (1994, 1998) obtained 
heading estimates under gaze-stabilized conditions that were well matched to 
equivalent measures of human performance. Moreover, they observed visual 
motion properties that were consistent with cells in MSTd across a wide range 
of conditions, suggesting that MSTd is computationally sufficient to extract 
estimates of heading.  

Throughout these models, neural structures that parallel the function of 
the visual motion pathway have been implemented to examine how the visual 
motion properties of individual cells develop and to quantify the 
computational mechanisms required to extract perceptually useful information 
from optic flow. Within this scope, such models have improved our 
understanding of visual motion processing in cortex. However, they have 
generally done little to address the functional role of neural connections 
within visual motion areas, such as MST and VIP, typically associated with 
flow specific heading and navigation tasks.  
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In the work outlined in this chapter we investigate the computational and 
functional role of simple horizontal connections within a population of MSTd-
like units. Based on the known visual motion properties of cells within MSTd 
we ask what neural structures are computationally sufficient to encode human 
perceptual performance on a motion pattern discrimination task? Is a 
population of independently responsive units, indicative of a simple feed-
forward pooling of local motion estimates, computationally sufficient to 
encode the perceptual task? Or are specific neural structures necessary to 
extract equivalent measures of human perceptual performance?   
 
 
2 DISCRIMINATING PERTURBATIONS IN WIDE-

FIELD MOTION PATTERNS 
 

Much of the research examining motion pattern perception has focused on 
an observer’s ability to detect coherent motions in the presence of a masking 
background motion. A variety of masking conditions, including both local 
random motion and conflicting global motion patterns, have been used to 
quantify the existence of motion pattern mechanisms (Burr et al., 1998; 
Freeman & Harris, 1992; Morrone et al., 1995). The qualitative similarities 
between these mechanisms and motion pattern sensitive cells found in MSTd 
of non-human primates has lead to speculation that similar neural structures 
may exist in the human visual motion pathway. Such speculation has received 
support from recent functional imaging studies of motion direction and 
motion pattern perception that have reported significant activation in an area 
referred to as MT+, the human homologue of the MT/MST complex (de Jong, 
et al., 1994; Greenlee, 2000; Heeger, 1999; Morrone, et al., 2000; Rees, et al., 
2000; Rutschmann, et al., 2000; Tootell, et al., 1995; Vaina, et al., 2000).  

Using stimuli consistent with previous motion pattern experiments (Burr 
et al., 1998; Freeman & Harris, 1992; Morrone et al., 1995), we developed a 
unique psychophysical task designed to facilitate a more direct comparison 
between human perceptual performance and the visual motion properties in 
cortical areas, such as MSTd, believed to underlie the perceptual task. We 
hypothesize that if neural substrates similar to those reported in MSTd do play 
a role in motion pattern processing, then the bias for expanding motions 
should result in measurable and predictable artifacts in psychophysical 
performance that can provide additional insight into the underlying neural 
mechanisms.  

If the human homologue of MSTd does play a significant role in motion 
pattern processing, then we would expect significant variations 
psychophysical performance to arise as a function of the tested motion pattern 
and speed in ways that are correlated with the underlying visual motion 
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properties reported in MSTd. Specifically is there a preference for radially 
increasing speed gradients and does there exist a perceptual bias favoring the 
discrimination of expanding motions? 
 
 
2.1 Methods 

 
In a temporal two-alternative-forced-choice (2TAFC) graded motion 

pattern (GMP) task we measured discrimination thresholds to global changes 
in the patterns of complex motion (Beardsley & Vaina, 2001). Stimuli 
consisted of dynamic random dot displays presented in a 24o annular region, 
with the central 4o removed, in which each dot moved coherently from frame-
to-frame such that its spatial location (x,y) in the n+1 frame was given by: 
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Within this representation, motion patterns could be uniquely described by 
their ‘flow angle’, φ, and speed, ω, in the 2-D stimulus space formed by 
cardinal (radial and circular) and spiral motions (Figure 1). Throughout the 
task the motion pattern remained centered in the visual display. 

Prior to the start of the experiment, observers adapted for 10 sec to the 
background display in a darkened room. During testing observers were 
required to fixate a small central square and discrimination pairs of stimuli, 

 
 
Figure 1. Radial, circular, and spiral motions can be represented as vectors in a 2-D stimulus 
space. The vector magnitude (vav) corresponds to the average dot speed across the motion field 
and the flow angle (φ) defines the type of motion pattern relative to a 0o baseline expansion. 
Off-axis regions correspond to intermediate degrees of spiral motion. [From Beardsley &
Vaina, 2001; used by permission] 
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formed by perturbing the 'test' motion by ±φp (Figure 2), were presented 
following a constant stimulus paradigm (440±40 msec stimulus duration). To 
minimize the build-up of adaptation to specific motion patterns (expansion, 
clockwise rotation, etc.), opposing motions (e.g. expansion/contraction) were 
interleaved across paired presentations.  

For each paired stimulus presentation observers were required to select 
the stimulus, via key press, containing a negative perturbation relative to the 
'test' motion (Figure 2). During testing the task of discriminating 
negative/positive perturbations was facilitated through the presentation of 
radial, circular and spiral 'test' motions in separately interleaved blocks of 
trials. Within each block of trials observers were required to discriminate 
motion pattern perturbations using a conceptual simplification to the negative 
perturbation judgment; e.g. for radial 'test' motions select the stimulus 
containing a CCW motion component; for circular 'test' motions select the 
stimulus containing an expanding motion component, etc. 

For each observer, discrimination thresholds were obtained at two average 
dot speeds (8.4 and 30o/sec) for each of eight 'test' motions (expansion, 
contraction, clockwise (CW) and counterclockwise (CCW) rotation, and the 
four intermediate spiral motions). Within each constant stimulus session 
discrimination thresholds were estimated using a weighted two-parameter 
Weibull fit to a minimum of four perturbation levels. A χ2 goodness-of-fit 

 
 
Figure 2. Schematic representation of the graded motion pattern (GMP) task for radial motions. 
All stimulus apertures were illusory as defined by an absence of dots.  a) Pairs of stimuli were 
created by perturbing the flow angle (φ) of each 'test' motion by ±φp in the stimulus space. For 
the radial 'test' motions shown here, the perturbations are equivalent to the addition of a circular
motion component to the 'test' motion (expansion or contraction).  b) A scaled time-lapsed 
version of an expansion stimulus pair. [From Beardsley & Vaina, 2001; used by permission]  



192 S. A. BEARDSLEY AND L. M. VAINA     

 

measure with (ν) degrees of freedom was used to exclude data sets with poor 
curve fits from further analysis ( ( ) ( )νχνχ 22

R< ; p<0.1), (Bevington, 1969). 
 

 
2.2 Results 
 

Discrimination thresholds are reported here from a subset of the observer 
population consisting of three experienced psychophysical observers; one of 
which was naïve to the purpose of the psychophysical task (Beardsley & 
Vaina, 2001). For each condition performance is reported as the mean and 
standard error averaged across 8-12 threshold estimates. 

 Across observers and dot speeds perceptual performance followed a 
distinct trend in the stimulus space with discrimination thresholds for radial 
motions (expansion/contraction) significantly lower than those for circular 
motions (CW/CCW rotation), (Figure 3). Within these sub-pairs, thresholds 
for radial and circular motions were well matched across observers. Figure 3 
also shows that while the individual thresholds for the intermediate spiral 
motions were not significantly different from those for circular motions, the 
trends across 'test' motions were well fit by sinusoids whose period and phase 
were approximately 196 ± 10o and -72 ± 20o respectively.  

Comparable trends in performance were obtained for stimuli containing 
50% flicker noise (data not shown). In this condition, dot motions were 
randomly assigned as 'signal' or 'noise' from frame-to-frame such that the 
proportion of signal dots in each frame was 50%. This resulted in a decreasing 
probability of uninterrupted dot motion that was structurally similar to the 2-
frame motion used previously to quantify the existence of specialized motion 
pattern mechanisms (Burr et al., 1998; Morrone et al., 1995).  

The consistency of the cyclic threshold profile in stimuli that restrict the 
temporal integration of individual dot motions, and simultaneously contain all 
directions of motion, generally argues against a primary role for local motion 
mechanisms in the perceptual task. While there exist a wide variety of “local” 
motion direction anisotropies within the psychophysical literature whose 
properties are reminiscent of the threshold variations observed here, (Ball & 
Sekuler, 1987; Coletta, et al., 1993; Edwards & Badcock, 1993; Gros, et al., 
1998; Matthews & Qian, 1999; Matthews & Welch, 1997; Raymond, 1994; 
Zhao, et al., 1995), all predict equivalent thresholds for radial and circular 
motions for a set of uniformly distributed and/or spatially restricted motion 
direction mechanisms. Together with the need for a significant spatial 
integration across dispirit directions to offset the reduced temporal integration 
in the 50% flicker noise stimulus, this suggests the presence of a global 
mechanism that spatially integrates across local motions to encode more 
complex representations of visual motion.   



 LINKING PERCEPTION AND NEUROPHYSIOLOGY 193 

   

Additional support for the role of a global motion mechanism in the 
perceptual task comes from a control experiment designed to assess the 
computational impact of the structured speed information in the stimulus. 
Three observers were tested using a modified set of radial and circular 
motions in which the radial speed gradient was removed. This condition, 
referred to as random speed, resulted in stimuli whose spatial distribution of 
dot speeds was randomized while preserving the local and global trajectory 
information.  

In the random speed control, threshold performance increased 
significantly across observers, particularly for circular motions (Figure 4). 
Such performance suggests a measurable perceptual contribution associated 
with the presence of the speed gradient and is particularly interesting given 
the spatial symmetry implicit in the stimulus design.  

Since the speed gradient was a function of the spatial distance from the 
stimulus center, which was itself fixed in the center of the visual display, its 
distribution for each ‘test’ motion was radially symmetric. Within this limited 
subset of conditions the speed gradient did not contribute computationally 

 
 
Figure 3. GMP thresholds across eight 'test' motions at two mean dot speeds (8.4 and 30o/s) for 
two observers (SB and SC). Performance varied continuously as a function of the 'test' motion 
with thresholds for radial motions (φ = 0,180) significantly lower than those for circular 
motions (φ = 90,270), (p<0.001; t(37) = 3.39). Thresholds for spiral motions were not
significantly different from circular motions (p=0.223, t(60) = 0.75), however, the trends across
'test' motions were well fit (SB: r>0.82, SC: r>0.77) by sinusoids whose period and phase were
196 ± 10o and -72 ± 20o respectively.
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relevant structural information to the task. However, the speed gradient did 
convey information regarding the integrative structure of the global motion 
field and as such suggests a preference in the underlying motion mechanisms 
for spatially structured speed information. Together with similar perceptual 
studies reporting the existence of wide-field motion pattern mechanisms (e.g. 
Burr et al., 1998; Meese & Harris 2001, 2002), these results suggest that the 
threshold differences observed here may be associated with variations in the 
computational properties across a series of specialized motion pattern 
mechanisms. 
 
 
3 A COMPUTATIONAL MODEL OF MOTION 

PATTERN PROCESSING 
 

3.1 GMP Discrimination via a Population Code in MSTd 
 
The similarities between the visual motion patterns used to quantify 

human perception and the tuning properties of cells in visual motion areas 

 
 
Figure 4. Radial and Circular GMP thresholds for stimuli with (filled circles) and without
(open squares) a radial speed gradient (average dot speed = 8.4 deg/s). Across observers (SB, 
SC, and CC) thresholds for radial motions remained significantly lower than those for circular
motions in the random speed condition (i.e., no speed gradient). Relative to stimuli containing
speed gradients, random speed thresholds increased significantly across observers (p<0.05; 
t(17)=1.91), particularly for circular motions (p<0.005; t(25)=3.31). 
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such as MSTd and VIP suggest that such cortical regions may mediate the 
perceptual task. If, for example, motion pattern perception were based on a 
simple population code of complex motion detectors drawn from the 
anisotropic cell distribution reported in MSTd (Geesaman & Andersen, 1996; 
Graziano et al., 1994), one might expect that GMP discrimination should 
follow a distribution symmetric about the radial motion axis with thresholds 
for expansions lowest and thresholds for contractions among the highest. 
Within this framework, deviations in human performance from that of a 
simple population code could suggest the presence of horizontal connections 
within the population that serve to modify and refine the underlying neural 
representation.  

To examine this hypothesis, we constructed a population of MSTd-like 
units whose visual motion properties were consistent with those reported in 
the neurophysiology (Duffy & Wurtz, 1991a,b; Geesaman & Andersen, 1996; 
Graziano et al., 1994; Orban et al., 1995), (Figure 5; see Beardsley & Vaina, 
2001 for details). Within the model, simulations were categorized according 
to the underlying distribution of preferred motions represented across the 
population (2 reported in MSTd - Figure 5b, and a uniform control). The first 
distribution simulated an expansion bias in which the density of preferred 
motions decreased symmetrically from expansions to contractions across the 
motion pattern space (Graziano et al., 1994). The second distribution was 
similar in structure but contained a higher percentage of cells tuned to 
contracting motions (Geesaman & Andersen, 1996). The third distribution 
simulated a uniform preference for all motions and was used as a control to 
examine the effects of a non-homogeneous distribution on perceptual 
performance. Throughout the remainder of the chapter we refer to simulations 
containing these distributions as Unimodal, Bimodal, and Uniform 
respectively.  

In MSTd receptive fields are large, spanning up to one-half of the visual 
field (Duffy & Wurtz, 1991a,b; Tanaka & Saito, 1989). For neurons 
preferring similar motions, the resultant overlap in visual input can introduce 
correlation in the neural output that varies with the relative spatial positions of 
the cells’ receptive fields. The structure associated with such correlations 
implies a redundant representation of neural information that can be used to 
aid information extraction across populations of noisy units. To simulate this 
effect in the model we assumed that units had comparable receptive fields 
such that the responses of units with similar preferred motions were 
moderately correlated (r = [0.4,0.8]). Since the model did not explicitly 
contain a feed-forward layer of spatially localized inputs, we correlated neural 
responses by imposing a maximum preferred motion response, Rmax, that 
varied as a Poisson process (λ=28) for each stimulus presentation (Figure 5a). 
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The baseline neural output of each unit (Ni) was simulated as an uncorrelated 
Poisson process (λ=12). 
 
 
3.1.1 Extracting Perceptual Estimates from the Neural Code 
 

The psychophysical task was simulated in the model using a "population 
vector" to represent the net motion pattern estimated in the 2-D stimulus space 
(Figure 1). A structural diagram of the model is shown in Figure 6. For each 

 
 
Figure 5. Motion pattern properties of the MSTd-like units used in the model.  a) Motion 
pattern tuning followed a gaussian profile (σΤ = 61o±30o) in the stimulus space centered on 
each unit’s preferred motion. The preferred motion responses, Rmax, varied as a Poisson process 
based on the reported range of firing rates in MSTd.  b) The preferred motion for each unit was
selected randomly from a continuous distribution consistent with one of two distributions 
reported in MSTd. [From Beardsley & Vaina, 2001; used by permission] 



 LINKING PERCEPTION AND NEUROPHYSIOLOGY 197 

   

stimulus, the response of the ith unit was represented as the average firing rate, 
Rav, estimated from the unit’s motion pattern tuning profile (Figure 5a), 
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where Rmax is the maximum preferred stimulus response (spikes/s), φ is the 
stimulus flow angle and φi and σi correspond to the preferred motion and 
standard deviation of the ith unit’s tuning profile respectively. The net 
response, Ri, of each unit was formed by combining Ravi with the baseline 
neural output Ni.  

For each stimulus, units ‘voted’ for their preferred motions with a weight 
equal to their net firing rate. Across the population weighted responses were 
represented as vectors in the units’ preferred motion directions and estimates 
of the stimulus flow angle were decoded as the "population vector" formed 
from the vector sum of responses across all units.  

Using the population vector estimates obtained for each set of paired 
stimuli, the model’s performance was quantified according to the negative 
perturbation (-φp) discrimination of flow angle outlined in the psychophysical 
task. As with the perceptual task, a least-squares fit to percent correct 
performance across constant stimulus levels was used to estimate 
discrimination thresholds. 
 
 
3.2 Simulation 1: An Independent Neural Code 
 

In the first series of simulations, we quantified GMP performance across 
populations of independently responding units. For each class of models 
(Unimodal, Bimodal, and Uniform), threshold performance was examined 
across five populations (100, 200, 500, 1000, and 2000 units). Both the range 
in thresholds and their trends across ‘test’ motions were compared across 
simulations to identify combinations of population size and preferred motion 
distributions that yielded quantitatively similar performance relative to the 
psychophysical task. 

It is important to note that within this implementation the population 
vector does not provide an unbiased estimator of the stimulus flow angle (φ) . 
The bias in the distribution of preferred motions (Figure 5b) introduces a 
corresponding bias into the vector representation that is skewed toward 
expanding motions. As a result, increasing populations do not yield vector 
representations that converge to the proper 2-D motion pattern. This makes 
accurate  interpretation  of  individually  decoded  stimuli  problematic   without  
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Figure 6. Schematic representation of the model structure. The psychophysical task was 
simulated using a vector representation of the stimuli in the 2-D motion pattern space. For each 
stimulus, units ‘voted’ (2) for their preferred motion with a weight equal to their net firing rate
(1). Stimuli were decoded from the neural representation as the population vector formed by
the vector sum of weighted responses across units (3). As in the psychophysical task, 
"perceptual" judgments were based on the negative perturbation (-φp) discrimination of flow 
angle (4). [From Beardsley & Vaina, 2001; used by permission]
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a prior knowledge of the nonlinear transformation associated with the bias in 
the vector representation.  
 To compensate for this, the model's performance was based on the 
relative spatial locations between the pairs of motion patterns (±φp) presented 
in the 2TAFC task and not the absolute location of each decoded stimulus in 
the stimulus space. In this way, the population vector could assume any 
smooth nonlinear mapping without imposing a prior assumptions regarding 
the underlying transformation and thus was not constrained to linearly map 
the stimulus space onto the internal neural representation.  
 
 
3.2.1 Simulation 1: Results 
 

Performance varied considerably as a function of the population size and 
distribution of preferred motions (Figure 7). Over the psychophysical range of 
interest (φ ± 7o), discrimination thresholds for contracting motions were at 
chance across all Unimodal populations (100-2000 units) while thresholds for 
circular motions remained significantly higher than those reported in the 
perceptual task (Figure 7a). Across the eight 'test' motions, discrimination 
thresholds showed no significant improvement with increasing population 
size. 

Discrimination thresholds for Bimodal populations were more consistent 
with human performance, particularly as population size increased. 
Contraction (φ  = 180o) thresholds for larger populations steadily decreased to 
those obtained for expansions (φ = 0o), (Figure 7b), however, even with the 
largest populations discrimination for contracting spiral motions remained 
poor.  

Unlike the Unimodal populations, Bimodal performance also improved 
asymptotically with population size. This was particularly true for 
contractions (φ = 180o), which decreased by a factor of six as the size of the 
population was increased. While this decrease made the overall range of 
thresholds more comparable with human performance, Bimodal populations 
remained unable to accurately reproduce psychophysical thresholds in the 
asymptotic limit observed through 2000 units.   

For simulations containing a Uniform distribution of preferred motions, 
the range of discrimination thresholds was consistent with human 
performance, however, the trend in thresholds was generally flat. What 
variability did occur, for small populations in particular, was due primarily to 
the discrete sampling of preferred motions from the uniform distribution. In 
subsequent simulations (not shown here), more extensive averaging reduced 
the observed variability, resulting in threshold profiles that were well fit by a 
line whose slope was near zero. 
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Examination of the pooled information within the Unimodal and Bimodal 
models suggests that the threshold differences resulted from the combination 
of background noise and the population bias for expanding motions. For non-
expanding sub-populations, such as those preferring contractions, the 
proportion of units responsive to a non-expanding stimulus was typically a 
small percentage of the total population. In these cases, the population vector 
contained a significant amount of noise associated with the non-preferred 
background response. As population size increased, the non-uniform  effect  of  

 
 
Figure 7. Model vs. psychophysical performance on the GMP task for three simulated 
populations of independently responding units. GMP thresholds (±1 standard error) were
averaged across five independently generated populations for each population size.  a) Across
all populations, Unimodal thresholds were highest for contracting motions and lowest for
expanding motions.  b) Bimodal thresholds were more consistent with human performance
(SB) particularly for moderately large populations (>500 units). Although discrimination
thresholds for contracting motions (φ = 180o) steadily decreased as the number of units 
increased, Bimodal populations remained unable to accurately reproduce psychophysical
thresholds in the asymptotic limit observed through 2000 units.  c) Across Uniform populations
the range of discrimination thresholds was well-matched with human performance, however, 
the flat trend across motion patterns was inconsistent with the sinusoidal trend observed in the
psychophysical task. [From Beardsley & Vaina, 2001; used by permission]
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the expansion bias on the signal-to-noise ratio across the population caused 
discrimination thresholds to closely track the degree of preferred motion bias 
within each model class.  

 
 
3.3 Simulation 2: An Interconnected Neural Structure 

 
In a second series of simulations, we examined the computational effect 

of adding lateral (horizontal) connections between neural units. If the 
distribution of preferred motions in MSTd is in fact biased towards 
expansions as the neurophysiology suggests, it seems unlikely that 
independent estimates of the visual motion information would be sufficient to 
yield the perceptual profiles obtained in the psychophysical task. Instead we 
hypothesize that a simple fixed architecture of excitatory and/or inhibitory 
connections between neural units may be necessary to yield the observed 
psychophysical thresholds.  

In this series of simulations, units were fully interconnected with fixed 
excitatory and/or inhibitory connections. Within this architecture, each neural 
response consisted of the summed output from three nonlinear sources 
corresponding to (a) the visual motion stimulus, (b) internal neural noise (not 
associated with the visual stimulus), and (c) a modulating input from other 
units within the population.  

Across the population, connection strength varied as a function of the 
similarity in preferred motions between neural units. Using the flow angle 
representation for preferred motion patterns, excitatory connections from the 
ith unit (with preferred motion φi) were made to units with similar preferred 
motions. The strength of excitation followed a Gaussian profile centered at φi 
with a fixed standard deviation (σE = 30o) across the population. Similarly, 
units with anti-preferred motions received inhibitory connections whose 
strength followed a Gaussian profile centered at 180+φi. To examine the 
effects of inhibitory spread and connection strength in the model, the standard 
deviation of the inhibition profile, σI, and the level of excitatory/inhibitory 
activity, SA, were considered free parameters. 

  
 
3.3.1 Simulation 2: Results 
 

Within the parameter space used to define connectivity between units 
(i.e., SA and σI), both the overall level of the GMP thresholds and their trends 
across ‘test’ motions varied widely. Monte Carlo simulations across the 
parameter space yielded regions of high correlation (with respect to the 
psychophysical thresholds) that were consistent across independently 
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simulated populations for both the Unimodal and Bimodal models.  Typically 
these regions were well defined over a wide but limited range of σI and SA. 
Figure 8 illustrates this result for averages of five Unimodal and eight 
Bimodal populations containing 200 units. In both cases the regions-of-
interest (ROIs), corresponding to the areas of best correlation (80% of 
maximum), were generally robust, extending over a broad range of σI 
[60,120o] and SA [0.15,0.5].  

While the maximum level of correlation within these regions typically 
accounted for only a fraction of the psychophysically observed variance 
across motion patterns (25-50%), simulations containing 100 units indicated 
an increase in correlation as a function of population size. Together these 
results suggested that larger populations would yield regions of increasingly 
higher correlation, however, the computational cost precluded an exhaustive 
search of the parameter space for populations of more than 200 units. To 
offset this limitation, we confined simulations of larger populations to a set of 
'optimal' parameters estimated from each ROI, (Figure 8).  

Using a fixed σE (=30o), ROI center-of-mass estimates of [σI = 106o,       
SA = 1.77] and [σI = 76o, SA = 1.93] for 100-unit populations and of [σI = 88o, 
SA = 0.37] and [σI = 91o, SA = 0.36] for 200-unit populations were obtained for 
Unimodal and Bimodal models respectively. Given the lack of significant 
correlation across Uniform populations and the similarities in center-of-mass 

 
 
Figure 8. Correlation maps of model vs. psychophysical performance as a function of the
strength of the horizontal connections, SA, and the spread of inhibition, σI. For 
Unimodal/Bimodal populations the regions of interest (ROIs) denoted by the ellipses, (≥80% of 
maximum correlation), corresponded to areas within the parameter space where model
thresholds were well matched to human perceptual performance. These regions were generally
robust extending over a broad range of σI [60,120o] and SA [0.15,0.5]. [From Beardsley & 
Vaina, 2001; used by permission]
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estimates for the Unimodal/Bimodal populations, we set σI and SA to 80o and 
1.5 respectively for all 100-unit populations. For larger populations the 
connection strength, SA, was scaled inversely with the number of units to 
maintain an equivalent level of horizontal activity and facilitate a comparative 
analysis across populations. 

Figure 9 shows the averaged threshold performance for three population 
sizes. The incorporation of horizontal connections between units decreased 
the range of discrimination thresholds to psychophysically observed levels. 
More importantly, as population size increased the sinusoidal trend in 
threshold performance emerged for both the Unimodal and Bimodal models. 
The threshold trends were well established for as few as 500 units and were 
well fit (r>0.9) by sinusoids whose periods and phases were consistent with 
the fitted psychophysical trends (196 ± 10o and -72 ± 20o).  

Unlike the Unimodal/Bimodal models, Uniform populations were not 
significantly affected by the presence of horizontal connections. The range of 
thresholds were typically well matched to those from Simulation 1 and 
asymptotically decreased to levels well below those of human observers for 
large populations (i.e., 2000 units).  

Throughout the Unimodal and Bimodal simulations presented here, 
threshold performance decreased asymptotically with increasing population 
size for all 'test' motions. The decrease followed an inverse power law whose 
exponent varied as a function of the 'test' motion across an order of magnitude 

 
 
Figure 9. Model vs. psychophysical performance on the GMP task for populations containing
excitatory and inhibitory horizontal connections. As the number of units increased, 
discrimination thresholds (averaged across five simulations) decreased to psychophysical levels 
and the sinusoidal trend in thresholds began to emerge for both the  a) Unimodal and  b)
Bimodal models. Sinusoidal trends were established for as few as 500 units and were well fit
(r>0.9) by sinusoids whose periods and phases were (173.7 ± 6.9o, -67.21 ± 16.78o) and 
(208.3 ± 10.2o, -60.68 ± 15.74o) for the Unimodal and Bimodal models respectively.  
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[0.05,0.5]. For all 'test' motions the threshold slope decreased quickly with 
population size such that for 2000 units the change in thresholds was 0.008o 
for each 100-unit increase in the population. Together with the computational 
robustness to large variations in the underlying population properties (i.e. size 
and the distribution of preferred motions) the model’s asymptotic 
performance makes this form of highly interconnected architecture appealing 
as a method for encoding visual motion information consistently across a 
neural population. 

   
 
3.4 Simulation 3: Thresholding Neural Responses 
 

In a third series of simulations we examined the effect of imposing a 
threshold on the unit responses contributing to the population vector. Here, 
sub-threshold responses were rectified to zero using a Heaviside function, 
H(TR), prior to weighting the unit's preferred motion vector  
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where TR is the response threshold. GMP performance was examined over a 
range of rectifying thresholds (TR=[1,61] spikes/s) for each class of models. 
Like the previous simulations, the model’s performance was correlated with 
the psychophysical thresholds to estimate the range of TR over which the 
population code was consistent with human performance. Threshold 
performance was then examined as a function of population size for each of 
the three model classes (Unimodal, Bimodal, and Uniform) using an 'optimal' 
TR selected from the composite regions of highest correlation.  

 
 
3.4.1 Simulation 3: Results 
 

While the addition of horizontal connections resulted in discrimination 
thresholds that were in good agreement with human performance, it does not 
preclude other methods of noise reduction within the neural structures used to 
encode the visual motion information. When population vector estimates were 
based on a subset of thresholded (TR) responses within a population of 
unconnected units, the resulting thresholds were similar to those obtained with 
populations of interconnected units.  

With a TR of 35 spikes/s imposed prior to calculating the population 
vector, the range of discrimination thresholds decreased to psychophysically 
observed levels for populations containing 500 units. As with the inter-
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connected populations, the sinusoidal trend in threshold performance emerged 
as the number of units increased. Here the cyclic trends were established for 
1000 units and were well fit (r>0.85) by sinusoids whose periods and phases 
were (218.5 ± 15.7o, -37.98 ± 21.35o) and (216.9 ± 21.9o, -42.17 ± 30.34o) for 
Unimodal and Bimodal models respectively. 

Closer examination of the response characteristics within these 
“thresholded” populations indicates that the proportion of units responding 
consistently above threshold (>80% of the time) varied with the ‘test’ motion, 
from a low of 1.4% for contractions to a high of 11% for expansions 
(Unimodal populations). The subsequent exclusion of minimally responsive 
units reduced the variability of the 'predicted' motion pattern in a manner 
consistent with the presence of inhibitory horizontal connections between 
anti-preferred motion pattern units. As a result, for Unimodal and Bimodal 
models in particular, the proportion of units contributing to the population 
vector varied as a function of the 'test' motion and typically comprised only a 
small fraction of the total population. Such performance is generally 
consistent with a winner-take-all strategy of neural coding and the pre-
synaptic inhibitory architecture it implies (Haykin, 1999; Hertz, et al., 1991). 

 
 
3.5 Simulation 4: The Role of Inhibitory Connections  

 
The development of a sinusoidal trend in GMP performance for large 

(>1000 units) “thresholded” populations, together with the inhibitory winner-
take-all structures implied by their sparse coding, suggest that similar 
performance could be obtained from populations containing only inhibitory 
connections. Although early simulations using small populations to search for 
regions of significant correlation across the (σI, SA) parameter space were 
inconclusive, the inability of small “thresholded” populations in Simulation 3 
to reproduce the psychophysical trend suggests that larger populations might 
be required. Using the 'optimal' structural parameters obtained previously 
from Simulation 2, we examined the model’s GMP performance for mutually 
inhibiting populations of up to 2000 units, (Figure 10).  

With the inclusion of anti-preferred inhibition between units, 
discrimination thresholds for large populations asymptotically approached 
those for the interconnected excitatory/inhibitory populations (i.e. Simulation 
2). As population size increased, the sinusoidal trend in thresholds emerged 
for both the Unimodal and Bimodal models. Typically the trend was 
established for as few as 1000 units and was well fit (r>0.9) by sinusoids 
whose periods and phases were consistent with the fitted psychophysical 
trends (196 ± 10o and -72 ± 20o). These results are in good agreement with 
both the fitted psychophysical trends and the performance of the 
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interconnected excitatory/inhibitory models (Simulation 2) for moderate 
population sizes (~500 units).  

As with the excitatory/inhibitory architecture simulated previously, 
discrimination thresholds decreased asymptotically with increases in 
population size. Subsequent simulations for even larger populations (~5000 
units) showed little change in the threshold amplitudes or their trends across 
‘test’ motions. Together with the robust encoding of motion pattern 
information across σE (see Beardsley & Vaina, 2001 for details), these results 
suggest that perceptual performance in the GMP task may be mediated 
primarily through signal enhancement associated with the strength and spread 
of inhibitory connections within a population of motion detectors selective for 
the simple motion pattern components of optic flow.  

 
 

4 DISCUSSION 
 
In the graded motion pattern (GMP) task presented here (see also 

Beardsley & Vaina, 2001) we have shown that human discrimination varies 
consistently with the pattern of complex motion over a range of thresholds (φ 
= 0.5-2o). For each observer, the trend across psychophysical thresholds 
consistently demonstrated a preference for radial motions that is qualitatively 
similar to the bias for expanding motions reported in MSTd. Together with 

 
 
Figure 10. Model vs. psychophysical performance on the GMP task for populations containing
only inhibitory connections. As population size increased the sinusoidal trend in thresholds 
emerged for both the  a) Unimodal and  b) Bimodal models. The trends were established for as
few as 1000 units and were well fit (r>0.9) by sinusoids whose periods and phases were
(178.0 ± 6.0o, -79.48 ± 13.93o) and (205.8 ± 16.2o, -65.77 ± 25.88o) for Unimodal and Bimodal 
models respectively.  
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the preferences for global motion patterns reported in MSTd, these results 
suggest that much of the perceptual information, if not the underlying neural 
circuitry, involved in the discrimination of motion patterns may be 
represented in the human homologue to MST. 

Using biologically plausible neural units we have shown that the motion 
information encoded across a population of MSTd neurons is sufficient to 
obtain discrimination thresholds consistent with human performance. 
Theoretically, the computations required to perform the perceptual task can be 
obtained by comparing the nonzero responses between pairs of motion pattern 
cells that adequately span the 2-D stimulus space. However, in practice neural 
populations are typically required to extract the desired visual motion 
information given the presence of neural noise not associated with the 
stimulus and the lack of a prior knowledge concerning the variability in 
stimulus tuning profiles across cells. 

In the neural populations simulated here, the 2-D stimulus representation 
facilitated the choice of a "population vector" decoding strategy to extract 
perceptually meaningful motion pattern information. With this 
implementation, the bias for expanding motions reported in MSTd introduced 
a computational bias in the vector estimate of the flow angle (φ) that was 
skewed toward expanding motions. Under these conditions, increases in 
population size did not yield vector representations that converged to the 
proper 2-D motion pattern, making an accurate interpretation of individually 
decoded stimuli problematic without a prior knowledge of the nonlinear 
transformation associated with the bias.  

To compensate for this, the model's performance was based on the 
relative locations between the pairs of stimuli presented in the psychophysical 
task and not the proper 2-D location of each decoded motion in the stimulus 
space. In this way, the population vector could assume any smooth nonlinear 
mapping without imposing a prior assumptions regarding the underlying 
transformation, and thus was not constrained to linearly map the stimulus 
space onto the internal neural representation.  

While sufficient for the psychophysical task outlined here, this limitation 
in the decoding strategy restricts the model's general application to perceptual 
tasks consisting of single stimulus presentations. This deficiency could be 
overcome by using computationally more robust decoding schemes such as 
Bayesian inference (Oram et al., 1998) or probability density estimation 
(Sanger, 1996; Zemel et al., 1998) that do not require an explicit 
representation of the stimulus space. Within such decoding schemes the 
addition of inhibitory connections between units, while mathematically more 
complex, would seem likely to affect GMP discrimination in comparable 
ways by minimizing the stimulus uncertainty associated with overlapping 
probability distributions within a multi-dimensional representation.  
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Similar but less extreme conditions may also occur in models of free arm 
reaching (Georgopoulos et al., 1986, 1988; Lukashin & Georgopoulos, 1993, 
1994; Lukashin et al., 1996) for which the monkey physiology suggests the 
presence of statistically significant deviations from uniformity in both motor 
cortex (Schwartz, et al., 1988) and parietal area 5 (Kalaska, et al., 1983). 
Within each of these models there has been an implicit assumption of 
uniformity in the neural representation that, for large populations, predicts 
population vector estimates will converge to the proper reaching vector 
representation. However if this uniformity assumption is not met, as in the 
model we have presented, the theoretical convergence breaks down in 
proportion to the degree of non-uniformity and the locations of stimulus 
vectors relative to the bias. Depending on the actual degree of anisotropy 
within cortical motor areas, asymptotic reaching errors, such as those reported 
by Georgopoulos et al. (1988), might in fact be artifacts associated with an 
underlying non-uniformity in the 3-D reaching representation. 

 
 

4.1 Motion Pattern Discrimination in a Population of 
Independently Responding Units  

  
Using a population of MSTd-like neural units we have demonstrated that 

the population vector information decoded from independently responding 
units is not computationally sufficient to extract perceptual estimates that are 
consistent with human performance. For anisotropic neural populations 
containing a strong bias for expanding motions (Unimodal and Bimodal 
models), large amounts of noise are introduced into the population vector 
estimate for non-expanding stimuli. In the extreme case of contracting 
motions, only 20% of the population typically responded to the stimulus. For 
those units that did respond significantly, the encoded signal-to-noise ratio 
was typically offset by a significantly larger noise contribution encoded 
across the sub-population of non-responsive units. This introduced 
considerable variability in the motion pattern estimated from the population, 
causing discrimination thresholds to increase. 

In contrast the control simulations, containing a uniform distribution of 
preferred motions across the population, were able to approximate the 
psychophysical range of discrimination thresholds. However, they did not 
develop the sinusoidal trend in thresholds observed across 'test' motions. If, as 
we have hypothesized, the trend in threshold performance were due to a 
combination of neural properties (such as the distribution of preferred motion 
patterns) inherent to the cells underlying the perceptual task, then we would 
not have expected the Uniform models to deviate significantly from the flat 
trend obtained across all conditions.  
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Taken together these results suggest that a population code of independent 
neural responses is capable of extracting perceptual information relevant to 
the motion pattern task. However, the model's strong dependence on 
population size and the distribution of preferred motions prevent this scheme 
from producing the robust trends in psychophysical performance reported 
across observers.  
 

 
4.2 The Computational Role of Horizontal Connections 

 
The addition of horizontal connections that minimized neural noise within 

the population produced discrimination thresholds that were well matched 
with human psychophysical performance. Neural structures containing both 
excitatory and inhibitory connections were able to accurately simulate 
psychophysical thresholds for populations spanning a 20-fold increase in size 
(100-2000 units). More interestingly, equivalent levels of performance were 
also obtained using larger neural populations that contained only inhibitory 
connections.  

Together with the model’s robust performance as a function of the spread 
of excitatory connections (σE), these results suggest that the sinusoidal trend 
in perceptual thresholds may be mediated primarily through signal 
enhancement associated with the strength (SA) and spread (σI) of inhibitory 
connections within an anisotropic distribution of preferred motion patterns. 
The ability of preferred stimulus units to inhibit non-preferred units greatly 
reduced the level of noise across the population, thereby increasing 
discrimination. This helped offset the strong bias for expanding motions 
reported in the physiology and produced the cyclic trend in which radial 
discrimination thresholds were lowest.  

Complimentary support for such inhibitory structures can be found in the 
performance of neural populations whose responses were thresholded prior to 
decoding the motion pattern estimate (Simulation 3). As with the various 
interconnected architectures examined here, such populations were able to 
accurately approximate human performance using as few as 500 units.  

Although this strategy for reducing noise is computationally appealing, 
the simulations suggest that to be effective it would require a relatively high 
threshold (TR≈ 35 spikes/s). At this level, much of the visual motion 
information encoded across the population would be sacrificed to extract the 
perceptually relevant information. Such an effect cannot be easily reconciled 
with the correlations reported between perceptual performance and single cell 
responses in visual motion areas such as MT and MST (Britten et al., 1992; 
Celebrini & Newsome, 1994). Together with the necessity of a priori 
knowledge regarding what constitutes noise vs. signal implicit in this 
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structure, the use of such a mechanism in the perceptual task presented here 
seems unlikely.  

However, the similarities between the sparse neural representation and a 
winner-take-all strategy for encoding motion pattern stimuli does provide 
some computational insights. In biologically plausible neural structures, 
winner-take-all strategies are often implemented using mutually inhibiting 
horizontal connections that suppress all but the strongest neural responses. 
Taken in the less extreme case of a winner-take-all strategy across neural sub-
populations (i.e. contraction preferred units etc.), the resultant inhibitory 
structures would be qualitatively similar to the mutually inhibiting connection 
profiles explicitly simulated here.  

 
 

4.3 Inhibitory Influences in MST  
  
In the work presented here we have proposed a specific set of local 

interactions within a population MSTd-like units whose visual motion 
properties are consistent with the available physiological evidence. 
Specifically the model predicts an 80-100o spread of inhibition (σI), as defined 
in the 2-D motion pattern space, whose profile is continuous across preferred 
motions. While such structures have not been explicitly examined in higher 
visual motion areas, such as MSTd, there is anecdotal support for the presence 
of inhibitory connections within the neurophysiological literature. Several 
studies have reported inhibitory effects in the motion pattern responses of 
MSTd neurons, although the degree and specificity of inhibition has not been 
characterized in detail (Duffy & Wurtz, 1991b; Lappe, et al., 1996).  

Multi-cellular studies in MST would be well suited to examine this result 
in greater detail and further quantify the extent of inhibitory influence across 
motion pattern sensitive cells. By correlating neural responses across cell 
pairs as a function of the relative distances between their preferred motions 
and the retinotopic positions of their receptive field centers, multi-cellular 
studies could be used to quantify a) the spread of inhibition as a function of 
preferred motion patterns, b) the extent to which horizontal interactions span a 
continuous profile of relative strength and c) the retinotopic extent of such 
interactions.  

It is worth noting that while the performance of the neural models 
suggests the presence of specific inhibitory connections between motion 
pattern detectors, the inhibitory effects implied by the model do not require 
the massive degree of interconnections implemented here. Equivalent 
interactions could be achieved in more biologically plausible architectures 
containing small populations of inhibiting interneurons whose pre-synaptic 
inhibition of preferred motion sub-populations follows an anti-hebbian rule of 



 LINKING PERCEPTION AND NEUROPHYSIOLOGY 211 

   

connection strength. Discrete inhibitory profiles whose strength is constant 
within sub-populations could also be implemented without seriously 
degrading the visual motion information stored across the population. For 
equivalent representations of σI and/or half-width in continuous and discrete 
profiles respectively, the influence of the anti-preferred inhibitory structures 
would likely be similar such that discrimination thresholds continued to be 
well matched to human perceptual performance.  

 
  

4.4 Neural Interactions within and Across Visual Motion 
Areas  

 
The gross increase in computational complexity observed along the visual 

motion pathway has typically been associated with a feed-forward pooling of 
visual motion information between visual areas. In this scheme, neural 
responses to simple visual motion components are combined to encode more 
complex and perceptually relevant properties of the visual scene.  

The model presented here does not explicitly preclude the existence of 
inhibitory feed-forward structures in the projection of motion information 
from MT to MSTd. While it is possible to obtain similar computational results 
using feed-forward mechanisms that inhibit “global” motion pattern responses 
via convergent “local” motion inputs, the mechanisms underlying the 
development of such a system remain unclear. In a previous computational 
model (Beardsley & Vaina, 1998; Beardsley et al., 2003) we illustrated the 
development of horizontal inhibition between MSTd-like units under a 
supervised learning rule. We also reported evidence of inhibitory feed-
forward projections whose development appeared to be linked to the 
underlying learning rule. It seems likely that the visual motion pathway 
contains a combination of both inhibitory feed-forward and horizontal 
connections that act to maintain the visual information encoded across neural 
populations. Future extensions of this model to include a feed-forward layer 
of direction selective MT inputs and neurophysiological studies by others 
incorporating multi-cellular recording techniques within and across visual 
motion areas will likely provide the insights necessary to address these issues 
in greater detail.   
 
 
4.5 Relation to Existing Models of MSTd and Heading 

 
As we alluded to in the introduction, numerous biologically constrained 

feed-forward models of visual motion pooling from MT to MSTd have been 
developed to extract perceptually relevant visual motion properties. Three in 
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particular, Perrone & Stone (1994, 1998), Zemel & Sejnowski (1998), and 
Lappe et al. (1996), contain many of the underlying visual motion properties 
assumed here and could, in principle, also be used to model GMP 
performance. In practice, the methods employed in each model may in some 
ways restrict their extension to graded motion pattern discriminations, but in 
doing so they are likely to provide useful insights into the computational and 
structural requirements of higher-dimensional encoding and ‘perceptual’ 
decoding across multiple visual motion tasks.  

In the template model of heading estimation proposed by Perrone and 
Stone (1994, 1998), perceptual estimates are obtained according to the gaze-
stabilized translation properties of the most active template unit. In this case 
much of the visual motion information encoded across the population is 
discarded, removing a potential source of correlated signal that could be used 
to compensate the effects of internal and/or external noise. While such 
methods also have the advantage of removing much of the population noise, 
the trade-off in perceptual performance is strongly dependent on the 
underlying computational structure and physiological properties. As a result it 
is unclear how ‘perceptual’ performance for small perturbations in the overall 
motion would degrade as a function of neural and visual motion noise. 
Specifically, can maximal unit responses accurately decode the percept under 
noisy conditions or is it necessary to make more explicit use of the visual 
signal encoded across the population as a whole?  

Other models, including Zemel & Sejnowski (1998) and Lappe et al. 
(Lappe & Rauschecker, 1993, 1995; Lappe et al., 1996; Lappe & Duffy, 
1999), have decoded ‘perceptual’ estimates of heading based on the maximal 
activity obtained across neural sub-populations. While the signal integration 
afforded such methods is likely to provide a computationally more robust 
‘perceptual’ estimate under noisy conditions, in the case of the GMP task it is 
not immediately clear how many neural sub-populations might be required, 
nor how many units each should contain.  

Together with the extension of the model presented here to include a feed-
forward layer of MT projections, these models could be readily extended to 
examine GMP discrimination across a wide range of stimulus conditions. In 
doing so each would provide additional insight into the relative roles of feed-
forward versus horizontal connections and the range of decoding schemes 
sufficient to obtain equivalent measures of human perceptual performance. 
Specifically, to what extent might inhibitory feed-forward projections be used 
to mediate the decoded motion patterns? And what limitations do existing 
decoding strategies place on the extraction of equivalent measures of 
perceptual performance in the presence of noise (internal and external) and 
across multi-dimensional parameter spaces associated with dispirit perceptual 
tasks (e.g., Heading vs. GMP discrimination)?  
  



 LINKING PERCEPTION AND NEUROPHYSIOLOGY 213 

   

 
5 SUMMARY 

 
Within the visual cortex, the use of experimental and computational 

techniques to investigate neural connectivity continues to refine the role of 
intrinsic horizontal connections in the emergent computational and perceptual 
properties of the visual system. The model we have presented here builds on 
and extends these concepts to cortical areas later in the visual motion 
pathway. Through simulated populations of MSTd-like units we have 
identified a set of anti-preferred inhibitory structures whose computational 
effects on the encoded visual motion information are well matched to 
equivalent measures of human psychophysical performance. These structures 
are qualitatively similar to the inhibition of anti-preferred direction tuned cells 
reported in earlier visual motion areas such as MT and suggest a more a 
complex neural architecture throughout the visual motion system. 
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