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Abstract- The development of functional activity monitors
(FAMs) will allow rehabilitation researchers and clinicians to
evaluate treatment efficacy, to monitor compliance to exercise
instructions, and to provide real time feedback in the treatment
of movement disorders during the performance of daily
activities. The purpose of the present study was to develop and
test a small sized wearable FAM system comprised of three
sensors positioned on the sternum and both thighs, wireless
Bluetooth transmission capability to a smartphone, and
computationally efficient activity detection algorithms for the
accurate detection of functional activities. Each sensor was
composed of a tri-axial accelerometer and a tri-axial gyroscope.
Computationally efficient activity recognition algorithms were
developed, using a sliding window of 1 second, the variability of
the tilt angle time series and power spectral analysis. In
addition, it includes a decision tree that identifies postures such
as sitting, standing and lying, walking at comfortable, slow and
fast speeds, transitions between these functional activities (e.g,
sit-to-stand and stand-to-sit), activity duration and step
frequency. In a research lab setting the output of the FAM
system, video recordings and a 3D motion analysis system were
compared in 10 healthy young adults. The results show that the
agreement between the FAM system and the video recordings
ranged from 98.10% to 100% for all postures, transfers and
walking periods. There were no significant differences in
activity durations and step frequency between measurement
instruments.

I. INTRODUCTION

Functional decline with aging increases the risk of
disability, dependency, falls, and mortality [1] [2]. Hence,
there is growing interest in rehabilitation and the
development of function promoting anabolic therapies
(FPTAs) for the treatment and prevention of aging-
associated functional limitations [3]. In addition, very
limited information is available on how rehabilitation and
FPATs affect the levels of functional activities (e.g.,
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walking, stair climbing, running, biking, etc.) in the home
and community based setting. It has been argued that
functional activities in the home environment are excellent
integrated measures of physical function and that there is a
pertinent need for the development of reliable, valid and
responsive measures for the assessment of the (reduced)
level of activity in the evaluation of older individuals
participating in clinical trials and home care services [4].

Currently, questionnaires, video recordings and
pedometers are used in the assessment of functional
activities in the home and community based setting [5]. As a
result of limitations of these measurement instruments, there
is a strong interest in the technology of Micro Electro
Mechanical Systems (MEMS) that allowed for the
development of miniature and low powered inertial sensors
such as accelerometers and gyroscopes, in the continuous
measurement of functional activities. Most applications in
clinical research involve the usage of one or two
accelerometers attached to ankle and/or wrist (e.g.,
pedometers). The limitation of this configuration is that only
(frequency of) walking periods, steps per minute and global
level of activity can be accurately assessed [6]. Other sensor
configurations have been tested, but showed limited
capability of detecting different postural and locomotion
activities [7] [8] [9]. Previous studies by our research group
has demonstrated that walking, sitting and standing periods
lasting longer than 5 seconds in the home and community
based setting can be accurately assessed for at least 24 hours
with one activity monitor on the sternum and one on both
thighs [10]. The limitations of current activity monitor
designs include the maximal hours of date recording, energy
supply, the extraction of recorded data, the size of the data-
logger attached to the body, the algorithms used in data-
reduction and the assessment of other functional activities
such as sitting, standing, lying, transfers and walking. The
introduction of wireless communication techniques and
smartphones eliminates these barriers and will allow
rehabilitation researchers and clinicians to 1) evaluate
treatment efficacy, 2) monitor compliance to exercise
instructions, and 3) provide real time feedback in the
treatment of movement disorders during the performance of
the relevant daily activities.

Previous research has demonstrated that accelerometers
are less accurate when the angles of rotation are large.
Gyroscopes appear to be more reliable in the measurement
of angles [11], and, therefore, can more accurately identify
functional activities and the emerging movement patterns.
With the implementation of Kalman filters, wavelet
transforms and neural networks the occurrence of drift in the
gyroscope time series has been significantly reduced [13]



[14] [15]. However, these algorithms are complex and
cannot be easily implemented on the FAM as a result of
computational power and energy demands on the
smartphone. In addition, it has been argued that the
combination of different technologies (e.g., gyroscope and
accelerometers) provides the most optimal activity monitor
platform [12].

The specific aim of the present study was to develop
and test a small sized wireless FAM system that can
accurately record functional activities in the home and
community based setting. It was hypothesized that the FAM
system comprised of 3 sensors positioned on the sternum
and the two thighs, wireless Bluetooth transmission to a
smartphone, and computational efficient activity detection
algorithms will allow for the accurate identification of
postures (sitting, standing and lying), walking (at
comfortable, slow and fast speeds) and transfers between
activities as well as activity duration and step frequency.

II. MATERIALS AND METHODS

A. Subjects

Ten healthy young adults (5 females and 5 males)
included in the study were 18-30 years of age and had no
walking disability or complicating medical history. They all
gave informed consent, and the study was approved by the
Boston University Institutional Review Board.

B. Methods

During the experiment the subjects were instructed to
walk over ground a distance of 10 meters at a comfortable,
slow and fast speed, and to maintain a sitting, standing and
lying down position for 20 to 60 seconds. Each trial included
multiple postures, transfers and walking periods.
Anthropometric measures such as body mass and height and
leg length (from greater trochanter to lateral malleolus on the
ankle) were obtained, using a balance scale with a height rod
and a measuring tape. The experiment was carried out in the
Clinical Movement Sciences Laboratory at Boston
University.

C. Instrumentation

1) Functional Activity Monitor (FAM): The FAM is
comprised of three IMU 6 degree of freedom sensors,
version 4 (V4; Sparkfun Inc, Boulder CO, USA), which
were positioned on the sternum and both thighs. Each sensor
included one  tri-axial  accelerometer  (Freescale,
MMA7260Q) and one tri-axial gyroscope (InvenSense,
1dg500, 500 degree/second), and was powered by 3.7V
lithium ion batteries. The sensitivity of the accelerometer
was set at 1.5g to save energy and battery life. All sensors
transmitted signals wireless by means of Bluetooth to a
smartphone (Motorola Inc.). The sampling rate was set at 50
Hz.

2) 3D motion recording system: Three dimensional (3D)
kinematic data was collected by means of the Optotrak 3020
system (Northern Digital Inc., Waterloo, ON, Canada).
Three Optotrak Position Sensors each consisting of a bank of
three cameras were positioned around the subject to allow
for 3D movement recording, and calibrations were accepted

when the mean calibration error was 0.7 mm or less. Infrared
light emitting diodes (IREDs) were attached bilaterally to
the ankle (lateral malleolus), knee (lateral femoral condyle),
hip (Iliac crest), and shoulder (clavicle anterior surface). In
addition, IREDs were placed on each FAM. The sampling
rate was set at 100Hz.

3) Video cameras: One HDC video camera, model
HS100P/PC (Panasonic Inc.) and one HD video camera,
model VIXIA HG21(Canon Inc.) stationed on tripods were
used for video recordings. The sampling rate was 30Hz.

D) Data reduction and analysis

1) FAM time series: Pitch (p) is defined as the angle of
the x-axis relative to the ground, Roll (¢) is defined as the
angle of the y-axis relative to the ground and Theta (0) ) is
defined as the angle of the z-axis relative to the ground [16].
The accelerometer signal was filtered, using a second-order
forward-backward digital low-pass Butterworth filter at a
cutoff frequency at 3 Hz. The angles of the sternum and both
thighs were estimated from the accelerometer time series by
applying the following arctangent function:

AccAngle = arctan (g, / (go+ 2y2))

The gyroscope signal was filtered by means of a median-
mean filter designed to eliminate burst noise and outlier
signals. Subsequently, a complementary filter and a
calibration procedure using the accelerometer time series
were applied to eliminate drift observed in the gyroscope
time series (see Fig. 1).
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Figure 1. Signal processing flow: Complementary filter and calibration
procedure. Acc represents the acceleration time series, Gyro the gyroscope
time series, LP filter the lowpass filter, HP the highpass filter and MM the
median-mean filter.

The angular rate data was integrated to angles by means of
the equation 6 = Jwdt + 0, . The sternum and thigh angles
were adjusted to the difference between absolute vertical
zero angle (obtained via wall calibration) and a specific tilt
angle depending on the subject’s body shape and posture in
the anatomical posture (obtained via personal calibration).
The outcomes of our instrumentation reliability studies
using a Digital Angle Protractor (Denali) showed that the
difference in mean static angles between the FAM system
and the Optrotrak system ranged from minimally 0.26° to
maximally 1.18° with a mean difference of 0.57° and SD of
0.92° for five fixed angles (0°, 30°, 60°, 90° and 120°). Using
a Biodex system (SEMI, Toronto,ON) we imposed
amplitudes of 120°, 90°, 60°, 30° and 5° at four different



frequencies 80,60, 40, 20 bits/min and found a difference of
minimally 0.06° to maximally 2.3° with a mean value of
0.61° and SD of 0.188°. These findings demonstrate a high
accuracy for both static and dynamic angles.

In order to differentiate between activities, the standard
deviation (SD) of the complete acceleration time series in
the z axis for all three sensors was calculated for each 1
second interval [7]. A SD threshold of 2° was applied to
distinguish between static activities (e.g., sitting, standing
and lying) and dynamic activities (e.g., transfers and
walking). The specific ranges for trunk and thigh angles
were used to identify sitting (sternum -20° to 20° and thighs
25° to 110°), standing (both sternum and thighs -20° to 20°);
and lying (sternum -130° to -50° and thighs 50° to 130°). If
no postures were identified, the posture was labeled
“unidentified static activity” (see Fig. 2). When the 1st
second of dynamic activity was detected, the algorithm
counted the number of peaks from the gyroscope time series
of the chest sensor. If the number of peaks was less than or
equal to 3 and the maximum angle difference from the mean
angle of last second of “static” activity was greater than 20°,
the activity was identified as a transfer. If the number of
peaks was greater than 3, the algorithm estimated the power
spectrum density (PSD) of the chest sensor time series to
identify the step frequency. If the step frequency fell in the
range of 0.5-3Hz [17], the activity was identified as walking.
If the frequency detected was not within that range, the
algorithm labeled the activity as “unidentified dynamic
activity”. The algorithm’s output included the sequence of
activities, the duration of each activity (in seconds), and if
activity was identified as walking, the PSD estimate of step
frequency.

2) Optotrak time series: If there were up to twenty
consecutive samples of data missing, the raw time series was
interpolated. After interpolation, the data was filtered using a
zero-lag, fourth order Butterworth low pass filter with a
cutoff frequency of 5 Hz. Stride frequency (SF) was
estimated by dividing the number of peaks in the time series
of the leg swing angle by the elapsed time, which was
dependent on the duration of the walking speed condition.
The initial contact of the foot was determined by identifying
the time frame at which the antero-posterior component of
the velocity of the heel marker changed from a positive to a
negative value.

All computations were performed using custom made
Matlab programs (The MathWorks, Natick, MA) for the
FAM and Optotrak data.

D. Statistical analysis

A cross-tab analysis was applied to evaluate the
agreement in detection of activities between the FAM
system and the video recordings. An ANOVA with repeated
measures was applied to compare the FAM system and the
video recordings for the durations of the activities identified.
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Figure 2. Flowchart activity recognition algorithm.
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A significant main effect of Tool (2 levels: FAM and Video)
would indicate a difference between the two systems. In a
similar approach, an ANOVA with repeated measures was
also applied in the comparison of the FAM system and the
Optotrak system in determining the step frequency during
the walking periods identified. All statistical analyses were
carried out with version 18.0 of SPSS statistical software
package (SPSS, Inc. Chicago, IL).

III. RESULTS

The agreement between the FAM system and the video
recordings ranged from 98.1% to 100% for all postures,
transfers and walking. The agreement for the individual
activities was 98.1% for standing, 98.6% for sitting, and
100% for lying, transfers and walking (see Fig. 3).

There was no significant difference in the durations of
the activities between the FAM system and the video
recording (p=0.69).

In addition, the comparison between the FAM system
and the Optotrak system showed no significant difference in
the step frequency across all walking periods at comfortable,
slow and fast walking speeds (p=0.90). A main effect of
Velocity was found (p<0.001) with no significant interaction
effect between Tool and Velocity (p=0.85), indicating that
both systems accurately captured changes in step frequency.
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Figure 3: Percentage of correctly identified activities

IV. DISCUSSION

The outcomes of the present study indicate that the
FAM system not only accurately identifies functional
activities such as sitting, standing, lying, transfers and
walking, but it also measures accurately the duration of these
activities and step frequency during over-ground walking.
The FAM configuration including one sensor on the sternum
and one on each thigh, allows for the identification of
different functional activities. The implementation of
computationally efficient algorithms for measuring angles
with the gyroscope calibrated by the accelerometer not only
results in an accurate measurement of static and dynamic
angles, but also in a highly accurate detection of daily
activities. Remarkable is the accurate detection of walking
and measurement of the duration of walking periods and step
frequency at all walking speeds. Especially the low and fast
walking speeds tend to reduce the accuracy of the detection
of walking. The outcomes of our previous gait studies on the
coordination dynamics of walking using walking speed as a
reference have led to optimal gait pattern recognition
algorithms [18]. Currently, we are testing the
implementation of these algorithms on the smartphone,
which will provide the capability of real time online
monitoring of functional activities and providing real time
instantaneous feedback when movement disorders occur.
With the current set-up, the identification of the activities on
the PDA takes approximately 196ms processing time. In
addition, we are evaluating the reliability of the FAM system
in the home and community based setting, and its ability to
detect changes in daily activities as a result of, for example,
a gait training program (“responsiveness”). We plan to
expand the algorithms by implementing neural network
approaches, stochastic decision algorithms and machine
learning strategies, which will increase our capability to
detect daily activities. In addition, we will test different
FAM configurations on the body that will allow us to
monitor uni-manual and bi-manual (daily) tasks, such as
combing and washing hair, washing dishes, throwing balls,
etc. Without any modification the FAM system can be
applied to individuals with movement disorders as a result
of, for example, a stroke or Parkinson’s disease.
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