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Complex motion 
Lucia M Vaina 

perception and 

Within the hierarchy of motion perception, the dorsolateral 

middle superior temporal area (MSTd) is optimally suited for 

the analysis of the complex motion patterns that are directly 

useful for visually guided behaviour (e.g. computation of 

heading). Recent electrophysiological and psychophysical 

evidence suggests the existence of ‘detectors’ in MSTd that 

are specialised for complex motion patterns and advocates 

the necessity of combining retinal and extraretinal signals 

received by MSTd neurones for the accurate perception 

of heading. In some neurological patients, of which only a 

small number have been reported to date, lesions involving 

the human homologue of MST have devastating effects on 

their ability to navigate in their surroundings. It has been 

reported that these patients have impaired performance of 

psychophysical tasks of complex motion discrimination. 
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Abbreviations 

COM center of motion 

MST middle superior temporal area 

MSTd dorsolateral MST 

MT middle temporal area 

Vl primary visual cortex 

VIP ventral intraparietal cortex 

Introduction 
Among the areas of the extrastriate visual cortex that are 

particularly well suited to the analysis of visual motion 

are the middle temporal area (MT) and the middle 

superior temporal area (MST), as has been shown by 

single-cell recordings in monkeys. Hierarchical processing 

takes place in areas MT and MST, such that PcIT 

neurones are selective to direction of translation while 

MST neurones are selective to more complex motion 

patterns, such as radial, circular and spiral motions [l-6]. 

In macaque monkeys, the functional architecture and 

anatomical connections of area hlT, its contributions to 

visual motion perception, and the specific motion deficits 

resulting from partial or total ablation are reasonably well 

understood and have been reviewed abundantly. hlore 

recently, research has focused on the properties of hlST 

and its role in perception, as it is the next area in the visual 

motion hierarchy. 

its deficits 

In this review, which is directed at the neural and 

psychophysical correlates of visually guided behaviours, I 

will concentrate on the behaviourally relevant properties 

of this later stage in the motion processing hierarchy, 

particularly the dorsolateral region of MST (;2lSl‘d). Its 

neurones preferentially respond to patterns of motion 

within the receptive field, and because these patterns 

are often generated by self motion, they are useful for 

navigation and can indicate unambiguously the movement 

of objects relative to the viewer, something that neurones 

in earlier stages of the visual pathway cannot do. 

Perception of motion for visually guided 
behaviour 
As we move through the environment, the pattern of 

visual motion on the retina provides rich information about 

our passage through the scene. This information, termed 

‘optic flow’ [7], is indispensable for encoding self-motion, 

orientation and visual navigation in three-dimensional 

space, for the perception of object movement, for 

stabilising the visual world, and for controlling posture and 

locomotion. Gibson [7] proposes that the computation of 

optic flow must be mediated by high-order mechanisms 

that detect “perceptual contact with the surrounding 

world”. The nature and properties of the mechanisms 

involved in the perception of optic flow have been studied 

using both physiological and psychophysical techniques. 

Physiology of optic flow 

Cells in hlSTd have been found to respond selectively 

to expansions, contractions, rotations [ 1,2,5,8,9], spirals 

[61, and to multi-component (i.e. plane-radial, plano- 

radial-circular, etc.) [3,4,10] motions. This makes them 

better candidates for the computation of optic flow than 

the directionally tuned neurones earlier in the motion 

hierarchy, such as the neurones in primary visual cortex 

(Vl) or MT, whose much smaller receptive fields ‘see’ 

only a limited fraction of the visual scene and respond to 

relatively simple motions in a single direction. Neurones in 

hlSTd are well suited for the analysis of complex optical 

flow patterns (examples are shown in Figure l), as they 

respond best to large stimuli, indicating extensive spatial 

summation [Z-5,1 11. They have large receptive fields (with 

a mean diameter of 60”), many of which extend over 

both contralateral and ipsilateral visual hemifields. In these 

neurones, there is no strong correlation between receptive 

field size and the retinal eccentricity of the center of the 

receptive field. 

The response of MSTd neurones is insensitive to stimulus 

position and image-element density over a broad range, 

and nearly 90% of the hlSTd neurones studied prefer 

stimuli containing a speed gradient to those in which all 
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Schematrc views of typlcal complex motion stirnull. (a) Radial 

motion (portraying expansion). (b) Circular motion (portraying 

counterclockwlse rotation). (c) Heading (translation). (d) Heading 

(curved path). 

image-elements I~OV~: at the san~e speed [ 12”]. This com- 

bination of sensitivity to patterns of speed and patterns of 

directions. absent in earlier visual areas. strengthens the 

view that hlSTd is involved in analysing optical flolv and 

representing the structure of the three-dimensional visual 

environment. 

AlSTd cells have a particularly strong bias for expanding 

motion, suggesting that this area plays an important role 

in visually guided navigation, as forward motion through 

the world produces a significantly higher proportion of 

expanding than contracting patterns of optical flow on the 

retina. 

hISTd neurones have the necessary characteristics to corn- 

putt: the direction of self-movement (heading) [ 13**,14], 

and signals representing heading directions are anatomi- 

cally clustered [lS]. \Vhen the observer translates and 

the eyes are still, the recovery of heading direction from 

visual motion results from locating the focus of expansion 

in the optical flow field. To achieve this computation, 

neuronal responses must vary with the position of the 

motion stimulus within the receptive field. Graziano et al. 

[6] have reported that for preferred stimuli, the responses 

of hlSTd neurones exhibit position invariance to small 

shifts in the center of motion (CORI). Using larger shifts 

and larger stimuli [14,16], position invariance appears to 

be limited to a small region, beyond which the response 
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decreases with distance. XlSTd is the first area in the 

visual motion pathway whose neurones have a direct role 

in perceiving heading [ 14,171. 

Appropriately, MSTd neurones are also highly sensitive to 

extraretinal information about eye movements. When eyes 

move, their retinal COhl shifts away from the direction 

of heading. It has been demonstrated that many MSTd 

cells arc tuned for heading stimuli and that their tuning 

interacts with pursuit eye movements [18”,19]. Lappe 

er nl. [lS**] demonstrated that radial optic flow fields 

simulating self-motion (i.e. heading) elicit optokinetic eye 

movements linked to the direction of gaze. 

Several neuronal strategies have been proposed to explain 

how hiSTd neurones analyse optic flow. A common 

denominator in all explanations is the provision of 

\,elocity selectivity from hlT cells to MSTd [20,21]. One 

mechanism [9] assumes that each hlSTd cell-each of 

which is responsive to a particular complex motion trajec- 

tory- integrates inputs from an array of hlT cells with 

the appropriate distribution of receptive fields (e.g. hlSTd 

cells tuned to radial motion integrate inputs from MT cells 

whose receptive field positions and preferred directions 

are arranged radially). Positional invariance of directional 

selectivity within the large receptive field of an MSTd cell 

is obtained by postulating that its receptive field consists 

of several compartments, each performing integration 

within its o\vn small territory, independently of the other 

compartments [ 11. This mechanism, however, cannot 

account for the finding that the responses of many 

PIlSTd neurones are not limited to pure radial motion, 

as they often respond to t\vo or three components of 

motion (e.g. planar and circular, or spiral, which results 

from the combination of radial and circular motion). 

An alternative possibility is that I\ISTd neurones use a 

feature-matching strategy, whereby individual neurones 

represent particular optic flow fields. For example, a flow 

field combining planar, circular and radial motion could 

be represented by a specific set of triple-component 

ncurones. Another plausible strategy involves population 

coding, whereby optic flow is computed by a large number 

of hlSTd neurones acting in concert. The frequently 

noted redundancy in cortical information processing makes 

it conceivable that these latter two strategies coexist. 

It should be noted that area hlSTd is not the only cortical 

region responding to aspects of optic flow. Recent studies 

have demonstrated that other areas in the parietal lobe, 

such as the ventral intraparietal cortex (VIP) and area 7a, 

are highly sensitive to optic flow stimuli [22*,23*]. It is 

likely that higher-level motion, similar to the translational 

global motion (motion coherence) primarily studied in area 

hlT, is mediated by several higher-level motion-respon- 

sive cortical areas. It is possible that the particular way 

in which optic flow is defined may activate neurones in 

different areas. For example, stimuli simulating rotation of 

a plane in three dimensions (e.g. fanning displays) activate 
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neurones in VIP [22*,23’]. In the lateral intraparietal cortex 

(LIP), optic flow selectivity is modulated by the locus 

of the optic flow and eye position. One should bear in 

mind that the areas exhibiting optic flow selectivities 

are anatomically connected to MST, which suggests 

that this selectivity may be transferred from RIST, and 

that the higher areas in the motion system may both 

elaborate on the properties of optic flow represented 

and concentrate more on the integration of the optic 

flow signal with motor and spatial signals. To create an 

abstract representation of space, the posterior parietal 

cortex combines signals from many different modalities, 

such as visual, auditory, somatosensory and vestibular 

signals. It is possible that our unitary perception of the 

space around us, independent of the sensory modality, is 

embodied in this abstract representation of space in the 

posterior parietal cortex [24”]. 

Psychophysics of optic flow 

Recent psychophysical studies have demonstrated the 

existence and characteristics of complex motion detectors. 

In these studies, optic flow information is used for 

perceptual tasks underlying visually guided behaviours. 

The sensitivity of the human visual system to optic flow 

stimuli has been studied by psychophysical means. To 

investigate whether higher cortical areas might be involved 

in the processing of complex motion patterns, Steiner 

et OL [ZS] studied the degree of interocular transfer of 

expansion, rotation and translation motion aftereffects. 

They found that in visual cortical areas beyond Vl, almost 

all cells are binocular, whereas in Vl, many are monocular. 

They also found that the degree of interocular transfer 

was greater for aftereffects of expansion and rotation 

than for translation, suggesting that higher visual areas 

are involved in motion aftereffects to complex motion 

sequences. A recent study by Takeuchi [26*] suggests 

an asymmetry between the processing of expansion and 

contraction during a visual search task. In human subjects 

taught to search for an expanding target among contracting 

distractors, the time needed to find the target does not 

vary with the number of distracters. However, the search 

time for a contracting target among expanding distracters 

does increase as a function of the number of distracters. 

The author concludes that expansion and contraction are 

processed by higher-order units in the visual system that 

respond asymmetrically to expansion and contraction [26’]. 

Several recent studies have provided evidence for the 

existence of detectors specialised for radial motion, also 

know as looming detectors. Specialised mechanisms for 

complex motion have been suggested by a series of 

masking studies and adaptation studies that propose the 

existence of mechanisms selectively sensitive to expansion 

or rotation distinct from the basic motion mechanisms that 

signal change in speed or linear direction [27-31,32*,33]. 

However, as the physiology suggests, the mechanisms that 

respond specifically to complex motion occur at a relatively 

high level of analysis in the brain (i.e. MST); it is not 

clear that the techniques described above will necessarily 

probe this site. Adaptation and masking may influence the 

response of blST neurones, but they may also influence 

the response of neurones at carlier sites (such as Vl or 

hIT), and this may complicate the interpretation of the 

results [34,35”]. 

To investigate the putative perceptual attributes of area 

hlSTd, my colleagues and I [34] have applied a summation 

technique to study mechanisms tuned to optic flow fields 

presented as random-dot cinematograms producing radial, 

circular or translational motion within a circular aperture 

spatially curtailed into symmetrically opposed sectors 

(Figure 2, top row). Because the signal-to-noise sensitivity 

(i.e. the inverse of the minimal proportion of coherently 

moving dots at which direction of motion is discriminated 

reliably) increased with the stimulus area for all three types 

of motion (which is consistent with an ideal integrator 

model of motion sensitivity), we reasoned that motion 

of opposing directions must be integrated by spccialiscd 

neural mechanisms (Figure 2, bottom row). 

By contrast, sensitivity did not increase with stimulus area, 

which is consistent with the limiting of contrast sensitivity 

by an early level of processing, possibly Vl (Figure 2, 

bottom row). However, summation for contrast sensitivity 

did take place when the stimuli were very noisy, forcing 

the limit of sensitivity to be set by a later stage. The results 

fit well with the electrophysiological evidence for detectors 

of complex motion in hlSTd, after contrast thresholding 

in Vl. Using the same technique, we [35**] subsequentI> 

demonstrated that summation can take place over very 

large areas, consistent with the existence of optic-flow 

detectors with very large receptive fields, as suggested by 

physiological studies. Recent results from a psychophysical 

study of complex motion discrimination [36] suggest that 

the human visual system prefers radial motion (both 

expansion and contraction) compared to circular motion; 

this preference is maintained for the perception of the 

COM. The results of these and other psychophysical 

studies suggest that there are specialised cortical detectors 

that integrate local motions to obtain a global motion 

percept [35**,36-381. An alternative view [39’] is that these 

computations are mediated by the interaction of local and 

global motion detectors. 

Following recent physiological findings, several psy- 

chophysical studies, while assuming the existence of 

specialised detectors for complex motion, have attempted 

to characterise their sensitivity to speed. It has been 

reported that expanding dot patterns appear to move faster 

than rotating patterns, and that the magnitude of the 

illusion decreases when the number of directions defining 

the motion and the dot density are reduced [40,41]. In 

patterns in which only wedge-shaped sectors of the stimuli 

are presented, the difference in perceived speed increases 

with angular sector size [12**]. This finding suggests that 
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Figure 2 
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Motion sensltivlty for dlrection of complex motion. The data (adapted from [341) illustrate that motion sensitivity increases with stimulus area for 

all three types of motion tested: (a) radial; (b) rotation; and (c) translation. The squares in the graphs refer to the condition when the nonsignal 

sectors were set to average mean luminance (portrayed above) and the circles refer to the condition when the nonsignal sectors were filled with 

motion noise of the same statistics. The dashed lines represent the signal-to-noise ratios of an ideal integrator that sums the motion signals over 

the whole display. 

the perceived speed depends upon the global pattern 

of motion of the stimulus. However, other experiments 

assessing speed discrimination thresholds for complex 

motion indicate that thresholds for expanding, rotational 

and linear motion are similar [AZ]. Furthermore, Sekuler 

[AZ] argues that the speed discrimination thresholds can 

be predicted on the basis of the pooling of unidirectional 

local motion signals. An intriguing view is that of Verghese 

and Stone [43-351, \vho suggest that speed discrimination 

depends on the parsing of the stimulus in terms of 

objects. In this framework, Sekuler’s [42] data could be 

interpreted as the motion of single expanding and rotating 

objects. A different approach to the perception of speed 

in complex motion patterns has been taken by Bex and 

hlakous [-W*], who compared perceived speed of radial 

and vertical gratings. They found that the speed of radial 

gratings is consistently ol.erestimated by 20-605X relative 

to translational gratings. ‘They speculate that the greater 

apparent speed of radial motion is related to the apparent 

motion-in-depth of expanding and contracting patterns. 

This suggestion is consistent with our recent study 

(CWG Clifford, SA Beardsley, Lhl Vaina, unpublished 

data) of perception and discrimination of speed of complex 

patterns. 

Optical flow is a powerful CLK for the perception of the 

direction of self-motion during navigation and locomotion 

[47,4X]. The flow field is relatively simple lvhen the ob- 

server translates towards a stationary scene while holding 

the direction of gaze fixed: the direction of heading is 

specified by the focus of expansion. Using random-dot 

stimuli to simulate optical flow patterns, Crowell, Banks 

and colleagues [@JO] have found that heading accuracies 

are less than 1” when the heading is near the line of 

sight, but increase as it becomes more peripheral. The 

estimation of heading is very precise in the presence 

of a ground plane, wall surface, or three-dimensional 

cloud [.il]. Heading judgements arc robust to noise in 

the visual stimulus, as demonstrated by psychophysical 

performance when the stimulus contains a proportion of 

randomly moving dots or by limiting the lifetimes of the 

dots conveying the heading information [52]. 
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The problem of estimating heading becomes more 

difficult when the observer’s gaze of direction changes 

over time because the rotation of gaze adds a rotational 

flow field created by the observer’s translation; therefore, 

there is no longer a focus of expansion corresponding to 

heading. Psychophysical studies have demonstrated that 

heading computations during eye movements with small 

rotation rates are still highly accurate [53-561, whereas at 

higher rotation rates, information about eye movements 

becomes important. At high rotation speeds, if observers 

hold their eyes still, they perceive movement as a curved 

path; yet, if the rotation results from eye movements, 

then translational motion is perceived accurately [55,56]. 

Royden er nl. [SS,.56] commented that when observers 

move their gaze, perception of heading requires the use 

of extraretinal signals. Addition of depth cues can enhance 

the perception of heading in the presence of noise or 

observer’s rotations [57]. 

Clearly, viewing distance changes during heading, which 

must cause changes to the vergence angle between the 

eyes so that the fovea remains aligned as much as possible 

with the object of interest. In the context of radial optic 

flow, centrifugal motion increases the vergence angle, 

whereas centripetal motion decreases it [5X*]. From the 

characteristics of the vergence induced by optic flow, 

Busettini et &. [5X*] conjecture that vergence is actually a 

rapid ocular reflex that compensates for the translational 

disturbance of the observer, and that it is mediated 

by LIST. The real world environment is cluttered with 

moving objects. Ideally, our heading judgements must 

be robust and should not be affected by the presence 

of static or moving objects. Psychophysical studies have 

demonstrated that if an object does not cross the observer’s 

path, it has no effect on the observer’s heading judgements 

[59,60]; however, when it does cross the observer’s path 

and obscures the focus of expansion, there is a consistent 

bias in the direction away from the object’s focus of 

expansion, This suggests that the visual system relies on 

a visible focus of expansion to make accurate heading 

judgements [50,61]. Royden and Hildreth [59] have shown 

that the direction of the judgement bias depends on the 

particular motion of the object: for horizontally moving 

objects, the bias is consistent with the object’s direction of 

motion, whereas for objects moving in depth, the direction 

of the bias depends on the starting position of the object. 

Deficits of complex motion perception in 
patients with extrastriate lesions 
Almost no studies have examined specifically the ability 

of patients with extrastriate lesions involving the dorsal 

visual processing pathway to use optic flow for navigation. 

However, we [62] have recently reported deficits in 

complex motion (including heading, radial and spiral 

motion) perception in two stroke patients (patients RR 

and CP\IK), who had bilateral occipital-parietal lesions 

and who were recovering from Batint-Holmes syndrome. 

Both patients performed well on tasks of low-level 

motion, such as direction discrimination and perception of 

two-dimensional form from direction or speed differences. 

Patient RR [62] had difficulties navigating in his wheel 

chair (for reasons that could not be explained by any motor 

disorder), and frequently bumped into people, corners, 

and things in his way, particularly into moving targets 

(e.g. people walking). He was unable to catch a ball or any 

object thrown directly to him, whatever its speed; although 

he could see the object and that it was moving. In the 

laboratory, he was unable to perceive radial motion and 

was very impaired on even the simplest heading tasks. His 

performance on radial motion discrimination was similar to 

that of patient Lhl, who had previously been described as 

‘motion blind’ [63]. Patient Lhl’s failure to discriminate 

radial motion should have been expected, were it not that 

she demonstrated good perception of ‘biological motion’, 

which is an example of high-level motion. It appears that 

patient Lhi could extract structure from motion (similar 

to the partially akinetopsic patient AF [64,65]), but she 

completely failed to discriminate motion in depth [66] 

(which was not tested in patient AF). 

We (Lhl Vaina, ME Goldberg, unpublished data) have 

recently studied a patient referred to as patient ChlK, who 

reported that she felt “uncomfortable walking, because 

she could not feet a stable system of reference around”, 

and that her “posture was not stable”. She felt very 

uneasy even standing, especially on the street or in traffic. 

She was unable to cross the street alone, as she could 

not judge whether cars were coming towards her. She 

saw them moving, but “had no feeling of what they 

were doing”. She could not catch a ball or any object 

thrown at her, and reported that she had only a “vague 

impression that it was approaching”. Initially, after her 

stroke, she suffered mild right-side neglect and could 

not manipulate tools, silverware, and instruments with 

her hands, in spite of not having any motor weakness. 

She recovered within a few weeks, but retained a 

selective deficit on some complex motion perception. She 

was severely impaired on any three-dimensional motion 

task, but her two-dimensional motion perception was 

good, even when dynamic noise was added to basic 

high-level motion stimuli, such as rotation. However, she 

could not discriminate radial motion, perceive the CObl, 

heading or three-dimensional structure from motion. 

Patient ChlK is uniquely interesting because her good 

performance on most low-level motion tasks contrasts with 

a complete failure on three-dimensional motion tasks, 

directly supporting a hierarchical organisation of the visual 

motion system. 

It is not yet clear, however, how strict this hierarchy 

is and whether deficits of low-level motion necessarily 

affect perception of complex motion. The few neurological 

cases reported so far suggest this is not the case. We 

have described a patient referred to as patient AMG, 

who had a unilateral lesion in the left posterior parietal 

cortex and associated white matter and who had severe 



Complex motion perception and its deficits Vaina 499 

early motion deficits, but whose performance on complex 

motion tasks was normal [67,68]. She was so severely 

impaired on a broad spectrum of visual motion tasks for 

stimulus presented in the contralateral field of her lesion 

that she spontaneously reported “I almost don’t see hoa 

things are moving”. In the visual field contralateral to her 

lesion, she could not discriminate speed of motion, plaid 

patterns, or extract discontinuities from motion. However. 

her perception of heading, radial and rotational motions 

were normal, as ~vas her ability to discriminate directions 

in global motion (the motion coherence task adapted from 

[bc)]). These data suggest that higher-level motion tasks 

do not require very precise lo\v-level computations or 

that additional mechanisms may be used to compensate 

for these deficits [70], lvhich is compatible with the 

normal performance of patients AF and Lhl on certain 

higher-level motion tasks [65,66]. 

\Vc [71] have recently described a particularly intriguing 

dissociation of performance on heading tasks and three- 

dimensional StrUctlIrc-from-motion perception in a patient 

referred to as paricnt RA. This patient had a unilateral 

lesion in the medial right occipital lobe, had no marked 

visual field deficits by neurological examination, and was 

severely impaired on several tasks of low-level motion 

for stimuli presented in the visual field contralateral to 

his lesion (i.e. discrimination of direction, speed, and 

two-dimensional form from motion). Perception of radial 

and circular motion were normal in each hemifield. Eye 

movements measured quantitatively were normal. He 

made accurate judgements of heading for translational 

motion in :I stationary scene, but was severely impaired 

(in both heniifield\) on three-dimensional structure from 

motion. It nwulcl appear that this patient can perceive 

the CO11 (in translational heading), but fails to perceive 

heading on a cur\red path for stimuli presented in 

either visual field. This result suggests two things. 

First, bcc~~ust: judgement of straight-lint heading was 

normal but three-dimensional structure from motion \vas 

impaired. it suggests that scene reconstruction is probabl) 

not necessary for straight-line heading judgement. Second, 

similar to chc motion-inll’:lired patients discussed above, 

patient R,;\‘s normal pcrformancc on complex motion tasks, 

in the presence of impaired lo\\-lcvcl motion, suggests that 

these higher-level computations do not depend on highly 

accurate low-level motion measurements. 

A recent study [73] has reported false perception of motion 

in a neurological patient (rcfcrred to as patient RM’), 

who had a bilateral extrastriate cortex lesion involving 

the presumed human homologue of hlS1: Patient RW 

suffered from a false perception of motion as a result of an 

inability to take eye movements into consideration when 

presented with self-induced retinal image slip. Haarmeier 

et ul. [72] suggest that the patient’s deficit may be 

explained by a “disentangled self-induced and externally 

induced visual motion by comparing retinal signals with 

reference signal encoding eye movements and possibly 

ego-motion”. 

Pursuing in depth the ability of neurological patients 

Lvith focal lesions to carry out optic flow computations 

~,ould be extremely valuable to our understanding of this 

important aspect of visual motion perception. The study 

of neurological patients with selective perceptual deficits 

caused by focal lesions that can be related to established 

cortical maps offers a special non-invasive opportunity to 

establish functional roles for different areas of the human 

extrastriate cortex. 

Conclusions 
Recent physiological and psychophysical experiments 

have demonstrated the existence of specialised detectors 

for complex motion and have thoroughly characterised 

their properties and involvement in visually guided be- 

haviours. However, as we have already seen, the study of 

retinal signals is not sufficient to elucidate the role of area 

hISI and of other motion-responsive areas of the posterior 

parictal cortex in visually guided behaviour. Results from 

physiological and psychophysical studies are in agreement 

that in response to an extraretinal eye-movement signal, 

motion-sensitive neurones in hlS’I’d shift their tuning 

properties spatially to compensate for eye movements (see 

e.g. [ 18**,55]). 

Relevant to the topic of this reliew is the specific 

link between oculomotor behaviour [1X0*,73] and the 

expectation of a stimulus at a specific location or the 

prediction of a target location and movement [74,75]. 

An understanding of the interaction between retinal and 

extraretinal signals is particularly important for elucidating 

the neural substrates of heading and object motion 

perception. 

Although much progress has been made toward under- 

standing the neural substrate of optic flow, there are still 

many questions that remain unanswered. What properties 

do ncighbouring neurones have in common? \Vhat is the 

role of the hlS’I’d neurones in encoding heading and the 

effects of eye movements on heading perception? How are 

motion perception and eye movement combined? How is 

the perception of optic flow affected by eye movement 

deficits or by impairments on visual motion tasks mediated 

by neural circuitry situated tower in the motion hierarchy? 

And finally, and perhaps most difficult to address, what is 

the link betlveen the neural activity underlying optic flow 

and sensory decision? 
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