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Calabro FJ, Vaina LM. Population anisotropy in area MT explains
a perceptual difference between near and far disparity motion
segmentation. J Neurophysiol 105: 200–208, 2011. First published
November 10, 2010; doi:10.1152/jn.00725.2009. Segmentation of the
visual scene into relevant object components is a fundamental process
for successfully interacting with our surroundings. Many visual cues,
including motion and binocular disparity, support segmentation, yet
the mechanisms using these cues are unclear. We used a psychophys-
ical motion discrimination task in which noise dots were displaced in
depth to investigate the role of segmentation through disparity cues in
visual motion stimuli (experiment 1). We found a subtle, but signif-
icant, bias indicating that near disparity noise disrupted the segmen-
tation of motion more than equidistant far disparity noise. A control
experiment showed that the near-far difference could not be attributed
to attention (experiment 2). To account for the near-far bias, we
constructed a biologically constrained model using recordings from
neurons in the middle temporal area (MT) to simulate human observ-
ers’ performance on experiment 1. Performance of the model of MT
neurons showed a near-disparity skew similar to that shown by human
observers. To isolate the cause of the skew, we simulated performance
of a model containing units derived from properties of MT neurons,
using phase-modulated Gabor disparity tuning. Using a skewed-
normal population distribution of preferred disparities, the model
reproduced the elevated motion discrimination thresholds for near-
disparity noise, whereas a skewed-normal population of phases (cre-
ating individually asymmetric units) did not lead to any performance
skew. Results from the model suggest that the properties of neurons in
area MT are computationally sufficient to perform disparity segmen-
tation during motion processing and produce similar disparity biases
as those produced by human observers.

I N T R O D U C T I O N

The everyday world is filled with objects that move at all
speeds, directions, and depths. To build an accurate represen-
tation of the dynamic world around us, the visual system must
carve the scene into meaningful components that belong to
different objects or surfaces. In addition to scene segmentation,
an almost simultaneous process of integration must reassemble
similar components into objects and surfaces (Braddick 1993).
The twin mechanisms of segmentation and integration are
essential for an animal’s survival in a dynamic visual world.
This is especially true in regard to object motion: grouping two
distinct objects and estimating their motion as if they were a
single object would add significant error to the estimation of
speed and direction, while segmenting too finely would reduce
the available information, both preventing observers from

reacting appropriately and efficiently to their surroundings.
Either of these would be detrimental to various aspects of
motion perception, including the detection of whether and
when an observer will collide with an oncoming object. To
accurately perceive potential obstacles and threats, the visual
system must reach a balance between grouping like features
into common percepts (Koffka 1935; Wertheimer 1938), and
segmenting objects along visual discontinuities. Although the
tasks of integrating, or grouping, and segmenting seem to occur
effortlessly (Julesz 1971), they require complex computations
the underlying neural circuitry of which is only partially
understood.

Among the many cues that the visual system can use for
segmentation, motion and binocular disparity are particularly
useful in allowing a quick and reliable segmentation of moving
objects from their surroundings. Both cues are likely to change
as a direct result of an object’s movement, and whereas many
animals have evolved coloring and texturing to help camou-
flage them in their habitat, such concealment is considerably
more difficult for motion and depth cues. Furthermore, motion
and depth cues tend to change together, suggesting an envi-
ronmental link between them that contributes to their role in
scene segmentation. In spite of the evidence that static scenes
can be processed in relatively narrow bands of binocular
disparity (Stevenson et al. 1992) and that disparity can be used
as a cue for segmentation by the motion system (Lappe 1996;
Snowden and Rossiter 1999), it is not clear whether a single
disparity segmentation mechanism is responsible for both re-
sults or whether segmentation is accomplished across a distrib-
uted network of cortical areas, each implicitly segmenting the
scene as needed.

The depth of a visual element (e.g., a moving object) affects
the role it plays in visual scene processing. For example,
objects in the background (far disparities) may be useful in
computing self-motion (Ito and Shibata 2005), whereas objects
in front of the observer’s fixation plane pose a threat of
colliding with the observer. Because foreground and back-
ground objects have different ecological roles, we hypothesize
that they are segmented from the visual scene differently based
on their depth. We further suggest that this is a reflection of the
properties of neurons that perform disparity segmentation for
motion and thus may inform neural models of segmentation.

In this study, we used a psychophysical experiment to
quantify the effectiveness of disparity segmentation during
motion perception (experiment 1). Our data show a subtle, but
significant, difference in observers’ performance on a motion
discrimination task in the presence of near- and far-disparity
noise. In a control experiment (experiment 2), we show that
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attention did not contribute to the asymmetric segmentation
results of experiment 1. We suggest that the properties of
neurons in the middle temporal area (MT) are computationally
sufficient to explain the depth-dependent segmentation ob-
served in experiment 1. To test this hypothesis, we propose a
model containing units the properties of which are drawn from
neural recordings in area MT (courtesy of Dr. Greg DeAngelis)
showing that the near-disparity bias is predicted by properties
of MT neurons. To isolate the cause of this effect, we devel-
oped an explanatory, physiologically constrained model of
joint motion and disparity processing using units with Gabor
disparity tuning curves. The results of this model show that the
perceptual near-far bias is predicted when preferred disparities
are chosen from an anisotropic (skewed-normal) distribution
(Bradley and Andersen 1998; DeAngelis and Uka 2003; Maun-
sell and Van Essen 1983b) but is not found when using a biased
sample of individually asymmetric units (anisotropic distribu-
tion of phases). The results of the model provide evidence that
the joint motion and depth tuning of neurons in area MT are
sufficient to account for the elevated near-disparity noise
thresholds found in experiment 1. This suggests that area MT
is a likely candidate for the neural substrate of disparity-based
segmentation without relying on other visual areas to first
perform scene segmentation. Thus we conjecture that neurons
in area MT mediate an efficient segmentation of moving
objects.

M E T H O D S

Experiment 1

The stimulus was a random dot stereogram (RDS) presented within
a circular aperture with a 10° radius (background luminance, 25.2
cd/m2) and consisting of 314 dots (1 dot/°2) of 7.5 arcmin width. The
dots were anti-aliased and moved and redrawn on every frame (at 60
Hz, or every 16.7 ms) for 500 ms with a speed of 5.0°/s. Throughout
the experiments, a chin rest was used to hold viewing distance
constant at 60 cm and to reduce head movement. Subjects fixated on
a white cross, placed at the center of the aperture at 0 arcmin disparity.
Disparities were measured relative to the fixation cross, with negative
values referring to crossed (near) disparities and positive values to
uncrossed (far) disparities.

Dots were assigned to be either signal (moving left or right) or
noise (repositioned randomly within the stimulus aperture between
frames). The signal dots were displayed only in the fixation plane (0
arcmin disparity), and the depth of the noise plane was one of 0, �2,
�5, or �12 arcmin. This arrangement resulted in two transparent
planes: one containing only signal dots, the other containing only
noise dots. At 0 arcmin disparity separation, both planes were pre-
sented at the same depth. To prevent subjects from simply locating a

dot in the signal plane and tracking it for the duration of the trial,
coherence in the signal plane was set at 25% (and 0% in the noise
plane). The coherence values reported in the following text refer to the
proportion of dots in the signal plane, although for comparison to
previous results, it is important to note that only 25% of these were
moving coherently on a given frame, reducing the overall coherence
of the stimulus.

The task was a single-interval, two alternative forced choice
(2AFC) direction of motion discrimination task (left- or rightward
motion). The threshold (proportion coherence) was measured by an
adaptive staircase varying coherence (Vaina et al. 2003). The staircase
started at 100% coherence with all dots moving either left or right, in
the fixation plane. As coherence dropped, the proportion of dots in the
signal (fixation) plane (0 arcmin disparity) decreased, and the noise
plane became populated with an increasing proportion of dots ran-
domly repositioned between frames, thus providing masking motion
noise. Subjects were asked to fixate on the cross at the center of the
display and to report the direction of the stimulus motion (left or
right). Staircases consisted of four reversals of an adaptive staircase,
following by eight reversals of a classical three-down, one-up stair-
case (Levitt 1970; Vaina et al. 2003). Thresholds were estimated for
each staircase as the average of the last six reversals with overall
means computed as the average of four to eight staircases per subject.
Error bars for group results indicate SE and for individual subject data
as the SD of curve fits to a skewed-normal function, estimated via a
bootstrapping procedure (Fig. 1).

Experiment 2

To determine whether the elevated thresholds for near-disparity
noise reported in experiment 1 are due to an unbalanced spread of
attention to the noise plane, we created a version of the stimulus in
which attention could not be allocated a priori only to the signal plane.
In experiment 1, the signal and noise were presented with a 5.0 arcmin
disparity separation (in which asymmetries were most visible in data
from experiment 1) with neither present at fixation depth (�2.5 and
�2.5 arcmin of disparity). Two conditions were tested. In the nonin-
terleaved condition, the motion was positioned in either the near or far
depth plane for the entire staircase. Observers were told whether the
front or the back plane contained signal dots, allowing them to attend
only to the signal plane (they still fixated on the 0 arcmin disparity
fixation mark). In the interleaved condition, the signal was chosen to
be in the near or far plane randomly on each trial, and subjects were
told that they had to monitor both planes to determine the direction of
motion, and the staircases for near- and far-disparity motion were
interleaved. Thus in the interleaved condition, observers were un-
aware of which of the depth plane contained the signal dots in each
trial. In both conditions, as in experiment 1, observers reported
whether the signal dots moved left- or rightward. To reduce the ability
of subjects to determine the signal plane and attend to it within the
course of a trial, stimulus duration was reduced to 250 ms. All other
parameters were chosen to match those described for experiment 1.

FIG. 1. A: mean thresholds for the mo-
tion discrimination task with signal dots pre-
sented at 0 arcmin of disparity (experiment
1) across observers (n � 8) as a function of
the disparity of the noise dots. - - -, a curve
fit to a skewed-normal function. Error bars
are SE across observers. B: summary of
individual results and curve fits. Error bars
are SDs of fit parameters estimated by a
bootstrapping method.
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Stereo

The stimulus was presented by simultaneously displaying red and
green dots viewed through corresponding red and green filters (Bere-
zin Stereo Photography Products, berezin.com). The effective lumi-
nance measured through the filters was 3.5 cd/m2 against a back-
ground of 0.98 cd/m2, for a Michelson contrast of 55%. Dot lumi-
nances viewed through the wrong filter were 1.1 cd/m2, for a contrast
of 0.05% relative to the background, leading to minimal cross-talk.

Subjects

Eight observers (mean age, 24 � 4.4) participated in experiment 1,
and three in the control experiment (experiment 2). All observers had
normal or corrected to normal vision. Stereoacuity was assessed with
a computerized stereo acuity task that measured subjects’ abilities to
perform a two-dimensional (2-D) object depth discrimination (triangle
vs. square subtending the same area). All subjects had disparity
thresholds �3 arcmin. Author FC was an experienced observer while
all other observers were naive to the purpose of the experiments.

R E S U L T S

Experiment 1: disparity segmentation for motion

In experiment 1, subjects identified the direction of dots’
motion at 0 arcmin disparity in the presence of noise at a
variable disparity. Each subject’s performance was fit to a
skewed normal curve (Azzalini 1985; Azzalini and Capitanio
1999) with free parameters for tuning width (sigma), skew,
amplitude and y-offset. A bootstrapping procedure based on
the resampling of residuals (Davison and Hinkley 1997; Efron
and Tibshirani 1993) was performed estimating the curve fit
parameters for 500 repetitions. Mean parameters across these
repetitions were taken as the best-fit values, and SDs across
repetitions were used to assess the confidence interval of each
parameter in the fit.

All observers showed a significant reduction in thresholds as
the disparity difference between the noise and signal planes in-
creased [amplitude parameter from a Gaussian curve fit was
significantly �0, t(7) � 3.75, P � 0.007]. Figure 1A shows mean
thresholds across subjects as a function the disparity of the noise
dots (with the signal plane fixed at 0), and Fig. 1B shows the
summary of the individual curve fit parameters per subject. The
mean tuning width (Gaussian sigma) across subjects was 6.41
arcmin and the y-offset was 5.6%, indicating that for large
disparity separations, subjects’ thresholds reached a plateau at
this level, about one-fourth of their thresholds for no disparity
separation (mean, 21.2%).

We found that all subjects had best-fit skew values that were
�0, ranging from �0.14 to �3.7. Across the group, the mean
skew was �1.78 (SD across subjects of 1.22), and this group
effect was statistically significant [t(7) � �4.11, P � 0.004],
indicating that our subjects showed a significant threshold
elevation in the presence of near-disparity noise dots. This
result indicates that the detection of motion was more difficult
when observers were presented with near-disparity noise than
with far-disparity noise of equal disparity difference.

Experiment 2: role of attention

A possible explanation for near-far asymmetries in disparity
segmentation during motion perception is that the disparity-
specific bias arises from the involvement of an attention mech-

anism rather than from the motion mechanisms themselves. It
has been previously demonstrated that attention can spread
along a surface (Egly et al. 1994; He and Nakayama 1995),
including occluded parts of the surface (Moore and Fulton
2005; Pratt and Sekuler 2001). However, how disparity would
spread between two objects at different depths has not been
addressed. In this context, in experiment 1, attention may
spread from the attended (signal) plane to the noise plane
asymmetrically (i.e., attention may be more likely to spread
from fixation to a near-disparity plane than to a far-disparity
plane). This is plausible because objects at near-disparity are
more likely to require an observer action, and thus attention
may be disproportionately allocated to object at near depths.
Asymmetric segmentation, with higher thresholds for near-
disparity noise, could then be attributed to properties of visual
attention, and not motion, mechanisms.

This hypothesis stems from the fact that in experiment 1,
signal dots were always presented in the fixation plane (0
arcmin), and thus observes knew a priori where to attend to
optimally determine the direction of stimulus motion. To
determine whether disparity-dependent properties of attention
mechanisms contributed to the results of experiment 1, observ-
ers’ detected near and far disparity motion signals in blocks of
trials for which the two conditions were interleaved or were
presented individually. If the cause of the difference in observ-
ers’ performance on near- and far-disparity noise conditions
was the imbalanced spread of attention to either the near- or
far-disparity noise planes, then the interleaved condition
should not exhibit the same behavior because subjects had to
split their attention between the two planes.

Figure 2 shows the data from three observers. In the nonin-
terleaved condition when subjects attended to the motion
plane, there was a significant threshold elevation for near-
disparity noise (mean elevation of 3.96% coherence, 2-way
ANOVA controlling for subject showed a significant main
effect of disparity, F � 5.05, P � 0.03), mirroring the thresh-
old elevations found in experiment 1. Similarly, in the inter-
leaved (nonattended) condition, thresholds were also elevated
relative to the noninterleaved condition (mean effect size of
5.64% coherence, F � 2.93, P � 0.09), although this differ-
ence did not reach statistical significance. Importantly, the
asymmetry between near- and far-disparity segmentation, ev-
idenced by better motion detection for near-disparity signal
dots (i.e., far-disparity noise) relative to far-disparity signal,
persisted in the interleaved condition where observers could
not attend to the signal plane a priori. That the near-far bias
persisted when attention was split between the two planes
implies that the elevated near-disparity noise thresholds re-
ported in experiment 1 were not a result of selectively attending
to the signal plane.

Model

The psychophysical results presented in experiment 1 dem-
onstrate a consistent difference in observers’ performance on
the segmentation of near- and far-disparity noise in a motion
coherence task with thresholds higher when noise dots were in
a near-disparity plane than a far-disparity plane. The results of
experiment 2 suggest that this result cannot be explained by
selective attention to the signal plane. Because the outcome of
these experiments do not directly provide an explanation for
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disparity-based segmentation that would account for elevated
near-disparity thresholds, we investigated whether the segmen-
tation bias could arise from the disparity sensitivity of the
motion processing mechanisms. We developed a physiologi-
cally constrained model of direction and disparity tuning in MT
to address the sufficiency of area MT to explain the results of
experiment 1 (Fig. 3). Specifically, we tested whether proper-
ties of neurons in area MT are computationally sufficient to
perform the disparity segmentation we observed and whether
the near-far disparity bias is consistent with the disparity tuning
properties of these neurons.

The near-far disparity asymmetry we reported could poten-
tially arise due to one of several different physiological pro-
cesses. Two potential explanations are proposed based on

results from physiological studies of area MT: asymmetries at
the population or individual unit level. Large recording sam-
ples from MT have shown that more MT neurons have pre-
ferred disparities in the near visual field than the far field
(Bradley and Andersen 1998; DeAngelis and Uka 2003; Maun-
sell and Van Essen 1983b), suggesting that an over-represen-
tation of near disparities across the population of MT neurons
may result in the elevated near-disparities thresholds found in
experiment 1. In characterizing the tuning curves of MT
neurons, DeAngelis and Uka (2003) found that a Gabor model
provided better fits than Gaussian tuning curves. Consequently,
an alternative explanation for the near-far bias we report
emerges from the offset of a cosinusoidal component relative
to the Gaussian center location in the Gabor tuning curve,

FIG. 2. Results of experiment 2 for 3
subjects on the interleaved (dark gray) and
noninterleaved (light gray) conditions. Data
are shown for cases in which the signal was
present in the near or far depth plane (with
noise occupying the other).

FIG. 3. Schematic view of the model. Each input unit had tuning to both direction and disparity. The response of each unit was passed through a nonlinearity,
and then weighted sums were computed to determine an overall leftward and rightward model response.
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creating individual unit asymmetry. We will first show that the
behavioral asymmetry is predicted by tuning properties of MT
neurons using a model based on neural recordings and then use
an artificial model based on these neurons to determine
whether population and/or individual anisotropies account for
the elevated near-disparity thresholds we have reported.

We modeled the disparity sensitivity of MT-like units by a
phase modulated Gabor function-the product of a Gaussian
curve and a sine wave. Thus the response of unit i is given by
the product of difference of Gaussian direction tuning and
Gabor disparity tuning, as

ri,� � e�� � �i�
2
⁄ 2�i,�

2
· cos�2�f�� � �i� � �i�

where ri,� is the component disparity response of unit i, � is the
tuning width, �I is the preferred disparity defined as the
Gaussian center position, f is the frequency of the cosinusoidal
component (uniformly distributed between 11 and 17° based
on data from DeAngelis and Uka 2003), and �i is the cosinu-
soidal phase.

Two 6 � 6° motion vector fields were used as inputs to the
model and were presented at different disparities (signal dots at
0 arcmin disparity and noise dots between �12 arcmin), and
sampled by 0.25 � 0.25° input elements (the input space was
25 � 25 pixels, every pixel could contain a motion vector). The
response of each unit to this input was calculated as the product
of the direction (r�, modeled as a difference of Gaussian
function with a negative Gaussian tuning width 4 times the
main tuning width to contribute opponent motion responses)
and disparity (r�) response, summed over the input space. To
normalize across trials in which the disparity of the noise plane
varied, the responses of each unit were normalized by the
maximum disparity response of that unit. Neurons had a
baseline firing rate of 30 Hz with noise represented as an
additive term (	) drawn from a normal distribution with sigma
equal to half of the maximum firing rate (50 Hz), chosen as a
balance between low relative noise values, in which the steep-
est part of the tuning curve conveys the most information, and
high relative noise values, in which only the peak of the tuning
curve is able to discriminate stimuli (Butts and Goldman
2006).

ri �
�

x
�

y
ri,�ri,� � 	

N · � ri,�

The decision stage of the network performed a weighted sum
of unit responses after passing the responses through a nonlin-
earity (sigmoid) to allow response saturation. The two param-
eters for the nonlinearity were determined from a Monte Carlo
simulation: for each combination of slope and bias, the model
performance was evaluated and compared with psychophysical
performance for a threshold at 0 arcmin disparity separation,
and disparity tuning width (i.e., the drop in coherence thresh-
olds as a function of disparity separation). The slope and bias
had the effect of scaling the model performance both in terms
of raw thresholds and tuning width but did not fundamentally
change the behavior of the model. Values were chosen to
optimally match model and human thresholds for 0 and 10
arcmin disparity separations for comparison purposes. Near-far
asymmetry was not included as part of the criteria. Two output
weights were associated with each unit to provide the model

with direction specificity (e.g., units with leftward tuning
would have a larger weight associated with the “left” output
unit than the “right” output unit). Weighted sums were calcu-
lated for both the left- and rightward sets of weights, and the
larger response was chosen as the response (left or right) to
prevent a directional response bias.

rd � �
i

wi,d ·
1

1 � e�s�ri�b�

To determine the weights projecting to left- and rightward
output units, the network was trained on sample stimuli of
known direction. An equal number of left- and rightward
stimuli were presented to the model, and weights were adjusted
using the exposure based learning rule proposed by Vaina et al.
(1995). In our model, all units the responses of which were
among the top 10% had their weights increased by 0.005
(relative to an initial weight of 1). The weights were normal-
ized across the population such that the mean weight was 1
throughout training to keep the total left- and rightward
weights balanced.

if ri 
 rt : wi,d �
wi,d � �

� wd
, if ri � rt : wi,d �

wi,d

� wd

To measure the overall model performance on the psychophys-
ical task, the trained networks were run with stimuli at 10
coherence levels ranging from 2 to 40% for 20 noise disparity
conditions between �30 and �30 arcmin (most densely sam-
pled near 0 arcmin). Psychometric functions of percent correct
versus coherence were fit by sigmoid functions using a boot-
strapping procedure based on the resampling of residuals (500
iterations with SDs across all iterations used to measure error
in each of the estimated parameters). Thresholds were esti-
mated from the sigmoid fit to compare with the psychophysical
thresholds obtained in experiment 1. For each condition, to
estimate variability due to random effects, thresholds are re-
ported as the mean of the results from five “unique” networks
each generated with a new set of units randomly chosen from
the specified distributions, and independently trained.

MT Model

We first used the curve fits of neuronal recordings from 501
MT neurons (courtesy of Dr. Greg DeAngelis, data published
in DeAngelis and Uka 2003) in a model of direction and
disparity processing by neurons in area MT. These units were
modeled using a Gabor disparity tuning function with param-
eters for preferred disparity, phase, frequency, amplitude, and
baseline firing rate.

Because we were interested in the disparity tuning properties
of these neurons and because the psychophysical stimulus
involved only left- and rightward motion, we did not assign
other preferred directions to any of the units because this would
give them a negligible contribution to the model output. We
therefore limited the units’ preferred directions to 0 and 180°
(left or right). To ensure that both directions were equally
represented within our model, the full network consisted of
1,002 units—two copies of each of the 501 neuronal record-
ings—with one copy tuned to leftward motion and its pair
tuned to rightward motion. All units were assigned equal
weight when projecting to the correct output unit (leftward
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units to the left output unit, rightward units to the right output
unit), and a weight of 0 to the opposite direction.

The model performance is shown in Fig. 4. A bootstrapping
procedure was applied to the data by performing repeated
curve fits on subsampled data sets and found a mean skew of
�1.70 � 0.06 (SD). This shows that the properties of the MT
neuron sample lead to elevated motion detection thresholds for
near-disparity noise (relative to equal magnitude far-disparity
noise), similar to that observed behaviorally in experiment 1.

Artificial model results

To investigate the cause of the disparity skew seen both in
human observers and in a model of MT neurons, we con-
structed a model in which we manipulated the population
statistics of the disparity sensitivities of MT-like units. To
compare the effects of anisotropic population distributions and
individually asymmetric units, we manipulated the tuning
curve parameters of the Gabor disparity tuning model (the
center of the Gaussian envelope, �i, and the phase of the sine
wave, �i). Manipulating the distribution of Gaussian positions
created a population of symmetric (on average) units but with
an anisotropic population (more near-tuned neurons than far-
tuned units). Manipulating the distribution of phases created a
population in which individual units tended to have skewed
tuning curves preferring near disparities than far disparities.
This allowed us to determine whether the population statistics
or individual unit asymmetry (or both) could explain the
near-far disparity bias observed in our observers. We applied
population distributions (sigma � 55.65 arcmin, skew � 0,
�2.79) (the sigma and skew were estimated from the distribu-
tions reported by DeAngelis and Uka 2003) to each of the two
parameters in separate conditions. In each case, the other
parameter was modeled as a uniform distribution (�60 through
�60 arcmin for �i and �� through �� for �i). This resulted
in uncorrelated position parameters. Direction tuning was mod-
eled as a difference of Gaussians function (Gaussian of sigma
36° minus a Gaussian with sigma 144°) with preferred direc-
tions distributed uniformly among all directions.

The analysis of the effect of population distributions re-
vealed that skewed populations led to skewed performance
when the population distributions were applied to the center

position of the Gaussian envelope. Performance curves were fit
to the results of each unique model (typical network perfor-
mance and skewed-normal curve fits shown in Fig. 5, skews
summarized in Fig. 6). When a symmetric population was used
for the distribution of preferred disparities (Fig. 5A), the
performance curve was well fit by a skewed-normal curve with
sigma 6.24 � 0.13 arcmin and skew of 0.03 � 0.02. The
anisotropic distribution resulted in an increased sigma of
11.2 � 1.47 arcmin, and a significant performance skew of
�1.75 (SD from bootstrap fit of 0.40, z � �4.37, P � 0.001
using a 2-tailed z-test). This skew was similar to that shown by
human subjects in experiment 1 (mean skew of �1.78, SD
across subjects of 1.23) and by the model of actual MT neuron
curve fits (�1.7 � 0.06).

These results were not preserved when the population dis-
tributions were applied to the phase parameter (the peak of the
sinusoidal component of the Gabor tuning function). The
sigma of the performance curve for the model using an aniso-
tropic distribution of phases was again slightly elevated com-
pared with the isotropic model (from 5.94 to 7.75 arcmin), but
there was no significant skew in the performance curve result-
ing from a anisotropic phase population (Fig. 5D) related to
changing the population distribution as applied to the phase
parameter (mean skew: 0.02 � 0.03, z � 0.67, P � 0.5).

Thus although the Gabor fits result in a biased response
function when the population distribution was applied to the
center of the Gaussian envelope, there appears to be no effect
on the model performance when the anisotropic distribution of
preferred disparities is applied to the phase parameter. Because
applying the skewed distribution to the phase parameter did not
produce a skewed performance distributions, we suggest that
the center and phase parameter have computationally distinct
roles in determining the overall model performance.

D I S C U S S I O N

The results of experiment 1 extend previous studies (Snow-
den and Rossiter 1999) that have reported that binocular
disparity can be used as a segmentation cue during motion
perception. In a group of eight subjects, we showed that this
effect occurs gradually with the increase of disparity separation
between signal and noise, with a mean bandwidth (Gaussian
sigma) of 6.4 arcmin. Interestingly, we found a consistent
disparity-dependent bias among observer performance, show-
ing elevated thresholds in the presence of near-disparity noise
(mean skew of �1.78). Results from a control test (experiment
2) suggested that even when unable to selectively attend to the
signal plane, subjects exhibited a significant threshold eleva-
tion when presented with near-disparity noise. This indicated
that the near-far bias was not likely a property of the attention
system.

Based on our results, we hypothesized that the near-disparity
bias may be a property of the motion mechanism being used in
this task and that it may be used as a criterion in linking
potential neural mechanisms to the perception of motion during
disparity segmentation.

We investigated whether the results of experiment 1 could be
explained by properties of the neuronal population in area MT,
a cortical area the neurons of which are known to be selective
to both direction of motion and binocular disparity (Maunsell
and Van Essen 1983a,b); using models first based on actual

FIG. 4. Results of the model using units the parameters of which matched
those of real neurons reported by DeAngelis and Uka (2003). A disparity-skew
similar to that shown by our psychophysical subjects is found in the perfor-
mance of the middle temporal area (MT) model, resulting in elevated thresh-
olds for near disparities (negative disparity values).

205ANISOTROPY IN MT FOR DISPARITY MOTION SEGMENTATION

J Neurophysiol • VOL 105 • JANUARY 2011 • www.jn.org

 on M
ay 16, 2011

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org/


neural recordings in area MT, and then by a simulated set of
MT-like units the properties were drawn from the known
population statistics of MT. Computational models have of
which demonstrated that stimulus discontinuities can be de-
tected from motion cues (Hildreth 1983; Spoerri 1991; Thomp-
son 1980; Vaina et al. 1994, 1998) or from binocular disparity
(Julesz 1971; Marr 1982) alone. In this study, we were inter-
ested in determining whether the neural processing imple-
mented by MT neurons is computationally sufficient to explain
the segmentation employed by subjects in our psychophysical
task (experiment 1). Neuronal models provide an important
tool for exploring and explaining the link between neurophys-
iology and perceptual phenomena (Baloch et al. 1999; Beard-
sley and Vaina 1998, 2001, 2004; Berns et al. 1993; Cadieu et
al. 2007; Giese and Poggio 2003; Pack et al. 2001; Schultz et
al. 1997).

We simulated performance of a model of neurons recorded
from area MT (DeAngelis and Uka 2003) that accurately

replicates the human behavioral results reported in experiment
1. Three elements of the model could account for near-far
disparity differences: the distribution of preferred disparities
(Gaussian center position), the distribution of phases, and the
weighting rule. Because the MT neuron simulations used
uniform weights, the weighting and decision rules were un-
likely to contribute to the near-far difference.

FIG. 6. Summary of performance skew for symmetric and asymmetric
distributions applied to the Gaussian center location (left) and phase (right) of
model disparity tuning functions.

FIG. 7. Comparison of a sample unit tuning curve with a preferred disparity
and phase of 0 (A), a shifted preferred disparity (B), and a shifted phase (C).

FIG. 5. Typical results from single unique
networks. Top: symmetric distributions ap-
plied to the Gaussian position (A) and phase
(B) parameters. Bottom: anisotropic distribu-
tions applied to Gaussian position (C) and
phase (D) parameters. Only the skewed-
Gaussian position distribution (C) exhibited
significant skew similar to that found by hu-
man subjects in experiment 1. —, curve fits to
a skewed-normal function.
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To test whether the distribution of preferred disparities or
phases was responsible for the performance skew, we com-
pared the performance of a model with asymmetries built into
the model either at the population (distribution of Gaussian
centers) or individual unit (distribution of phases) level. By
applying the skewed normal population anisotropies to each
parameter independently, we measured the relative contribu-
tion of each parameter to the performance skew in our model.
The results (Fig. 5) showed that the distribution of Gaussian
centers provided similar near disparity bias as that found for
our human subjects and the model of MT units, while the phase
parameter led to negligible differences between near and far
disparity segmentation.

The different effects of manipulating preferred disparity and
phase are illustrated by a sample unit shown in Fig. 7 and may
be used to explain the difference in results for two anisotropic
population models. When the preferred disparity is shifted, the
unit continues to have a large response to 0 arcmin disparity,
that is, to the disparity containing signal dots. Thus the unit
shown in Fig. 7 became more responsive to the noise while
maintaining its response to the motion signal. On the other
hand, for the phase shift, the unit’s response to the signal
disparity drops nearly to zero (indicating baseline firing rate).
Thus even though this unit is now tuned to the noise disparity,
its overall response is quite low because it no longer responds
to the motion disparity, causing any modulatory effect of noise
dots to have a minimal overall effect. Another way to consider
this is that by having an offset phase, the tuning response of the
unit as a function of disparity becomes narrower, so that the
unit is less likely to respond to both signal and noise. This
suggests that preferred disparity (by the Gaussian center posi-
tion) and the phase may have different computational proper-
ties: preferred disparity controls the overall response and per-
formance, including generating the near-disparity bias ob-
served in the model, while an offset phase creates narrower
tuning widths allowing more specific disparity responses.

A near-far disparity difference similar to the results of
experiment 1 has been previously reported for a shift in the
perceived center of expansion when viewed in the presence of
unidirectional motion (Duffy and Wurtz 1993; Grigo and
Lappe 1998). The size of this illusion decreases as the expand-
ing and translating motion components are separated in depth,
and the decrease is much more pronounced for far disparities
(Grigo and Lappe 1998). Lappe and Grigo (1999) hypothesized
this effect could be explained by the disparity processing of
MT neurons and suggested that a disparity-based weighting is
used to selectively process far-tuned MT neurons. The results
of our model further suggest that population anisotropies
within MT allow asymmetric disparity-dependent processing
even though individual neurons may have symmetric tuning.

Our model proposes a physiological implementation of dis-
parity segmentation for motion perception that relies solely on
direction and disparity properties of neurons in area MT. The
use of physiologically recorded neural properties resulted in
the reproduction of a near-far disparity bias similar to that
observed psychophysically with human subjects, suggesting a
perceptual link between the disparity tuning of MT neurons
and the segmentation of motion present at different depths
within the visual scene. Although these results suggest that
properties of MT neurons are computationally sufficient to
segment moving surfaces based on disparity, it is also possible

that interactions among several cortical areas may play a role
A possible candidate, is cortical area V2, whose neurons
respond to illusory surfaces (Bakin et al. 2000; Peterhans and
von der Heydt 1989; von der Heydt et al. 1984). If these
neurons inhibit responses to occluded surfaces, this could
contribute a near-far bias similar to what we have observed
(experiment 1). This possibility has been suggested by studies
of the role of disparity on motion-induced blindness, in which
static dots disappear less frequently when they are displayed in
front of moving dots (Graf et al. 2002). This effect has been
linked to attention (Bonneh et al. 2001; Driver and Vuilleumier
2001). Because in our study the near-far disparity bias re-
mained when selective attention was removed (experiment 2),
a possible contribution of surface completion would have to
occur inattentively (i.e., by inhibiting the perception of the far
disparity plane).
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