Osamu Shimomura never forgot the atomic bombing of Nagasaki, Japan. He was a teenager working at a factory there when the brighter-than-the-sun flash flooded through the windows.

“We were blinded for about 30 seconds, ” Shimomura (Hon.’10) recalled six decades after the 1945 strike. “Then, about 40 seconds after the flash, a loud sound and sudden change of air pressure followed.”

As he made for his home about 16 miles from the epicenter, black rain drizzled on him, darkening his white shirt to a grimy gray. His grandmother scoured him in a bath, possibly saving him, he speculated, from any lingering radiation.

That brush with science’s awesome power to destroy didn’t dissuade Shimomura—who died in Nagasaki on October 19, 2018, at age 90—from becoming a scientist. In 2008, the BU School of Medicine professor emeritus discovered protein aiding in cancer and other research.

Shimomura was also a former senior scientist at the Woods Hole Marine Biological Laboratory.

He made his prize-winning discovery years before his BU tenure. Shimomura joined the faculty at BU in 1982 as a professor of physiology. He was retired from BU when he won the Nobel, and the University immediately conferred emeritus status on him.

The son of a Japanese army captain, Shimomura lived for part of his childhood in Manchuria, where his father had been stationed during its occupation by Japan in the 1930s. He graduated from Nagasaki Pharmacy College and went to work at Nagoya University, where he also earned a master’s and a PhD. He began studying the light-emitting properties in a species of Japanese crustacean, succeeding in purifying and crystallizing the compound that helped produce the glow.

“That hope was well founded, as Princeton University, which was studying luminescent jellyfish, recruited him as a researcher in 1960. There, in 1962, he managed to extract two proteins from the Aequorea victoria jellyfish, found off the waters of Washington State: aequorin and GFP; the latter glows green when exposed to the former.

After years of summer trips to Washington—during those trips, he said, he and his colleagues typically harvested 3,000 of the tiny jellyfish a day—he and the team mapped out the workings of the luminescence in the 1970s. He left Princeton after joining the MED faculty.