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ABSTRACT

The radio through optical, and possibly X-ray, emission of QSOs and active galactic nuclei is
interpreted in terms of a relativistic jet containing high-energy particles and magnetic field. An
observer whose line of sight is nearly parallel to the jet axis detects a strong, compact radio
source whose flux density smoothly connects with an optical spectrum which is much steeper
than that emitted in the rest frame of the jet flow. The radiation is strongly polarized, and this
type of source is identified with the optically violent variables. Larger viewing angles relative to
the jet axis result in spectral dominance by the central region containing the “energy machine”
which drives the energy flux in the jet. This radiation is weakly polarized, has a flatter spectrum
and low degree of variability, and is associated with much weaker radio sources. These results
are found to be consistent with presently available observational data and future observational
tests are suggested. For example, the source size, as inferred from variability time scales, must
increase with wavelength in the optical-infrared portion of the spectrum.

Subject headings: BL Lacertae objects — quasars — X-rays: sources

I. INTRODUCTION

Recent observations of the high-frequency radio (1-100 GHz; hereafter referred to as “radio”) and infrared
to optical (10'*~10'5 Hz; hereafter referred to as * optical’) emission from QSOs, BL Lacertae objects, and active
galactic nuclei, suggest that the radio and optical properties in some of these objects are strongly correlated
(O’Dell et al. 1978; Owen et al. 1978; Condon, Jauncey, and Wright 1978; Machalski and Condon 1979). In
particular, the spectra of those sources with strong radio emission tend to suggest a smooth transition from the
generally flat radio regime to the steeper optical continuum (Condon 1978). Furthermore, the extremely active
““optically violent variables” (OVVs) have been found to possess the following properties: high degrees of optical
linear polarization (e.g., Stein 1978; Stockman 1978), steeper than average optical spectral indices (Visvanathan
1973; Kinman 1975; Stein, O’Dell, and Strittmatter 1976), and associated strong, variable, flat spectrum, com-
pact radio sources (Stein 1978 ; Kellermann and Pauliny-Toth 1969). It thus appears that, at least in certain classes
of objects, there is a physical connection between the optical and radio emitting regions which should be addressed
by any model for the radiation observed at either range of frequencies.

Although the radio emission from QSOs and similar objects appears to be adequately explained by the in-
coherent synchrotron process (e.g., Kellermann and Pauliny-Toth 1969), the variability observed in most com-
pact radio sources at first glance seems to be inconsistent with this view (e.g., Burbidge, Jones, and O’Dell 1974;
Marscher et al. 1979). This problem and the observed apparent superluminal expansions in some sources (Cohen
et al. 1977) (both of which assume cosmological distances) can best be explained in terms of relativistic phase
effects or bulk motion of one or more radio components (e.g., O’Dell 1978; Christiansen, Scott, and Vestrand
1978; Blandford, McKee, and Rees 1977). The most recent VLBI results (Readhead et al. 1979) suggest that the
radio emission may arise from regions inside relativistic jets which emanate from the innermost central volumes
of these objects. Prior to these observations, such a scenario had been proposed theoretically by Blandford and
Rees (1978) and Blandford and Kénigl (1979).

Here we show that the relativistic jet model can explain the association of OVVs with strong, variable radio
sources, strong optical polarization, and continuity of the radio to optical spectra. This study complements the
conclusions of Scheuer and Readhead (1979), who find that the relativistic jet model satisfactorily accounts for
the large percentage of radio-quiet QSOs. It also represents an alternative to a similar (but weaker) statistical
correlation of the above properties suggested in the model of Blandford and Konigl (1979).

II. PROPERTIES OF A RELATIVISTIC JET

Relativistic beams in radio sources were first postulated by Blandford and Rees (1974) to explain the apparent
continuous supply of energy from the nucleus of a radio galaxy to its outer radio lobes. The reader should refer
to their paper for a discussion of the detailed physics associated with a relativistic jet. Figure 1 illustrates the basic
properties of such a jet. A region of intense particle acceleration is imagined to exist at the extreme central region
of the object. A confining plasma surrounds this ‘‘energy machine”, and the plasma is assumed to possess steeper
pressure and density gradients along a given axis (presumably the rotational axis) than perpendicular to it. The
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FiG. 1.—Schematic representation (not to scale; in particular note the change in scale at R ~ R.) of a source containing two
oppositely directed relativistic jets. After Blandford and Rees (1974, 1978).

pressure anisotropies cause the relativistic material to stream out in two directions along this axis. A “nozzle” is
set up at radius R, where the flow becomes supersonic (Lorentz factor I', = 1.22). Beyond this region the flow
accelerates, and the width of the beam r broadens rather slowly with radius R. At some radius R, the protons
become nonrelativistic and the flow is inertial. If the jet is “free” at this point (i.e., there is no confining external
pressure), then r oc R, i.e., the flow is in a cone of constant opening angle.

; We now discuss the physical conditions in each of the main three regions of flow (see Blandford and Rees 1974
or details).

1) R < R,. Inside the central “energy machine” we expect a highly turbulent situation with a consequently
disordered magnetic field. As the relativistic plasma proceeds down the channel, however, the field begins to
become stretched out along the direction of flow. The magnetic field strength and relativistic particle density and
internal energy increase due to compression as the nozzle is approached.

2) R, > R > R,. Beyond the “nozzle” the flow is accelerated by the conversion of internal relativistic particle
energy (represented by an individual electron’s Lorentz factor y,) to bulk kinetic energy, so that the bulk Lorentz
factor I oc y, 71 oc r. The channel width r depends rather weakly on the pressure gradient; we thus also expect
r to increase slowly with radius R. For a power law pressure gradient r oc R¢, with e small. Here, following Rey-
nolds and McKee (1979), we adopt € ~ 0.2. The magnetic field is stretched out along the direction of flow, with
a radial dependence B oc r~2 oc R~2¢, (If the jet carries a net current, however, a substantial azimuthal com-
ponent to the field may arise; see, e.g., Benford 1978. We do not consider this situation here.) If the relativistic
electrons have a power law energy distribution

N(y.) = Noy. *[y1(R) < y. < y2(R)], )]

then, since the density n.oc I'"1r=2 oc R3¢, Ny oc r=©*P oc R=€¢*+2 (for B =~ 1).

3) R > R,. Beyond R, the protons are subrelativistic in the rest frame of the flow and the bulk Lorentz
factor “freezes out” at a value ~T', = I'(R,). If the external pressure remains sufficient to confine the jet, then
the channel width broadens somewhat more rapidly with radius, (R > R.) — 1.5¢(R < R,). We assume here
that the jet becomes “free” at R, ; this simplification is demanded by the radio observations, which show a
source width >TI", R, (see § IV).! In this case r oc R, and the Lorentz factors of the electrons (which still have rela-
tivistic internal energies) fall adiabatically as y, oc r=2/3 oc R=2/3, A substantial perpendicular component of the
magnetic field may arise, in which case B oc R~1. The radial dependence of the electron energy spectrum coefficient
is Ny oc R™26+2I3 jn this region.

III. THE SYNCHROTRON SPECTRUM

Except in the extreme central region near the ‘“energy machine” (R < R,), the source is inhomogeneous in
the sense that the magnetic field, electron energies, and electron density all decrease with increasing radius. Similar
synchrotron emitters have been studied previously by Slysh (as reported by Shklovsky 1970), Condon and Dressel
(1973), de Bruyn (1976), and Marscher (1977), who find that such a geometry tends to flatten significantly the
partially opaque radio spectrum. This effect is mainly due to an inverse proportionality of apparent source size
with frequency. As we show below, this same effect can result in a steepening of the transparent optical spectrum
in QSOs where the observer’s line of sight lies almost parallel to the axis of the relativistic jet.

a) Individual Regions

1) R < R,—Since the magnetic field and density do not decrease substantially within the ‘“nozzle” radius,
the spectrum arising from the innermost region should resemble that of a homogeneous synchrotron source:

S,ocy 6" D2 (h, > v 2)
S, oc v°/2 <), 3)

* If the jet becomes free before the internal energies of the protons become nonrelativistic, say at radius R;, the half-width of
the jet will increase rapidly with R from a value r; to y,,r;, where y,, is the mean Lorentz factor of the protons at R;. Beyond this
point (R = R., which is likely to be very close to Ry), the flow is inertial with constant Lorentz factor.
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where v,, is the synchrotron self-absorption turnover frequency. The spectrum cuts off for frequencies greater
than the critical frequency of the highest energy electron,

vy R 2.8 X 106B722 . ‘ (4)

In the presence of a magnetic field, synchrotron losses cause a cutoff to occur in the spectrum above a rest
frequency

v2(Ry) X 10°B73(Ry)Rupe " 2T'4?Bs® ©)

near the nozzle (where no relativistic particle injection is assumed to occur). (The pitch angle distribution is
assumed to re-isotropize in the flow frame on a time scale <I'y"*Ry/c.) As we see below in the specific case of
3C 345, vo(R,) most likely lies in the optical-ultraviolet portion of the electromagnetic spectrum.

2) R, > R > R,.—In this segment of the jet the magnetic field and relativistic electron density and energies
decrease with radius. This has two major effects on the synchrotron emission: a gradient in the maximum electron
energy and thus in the high-frequency cutoff v,, and a radial dependence of the volume emission and absorption
coefficients at any given observer’s frequency. Synchrotron losses yield a radial variation of the maximum electron
Lorentz factor

72(R) ® y2(RW[B(R+)/B(R)FPIBT)/(B+T')I(Rx/R) X o(Ru)(Ru/R)* ~5¢ ©
as long as € < 0.2, while adiabatic expansion losses give
Y2(R) = y2(Re)(Ry/R)* . @)

Note that expansion losses dominate for ¢ > 1 while synchrotron losses determine y, for € < L. The observed
cutoff frequency v, is directly proportional to the Doppler factor of the relativistic flow, 8, which depends on the
observer’s angle of sight § (f = 0 along the axis of the jet):

§=T"Y1—-Bcosf)"*ocI"oc R esr-y
oc'"tac R (62T7Y). ®
The high-frequency cutoff therefore follows the relation
vy & 2.8 x 10°B(R)y,2(R)d oc R=-% (# ST ¢
oc R-@-70 (2 T'Ye
oc R3¢ BT e
oc R™%¢ Gz e

IA

%)
)
)
OB )

and the effective maximum radius R,,(v) decreases with frequency. (Note.—This equation and those that follow
are strictly valid only for disordered fields. We expect them to approximately hold as long as the observed linear
polarization does not exceed 10-20%,.) We can obtain the observed flux density by integrating over radius R.
An exact relation can be obtained for § = 0 and 6 = /2 which we expect to be approximately valid for § < I'"?
and 6 » I'"!, respectively:

vV 1A

v

Rp(V)
Sv oC V—(s-l)l2j NOB(s+ 1)I2r28(3+s)/2dR
.

oc le—e(as—l)l2v—(s—1)l2 oc V¥ (0 5 I‘—l) (10)
with
a=—(—12—-11 —eBs— 1)2]/2 —9) (¢<3d)

= —(1 = 9/(e) (€2 13). (1n
These expressions for o« are valid for vo(I',) < v < »(I'y) and 6 < T'"1 For v, (")) < v < vy(T'}),
o« = —(s — 1)/2. (See Ozernoy and Sazonov 1968 for the relations for the emission and absorption coefficients

used here for a relativistic jet.) The situation is more complex for higher line-of-sight angles 0:
Sv o [R1—5€(8+1)/2]gm(") p—G-D/2 (9 > 1"-1) . (12)

If e > 2(s + 1)~1/5, the observed flux is produced mainly at small radii, i.e., near the nozzle radius R,. We ex-
pect this to be valid for what we consider likely “typical”” values of € and s: € & 0.2 and s > 1.5. Therefore, the
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shape of the spectrum observed at high inclination angles 6 > I'~* reflects the “native” spectrum as emitted in
the rest frame of the source.

However, the situation is completely different for lines of sight nearly parallel to the jet (see eq. [11]). The
nonuniformity of the source causes the observer to measure a much steeper spectrum than that given by the
electron energy spectrum (¢ = —(s — 1)/2). Furthermore, the spectral slope depends mainly on the geometry
of the source through the parameter e. For example, for e = 1, the observed spectral index « is —5/3. A higher
value of e results in a flatter spectrum, but note that in this case « is independent of the slope of the relativistic
electron spectrum s (see eq. [11]).

The variation of the synchrotron self-absorption optical depth +(v) with radius is also important:

T(V) oc ]\]0 BE+2)2]§(s+2)2,— s+ 42
oc RL-36@+9)i2,-G+i2 (§ < ['-1)
oc R-€B+5912,~(+0I2 (3 [-1) (13)

where / is the path length through the source: / ~ Rfor § < I'"*and I ~ r for § » I'"1. For lines of sight along
the jet (6 < I'"1) the turnover frequency v,, (corresponding to = ~ 1) varies as R~ where |5| < 0.1 for e x~ 0.2
and 1.5 < s < 2.5. Therefore, one expects that a frequency at which radiation is optically thin at radius R,
will also lie above the turnover v, at smaller radii. This implies that the turnover frequency of the spectrum as a
whole is simply v,(R,). This may not, however, be the case for viewing angles 6 » I'~. Instead, for
€ > 2(s + 1)7/5 (the flux is dominated by contributions at radii near R, for lower values of ¢), the spectrum is
partially opaque (i.e., 2.5 > « > 0) below the turnover frequency corresponding to the nozzle radius Ry, v,(Ry).
The value of the spectral index can be straightforwardly calculated (see, e.g., de Bruyn 1976):

o= —(s— 12 + [Se(s + 1)/2 — 1]1(s + 4)/[e(8 + 55)] [e > 2(s + 1)7Y/5, v K vp(Ry)] - 14

For € = 0.2 and typical values of s, this partially opaque spectrum is quite flat, « =~ 0.2-0.5. These high 6 jets
are associated with weak radio sources (Scheuer and Readhead 1979), and these sources should therefore have
quite small effective VLBI dimensions (R ~ R,) near the turnover frequency.

3) R > R,.—The physical parameters in this region fall off rather rapidly with radius (see § II). The main
contribution to the optically thin flux density therefore arises from the innermost radii of the region, R ~ R..
The radius where the optical depth is unity, however, varies with frequency such that the partially opaque spectral
index is (independent of the line of sight since I' is constant)

o= —(—1D2+35s—1(s+4)/(Ts+8 (Box R
=—(—1/2+0555—2)(s +dH/5s+7T) (Bx R, (15)
which, for typical values of s, ranges from 0.27 (s = 1.5, Boc R") to 1.0 (s = 2.5, Boc R™2).

b) Overall Spectrum

The radio, optical, and possibly X-ray synchrotron spectrum is qualitatively illustrated in Figure 2. The radio
emission arises from the R ~ R, region for § < I', ~* and from R ~ Ry for larger 6. The optically thin milli-
meter to far-infrared emission from »,,(R,) to vo(R,) has a spectral index « = —(s — 1)/2 and arises mainly from
radii R ~ R, for the 6 < I'"* case. At higher line-of-sight angles all optically thin emission is dominated by
contributions from the innermost radii, R < R, and have spectral indices « = —(s — 1)/2. For the § < I'"?
case, the spectrum steepens to a slope given by equation (11) from vo(R.) to vo(Ry). Beyond vy(Ry) it flattens
again to « = —(s — 1)/2 unless cut off by, say, synchrotron losses (see eq. [5]).

We expect the turbulent region containing the ““energy machine” to produce a certain fraction of the optical
flux (with a relatively flat spectral index « = —(s — 1)/2). However, the theory of energy flow from this region
to the jet has not yet been sufficiently developed to predict the percentage of the total flux contributed by this
innermost region. Nevertheless, we expect the relativistic jet component to dominate this central source only
when 6 is sufficiently small (6 < I'~?) that the relativistic beaming factor (S, oc 8¢*32) enhances the observed
jet emission (see also Blandford and Kénigl 1979). Therefore, contrary to the opinions expressed at the 1978
Pittsburgh BL Lac Conference (e.g., Stein 1978 ; Blandford and Rees 1978 ; Miller and French 1978), according
to this model it is the radio-quiet, relatively quiescent optical sources, and not the BL Lac type variables, which
might display emission that originates close to the ultimate energy source. We speculate that the higher degree
of variability observed in the OVVs may be due to the probable small change in source parameters required to
vary the energy flow in the jet relative to that needed to change the luminosity of the ““energy machine,” which is
thought to remain fairly stable for over 10° years. It is also possible that a more diffuse “halo” component
contributes a significant fraction of the quiescent optical flux.

Note also that it is possible for a steep-spectrum optical source to possess an X-ray component which, although

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System



.386M

.235.

1980ApJ. .

390 MARSCHER Vol. 235

RADIO Relativistic Jet,
65T,

/ Highly Polarized,

Variable

Ty, (R,)

|V"'(R') |

OPTICAL

/“\

log S,

Central "Energy Machine",
Weak Polarization and
Variabilit

Relativistic Jet,

/ exTI,

Highly Polarized,
/ Variable

|
|
/ I

%, (R,) |

log v

F1G. 2.—Schematic example of an electromagnetic spectrum observed from a source containing a relativistic' jet. Note the
difference in the fraction of flux contributed by the jet as the viewing angle 8 changes. Extension of the “energy machine” spectrum
into X-ray energies is speculative.

a natural extension of the optical spectrum, has a flat spectral index similar to that of the transparent radio source.
Such X-ray sources therefore need not arise from Compton scattering of the radio photons, and variations should
be more closely correlated with optical than radio outbursts, with characteristically short (viz., days to months)
time scales.

¢) Polarization

Figure 2 gives the expected linear polarization properties in different regions of the spectrum. The relatively
quiescent optical, radio-quiet, object should be only weakly polarized, since this emission originates in the highly
turbulent central volumes of the source (or in a ““halo”’) where the magnetic field is most likely highly disordered.
The active, steep-spectrum objects should display strong optical polarization with a position angle indicating a
magnetic field stretched out along the jet. (If the jet carries a current, a more complex field geometry might occur;
see Benford 1978.) However, recent observations have shown that compact radio jets are curved (most likely due
to projection effects; Readhead er al. 1978), so that it is difficult to predict the alignment of the field relative to
the observed radio axis. The radio emission should also be polarized, although the possibility of a magnetic field
transverse to the flow for either the jet component (see § II) or a shock wave component (see Blandford and
Konigl 1979) again complicates any prediction of the observed position angle relative to the radio structure.

IV. DISCUSSION

In the previous sections we have been relatively ambitious in showing that the relativistic jet model of QSOs
can explain the qualitative features of the radio to optical spectra of these and similar objects. In this section we
become somewhat more quantitative and then suggest ways in which the model can be observationally tested.

A good source to examine for a quantitative analysis is 3C 345, which has been well observed at both radio and
optical frequencies. VLBI observations (e.g., Cohen et al. 1977) detect apparent superluminal expansion of the
radio source at a speed ~ 7c, which, in the context of relativistic jets requires I', = 7; we adopt I', = 7. The
projected component sizes are ~4 and 7 pc (Shaffer et al. 1977; H, = 55km s~ Mpc~?, g, = 0; we analyze
the 7 pc component), which corresponds to R, ~ 50 pc for a viewing angle § ~ I' . ~*. The optical spectral index
a« = 1.5 (Oke, Neugebauer, and Becklin 1970) indicates € = 0.18 (eq. [11]), so that Ry ~ R, (T',/Ty)~Y¢ ~
3 x 1078 pc, which is of the order of 4 light-days. This is consistent with the reported optical variability on time
scales of ~ 10 days (Kinman 1968).

The magnetic field in the radio jet component is ~2 x 10~2 gauss (from data of Shaffer et al.; see, e.g.,
Marscher et al. 1979 for the relevant equations). The magnetic field at the nozzle radius Ry (B oc R~2¢) is then
~0.1 gauss. We therefore do not expect synchrotron losses (see expression [5]) to affect the results of § III below
~10'® Hz. The synchrotron cutoff may, however, lie at lower optical frequencies in other sources and could
then be responsible for the extremely steep, curved spectra sometimes seen (e.g., Stein 1978).

The detailed nature of flux variations in OVVs can serve as a strict observational test of this model. Since the
size of the emitting region at optical frequencies is a strong function of radius R (see relation [9]), the variations
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should occur first at the higher frequencies with correspondingly shorter characteristic variational time scales.
For example, for e = 0.2, Roc v=%3, R ~ T'%ct (Rees 1967), and I' oc R%2, so that the time scale #,,, oc v~ 08,
(This should only hold for flux changes on very short time scales < Ry/c; see below.) Simultaneous, short-term
(< 1 week) flux monitoring at optical and infrared wavelengths could therefore be used to test the theory.

Since the spectral index at optical frequencies of OVVs should be determined mainly by the structure of the
source, long-term (Z,,, > R,/c) variations should not be accompanied by significant changes in spectral index,
except perhaps in the case of a steepening due to synchrotron losses in a higher magnetic field. This is consistent
with the behavior of OVVs observed to date (Visvanathan 1973; Stein 1978).

Since the relativistic jets should be aligned with any extended, double radio lobes, this model predicts that
the OVV phenomenon should not occur when this classical, well-separated double structure appears (implying
6 > I'~1) (see also Scheuer and Readhead 1979).

If this model is found to survive these observational tests, it would be interesting to try to relate it to the geom-
etry of the emission-line regions in QSOs. An observational relation has been discovered by Miley and Miller
(1979), who find that extended double radio structure (corresponding to large 6) is associated with broader emis-
sion-line widths than is the case for compact radio sources (small 6). Motion of the emission-line clouds directed
mainly perpendicular to the jet could account for this effect.

The author thanks Drs. S. L. O’Dell and A. M. Wolfe for useful discussions. Extragalactic research at UCSD
is supported by NASA and the NSF.
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