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A variety of engineering structures consist of a homogeneous &&master structure'', such as
a plate or shell, to which are attached multiple arrays of substructures, such as ribs or
stringers. The goal of this work is to understand the e!ects of array impedance and spacing
on energy #ow in the master structure. Such an understanding may ultimately lead to
a design process encompassing both the attenuation of vibrational energy and the support of
static loads. Here, the vibrational response of a locally excited master structure is studied
analytically for a class of structures involving an arbitrary number of substructure arrays.
The approach is presented in the context of an elastic plate which is reinforced by multiple
arrays of line attachments and acted upon by a line force. Extension of the analysis to other
geometries and loadings is straightforward. A recursive analytical procedure is presented by
which Floquet wavenumbers of a structure with p arrays are computed from the
wavenumbers of a structure with p!1 of the arrays attached. In this way, the Floquet
wavenumbers of any multiple array structure can be computed by "rst considering the
master structure alone and then computing the e!ect of attaching each array in turn. The
imaginary parts of the Floquet wavenumbers quantify the attenuation of response along the
structure. In addition, the spatial response is obtained analytically as a sum of two Floquet
waves through simpli"cation and transformation of the wavenumber domain solution. By
way of example, a three-array structure is considered to illustrate the recursive computation
of the wavenumbers and to demonstrate the correlation between the imaginary parts of the
wavenumbers and the spatial attenuation of the structural response.

( 2000 Academic Press
1. INTRODUCTION

Structures such as airplane fuselages and ship hulls are typically subject to mechanical
excitations from attached vibrating equipment. These local excitations generate structural
waves that radiate noise as they propagate over the structure. The designer typically reduces
radiated noise by either positioning resilient mounts between the structure and equipment
[1] or by applying various damping treatments to the structure [2]. The former technique
attempts to limit the amount of energy transmitted to the structure while the latter attempts
to damp the energy after transmission to the structure. Neither technique is ideal and the
e!ectiveness of both techniques usually varies widely as the frequency of excitation is
varied.

Another important aspect of structural design involves selecting the locations and designs
of multiple substructures such as ribs, stringers, and bulkheads that attach to a master
structure, such as a plate or shell. A grouping of identical equally spaced sub-structures shall
sAlso department of Electrical and Computer Engineering.
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be referred to here as a sub structure array, characterized by its impedance and attachment
spacing. While the major structural role of these arrays is to prevent collapse, they may also
be designed to control the #ow of vibrational energy in the structure.

In order to exploit this control, one must understand the fundamental physics that
govern the generation and propagation of Floquet waves in such structures. Floquet waves
are waves that naturally propagate in periodic structures and are analogous to the
waves that propagate in homogeneous structures. They are best understood by recalling
Floquet's theorem for periodic structures, which states that the amplitude of free response,
v (x), obeys the identity v (x)"< (x) exp (ik

f
x ), where k

f
is the Floquet wavenumber, and

< (x) is a spatially dependent wave amplitude that is periodic with the same period as the
structure.

The generation of Floquet waves, and in particular the amplitudes of the Floquet waves,
is contained in the forced response. The propagation characteristics of these waves are
contained in their dispersion relations. The contributions of this paper are to provide, for
structures with an arbitrary number of arrays, (1) closed-form expressions for the forced
response in terms of Floquet waves and (2) closed-form dispersion relations for the Floquet
wavenumbers. Since these results are analytic, they give insight into the e!ects of array
impedance and spacing that could only otherwise be gained through exhaustive numerical
studies.

The present work is motivated by the fact that regularly spaced attachments dramatically
a!ect the attenuation of waves in elastic structures. This was "rst demonstrated by Miles
[3], whose work followed Brillouin's observations [4] of &&stopping'' and &&passing'' bands
experienced by waves in other periodic structures. Miles' analysis of wave propagation in
a beam pinned at equally spaced locations involved the solution of a set of di!erence
equations derived by enforcing the boundary conditions at the pinned locations. The
resulting equations for the phase and group speeds indicated alternating stop and pass
bands. His analysis was extended by Lin [5, 6] to include "nite rotational impedances at the
pinned locations and by Smith [7] to estimate the coupling of the beam vibrations to an
ambient acoustic medium.

Heckl's analysis [8] of plates supported by regularly spaced beams used Ungar's
analysis [9] of the re#ection and transmission of a #exural wave from a single beam.
By accounting for the multiple re#ections and transmissions created by regularly
spaced beams, equations were derived for the attenuation of #exural waves that also
exhibited stop and pass band behavior. Thereafter, analyses of periodic structures have
mostly employed two basic analysis methods, both of which assume time-harmonic
motions of the structure.

The "rst method, which shall be referred to here as the eigenvalue method, solves an
eigenvalue problem for the attenuation constant based on the analysis of one cell of the
periodic structure. The eigenvalue problem is derived by applying Floquet's theorem to the
responses at the ends of the cell. Applications of Floquet's theorem to the case of a beam
with one array of attachments were described by Ungar [10] and Bobrovnitskii and Maslov
[11]. Mead [12}15] extended the approach to any linear structure and developed insights
into the locations of the stop and pass bands as well as the number of Floquet waves that
propagate in a structure. The development of this approach by Mead and others at the
University of Southampton is summarized in reference [16].

The second method, which shall be referred to here as the wavenumber method, proceeds
by taking the spatial Fourier transform of the di!erential equations of motion of the
structure. Once in the wavenumber domain, the structural response is obtained by
employing Poisson's summation formula. Each pole of the wavenumber response is known
as a Floquet wavenumber and is related to the attenuation constant by a factor of J!1.
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Upon returning to the spatial domain, the response is found to consist of a linear
combination of waves with spatially periodic coe$cients. For example, the velocity
response of a structure is

v (x, t)"R G
N
+
n/1

<
n
(x) exp [!i (ut#k

n
x)]H. (1)

The <
n
(x) are periodic with the same spatial period as the structure. Early applications of

the method are presented by Romanov [17], Evseev [18], and Rumerman [19].
Both methods have been applied to the analysis of structures with two arrays of

attachments. The eigenvalue method was employed by Gupta [20]. His analysis revealed
the appearance of `minora stop and pass bands when a second array was added to the
structure. His approach was speci"c to the two-array problem, however, and its extension
to a structure with more than two arrays is not obvious. The wavenumber analysis of a plate
with two arrays of line attachments was "rst presented by Mace [21] and was later applied
by Burroughs [22] to a cylindrical shell with two arrays of ring attachments. Recently, Cray
[23] and Nuttall [24], presented procedures that render explicit expressions for the
wavenumber response of a plate with multiple arrays of attachments, each one being
arbitrarily shifted with respect to the others. In reference [25], Cray discusses a string
supported by o!set arrays of attachments and provides explicit solution in the wavenumber
domain for the case of two o!set arrays. These works have illustrated the complex ways in
which sets of arrays interact with each other and the master structure.

This work has also indicated that two arrays can interact with a master structure in ways
that dramatically a!ect the #ow of vibrational energy. To better understand the interactions
in two-array structures and to develop an understanding of structures with three or more
arrays, wavenumber analysis is used here to construct a hierarchical description of the
e!ects of arrays on the spatial attenuation of response in the master structure. Fluid loading
is not included in the analysis as our interest lies only in the interactions of the arrays with
the master structure and in how these interactions a!ect the #ow of vibrational energy.
The results are expected to be valid for #uid-loaded structures when the tractions applied
by the ambient #uid medium are much smaller than the dominant vibration-induced
stresses in the master structure. For example, this is the case for moderately thick steel
structures in air.

The following section de"nes the class of structures that are considered in the present
paper. In sections 3 and 4, we derive the wavenumber domain solutions for the forced
response. The solution for the spatial response is then described in section 5. In section 6, we
consider an example consisting of a plate with three arrays and demonstrate that the
Floquet wave dispersions agree with dispersions predicted by the eigenvalue method.
Finally, section 7 presents conclusions and demonstrates that, through modest additional
e!ort, the approach can be generalized to other engineering structures.

2. PROBLEM STATEMENT

Consider a thin elastic plate with P arrays, an example of which is shown in Figure 1. The
plate is described by its Young's modulus E, thickness h, mass per unit area m, and the
Poisson ratio l. The midplane of the plate coincides with the xy plane. A harmonic
dependence in time and the y co-ordinate is assumed throughout this paper, so that the
total force F applied to the plate and its displacement= are represented as

F (x, y, t)"RM f (x) exp [i (k
y
y!ut)]N, = (x, y, t)"R Mw (x) exp [i (k

y
y!ut)]N. (2, 3)



Figure 1. Example structure, consisting of a thin elastic plate with three arrays of line attachments. This
particular arrangement is analyzed in section 6. The circles represent line impedances that extend along the
y co-ordinate (into page).
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Lower-case variables, such as f and w, will generally be used to represent the x-dependent
complex amplitude of the corresponding upper-case variables. Henceforth, all dependent
variables and attachment impedances will be functions of k

y
and u. This dependence is

omitted for brevity.
The equation of motion of the plate with no attachments is

DD2=!m
L2=
Lt2

"F, D2"
L4
Lx4

#2
L4

Lx2Ly2
#

L4

Ly4
(4, 5)

and D"Eh3/[12(1!l2)]. Given the assumptions in equations (2) and (3), this equation
simpli"es to

DAk4yv!2k2
y

L2v
Lx2

#

L4v

Lx4B!mu2v"!iuf, (6)

where the complex amplitude of velocity is given by v(x)"!iuw (x). Hysteretic damping is
included in the frequency domain by allowing the Young's modulus to be complex-valued,
so that E"E

0
(1!ig) where g is the material loss factor.

Each attachment of each array is assumed to exert a line force on the plate that is linearly
proportional to its velocity, the constant of proportionality being the mechanical line
impedance Z

p
for an attachment in the pth array. An attachment does not exert a moment

on the plate. Ordering the arrays such that d
p
'd

p~1
, we further require that d

p
"n

p
d
p~1

,
where n

p
is an integer. It is also assumed that x locations exists where an attachment from

each array interacts with the structure and these locations will be referred to as points of
coincidence. The origin x"0 is positioned at a point of coincidence. Each array is fully
characterized by its spacing d

p
and its line impedance Z

p
.

The total force applied to the plate is a sum of a unit line force applied at x"0 and the
force applied by each attachment of each array,

f (x)"d (x)!
p
+

p/1

f
p
(x). (7)

Each of the f
p

terms represents the force applied by the plate to the pth array, which
accounts for the minus sign preceding the summation. Each such force is expressed as

f
p
(x)"Z(p) (x) v (x) where Z(p)(x)"Z

p

=
+

n/~=

d (x!nd
p
). (8)
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The spatial impedance Z(p) represents the ratio of forces applied by the plate to the velocity
at the attachment points.

3. WAVENUMBER DOMAIN FORMULATION

Closed-form expressions for the forced response and Floquet wave dispersion require the
solution of equation (4). This shall be accomplished in the wavenumber domain, which is
de"ned by the following Fourier transform pair:

g8 (k)"P
=

~=

g (x) e~*kxdx, g (x)"
1

2n P
=

~=

g8 (k) e*kx dk, (9, 10)

where the symbol && 8 '' over any variable designates the wavenumber transform of that
variable throughout this paper. Taking the Fourier transform of equation (4) yields an
algebraic relation between the wavenumber velocity v8 (k) and distributed loading fI (k) in
terms of the plate admittance > (k), given by

v8 (k)">I (k) fI (k), >I (k)"
1

!imu C
k4
f

k4
f
!(k2#k2

y
)2D. (11, 12)

The wavenumber of #exural waves propagating in the plate without attachments is

k
f
"1@4Jmu2/D. This wavenumber is complex-valued for a damped plate and real-valued

for an undamped plate.
Assuming a unit line force that is independent of k

y
, the total force transforms as

fI (k)"1!
p
+
p/1

fI (p)(k), fI (p) (k)"ZI (p)(k) * v8 (k); (13, 14)

the symbol && * '' designates k-convolution. The Fourier transform of the pth array's
impedance is

ZI (p) (k)"Z
p

=
+

n/~=

exp (!iknd
p
). (15)

The convolution indicated in equation (14) may be simpli"ed by Poisson's summation
formula. When the general form of Possion's equation, given by (see reference [26, p. 47])

=
+

n/~=

g (nd)"
1

d

=
+

m/~=

g8 (mk
d
) (16)

is specialized for the choice g (x)"exp (!ikx), we get the identity

=
+

n/~=

exp(!iknd)"k
d

=
+

n/~=

d (k!nk
d
) where k

d
"2n/d . (17)

The identity in equation (17) allows the impedance in equation (15) to be written as

ZI (p)(k)"k
d,p

Z
p

=
+ d (k!nk

p
) where k

d,p
"2n/d

p
. (18)
n/~=
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Carrying out the convolution indicated in equation (14) gives

fI (p)(k)"
Z

p
d
p

=
+
~=

vJ (k!nk
d,p

). (19)

The wavenumber transform of the total force acting on the plate is then

fI (k)"1!
p
+
p/1

Z
p

d
p

=
+

n/~=

vJ (k!nk
d,p

). (20)

The wavenumber velocity v8 (k) now follows from equation (11):

v8 (k)">I (k)!>I (k)Z
p

p
+
p/1

v8 R,p (k) (21)

where

v8 R,p(k)"
1

d
p

=
+

n/~=

v8 (k!nk
d,p

). (22)

The subscript R, p on a quantity shall be used to identify a transformed variable, such as
v8 R,p (k), that is summed over multiples of the pth array wavenumber k

d,p
and normalized by

d
p
. Equation (21) represents the coupling of velocity at di!erent wavenumbers due to the

di!erent spatial scales of the arrays. The next section presents a method of uncoupling this
equation using a generalization of a procedure presented by Mace [21].

4. RESPONSE IN THE WAVENUMBER DOMAIN

To solve equation (21) for the v8 (k), the spatial scales introduced by the arrays will be
successively eliminated. The key concept that allows this elimination is that each v8 R,p (k) is
periodic in wavenumber with period k

p,d
. The procedure is to "nd v8 R,1 (k) in terms of the

other v8 R,p (k) and v (k) by using the fact that any d
p

is an integer multiple of d
1
. This allows

equation (21) to be written in terms of v8 R,p (k), where p*2, and v (k). Next, the p"2 array is
similarly treated. This process, which must begin at p"1 and proceed consecutively to
p"P, continues until all of the summed velocities are removed from the equation, at which
point only v8 (k) remains. The process will be illustrated here for the p"1 and p"2 arrays
and then a general expression for v8 (k) accounting for all P arrays will be presented.

The analysis is begun by replacing the wavenumber k in equation (21) by the shifted
wavenumber k!qk

d,1
, where q is a "xed integer, so as to obtain

v8 (k!qk
d,1

)">I (k!qk
d,1

)!>I (k!qk
d,1

)
p
+
p/1

Z
p

d
p

v8 R,p (k!qk
d,1

), (23)

Since k
d,1

is an integer multiple of the wavenumbers k
d,p

, the summed velocities v8 R,p(k) are
periodic with a period of k

d,p
. This observation leads to

v8 R,p (k!qk
d,1

)"
1

d
p

=
+

n/~=

vJ (k!nk
d,p

!qk
d,1

)"
1

d
p

=
+

n/~=

vJ (k!(n#qN
p
)k

d,p
), (24)

where N
p
"d

p
/d

1
is an integer. This equation involves a shift of the summation index n by

the integer amount qN
p

and, since the summation is in"nite, the following identity holds:

v8 R,p (k!qk
d,1

)"v8 R,p (k). (25)
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Summing equation (23) over q from !R to R, invoking equation (25), and dividing by
d
1

yields

v8 R,1 (k)">I R,1 (k)!>I R,1 (k)
p
+
p/1

Z
p
v8 R,p (k), (26)

where the notation

>I R,1
(k)"

1

d
1

=
+

n/~=

>I (k!nk
d,1

) (27)

has been introduced for convenience. Rearranging equation (26) allows v8 R,1 to be expressed
in terms of the other velocity sums:

v8 R,1 (k)"
>I R,1

(k)

1#Z
1
>I R,1

(k)
!

>I R,1
(k)

1#Z
1
>I R,1

(k)

p
+
p/2

Z
p
v8 R,p (k). (28)

Substituting equation (28) into equation (21), one obtains v (k) in terms of the summed
velocities for the p'1 arrays

v8 (k)">I
2
(k)!>I

2
(k)

p
+

p/2

Z
p
v8 R,p (k) (29)

with the admittance function >I
2
(k) de"ned as

>I
2
(k)"

>I (k)

1#Z
1
>I R,1 (k)

. (30)

Physically, >I
2
(k) is the wavenumber impedance of the plate with the "rst array (p"1)

attached.
Next, the p"2 array is similarly treated by solving for v8 R,2 just as we did for v8 R,1 above.

Replacing the wavenumber k in equation (29) by k!qk
2
, where q is a "xed integer, gives

v8 (k!qk
d,2

)">I
2
(k!qk

d,2
)!>I

2
(k!qk

d,2
)

p
+
p/2

Z
p
v8 &,p (k!qk

d,2
). (31)

Since k
d,2

is an integer multiple of k
d,p

, the following identity holds (see equation (25)):

v8 R,p (k!qk
d,2

)"v8 R,p (k) where p"2,2 , P. (32)

Summing equation (31) over q over from !R to R, invoking equation (32), and dividing
both sides by d

2
yields

v8 R,2 (k)">I R,2
(k)!>I R,2

(k)
p
+

p/2

Z
p
v8 R,p (k) (33)

with the second summed admittance de"ned as

>I R,2(k)"
1

d
2

=
+

n/~=

>I
2
(k!nk

d,2
) . (34)
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Solving for the summed velocity v8 R,2 gives

v8 R,2 (k)"
>I R,2 (k)

1#Z
2
>I R,2 (k)

!

>I R,2
(k)

1#Z
2
>I R,2

(k)

p
+
p/3

Z
p
v8 R,p (k). (35)

Substituting equation (35) into equation (29) yields an expression for v8 (k) that has the same
form as equation (29) but with one more summed velocity, v8 R,2 , eliminated to give

v8 (k)">I
3
(k)!>I

3
(k)

p
+

p/3

Z
p
v8 R,p (k). (36)

The admittance wavenumber function >I
3
(k) is

>I
3
(k)"

>I
2
(k)

1#Z
2
>I R,2

(k)
"

>I (k)

(1#Z
1
>I R,1

(k)) (1#Z
2
>I R,2(k))

, (37)

where >I R,2
"(1/d

2
) +=

n/~=
>I

2
(k!nk

d,2
).

After performing similar steps until the last unknown quantity v8 R,P is eliminated one
obtains the following expression for wavenumber velocity

v8 (k)"
>I (k)

QI (k)
, (38)

where QI (k) will be referred to as the wavenumber dispersion function. It is periodic in
wavenumber with period k

d,1
and is given explicitly by

QI (k)"[1#Z
1
>I R,1

(k)] [1#Z
2
>I R,2 (k)]2[1#Z

P
>I R,P

(k)] . (39)

The summed admittances >I R,p in equation (39) are de"ned by

>I R,p
(k)"

1

d
p

=
+

n/~=

>I
p
(k!nk

p
). (40)

They are also periodic in wavenumber with period k
d,p

. In equation (40), >I
p

is the
wavenumber admittance of the plate with the "rst (p!1) arrays attached. The pth
admittance satis"es the recursion relation

>I
p
(k)"G

>I (k) if p"1,

>I
p~1

(k)

1#Z
p~1
>I R,p~1

(k)
if p"2,2 , P.

(41)

Note that the wavenumber velocity of the plate with no attachments is v8 (k)">I (k), as one
would expect from equation (12) with fI"1. The dispersion function QI (k) takes into account
the interaction of the plate with all P arrays, and the dispersion relation is simply

QI (k)"0. (42)

Note that this result is independent of the inclusion of forcing in equation (7). The above
analysis could also be used to show that equation (42) must be satis"ed by the unforced
system in order to yield a non-trivial solution for the velocity.

One may gain con"dence in equations (38) and (39) by considering a structure with
P arrays all having the same spacing, d, but each array having an impedance Z

p
. For this

case, the structure would be behave exactly like a structure with a single array of
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attachments with spacing d and with an impedance equal to the sum of the impedances from
the P-array structure, +P

p/1
Z

p
. To show this, one computes the velocity of the P-array

structure by evaluating equation (38) and (39) for each array. The velocity of the structure
with the "rst array is

v8
1
(k)"

>I (k)

1#Z
1
>I R (k)

, (43)

where the summed admittance is

>I R (k)"
1

d

=
+

n/~=

>I (k!nk
d
) (44)

and k
d
"2n/d. Addition of the second array results in a velocity of

v8
2
(k)"

>I (k)

1#(Z
1
#Z

2
)>I R (k)

. (45)

This process continues until the velocity of the structure with all P arrays is obtained:

v8
P
(k)"

>I (k)

1#+P
p/1

Z
p
>I R (k)

. (46)

Therefore, consecutive application of equations (38) and (39) gives a result which matches
the physical expectation that impedances attached to the same position of the structure may
be replaced by the sum of the individual impedances.

5. RESPONSE IN THE SPATIAL DOMAIN

In order to return the spatial domain, it is necessary to take the inverse Fourier
transform, de"ned in equation (10), of the velocity v8 (k) given in equation (38). To do this by
contour integration requires determination of the poles of v8 (k), given by the zeros of QI (k).
This can be e$ciently performed by "rst simplifying the function QI after deriving
closed-form expressions for each >I R,p

. The subsection below presents this derivation
followed by contour integration of the simpli"ed QI .

5.1. CLOSED-FORM EXPRESSIONS FOR THE SUMMED PLATE ADMITTANCES

The "rst step of our analysis, namely the "nding of >I R,1 , follows Mace's analysis [27] of
a one-array structure. A new approach is presented here for the "nding of >I R,p where p'2.
This approach, which is crucial to the development of closed-form solutions to the
multiple-array problem, "nds the >I R,p

sequentially, beginning with p"1 and proceeding
with higher values of p. In the following treatment,>I R,1 and>I R,2

will be explicitly simpli"ed
and the results will be generalized to >I R,p

for any p.
First, the >I &,1 given in equation (27) is rewritten as

>I R,1 (k)"
1

d
1

=
+

m/~=

gJ
1
(mk

d,1
) where g8

1
(u)">I (k#u) (47)
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and >I (k) is given in equation (12). Poisson's summation formula, given in equation (16), is
evaluated with d"d

1
and g"g

1
allowing equation (47) to be written as

>I R,1
(k)"

=
+

n/~=

g
1
(nd

1
). (48)

In order to evaluate equation (48), the spatial function g
1
(x) must be found. Taking the

inverse transform of g8
1
(u) gives

g
1
(x)"

1

2n P
=

~=

e*xu>I (k#u) du. (49)

Introducing the new variable m"k#u into equation (49), we obtain

g
1
(x)"

e~*xk

2n P
=

~=

e*xm>I (m) dm"e~*xkv(0)(x), (50)

where

v(0) (x)"
1

2n P
=

~=

e*xm>I (m) dm (51)

is the spatial velocity response of the plate without attachments caused by the applied line
force at the origin.

This integral is to be evaluated by contour integration in the complex m-plane, which
requires determination of the residues of the integrand. The poles of the integrand satisfy the
dispersion relation of the plate without attachments:

(k2#k2
y
)2!k4

f
"0. (52)

This equation has four simple roots, k"j
i
, where i"1,2 , 4, that represent the four

simple poles of the integrand in equation (51) given by

j
1,2,3,4

"$J$k2
f
!k2

y
. (53)

For a damped plate it can be observed that two of the roots lie in the upper half of the
complex wavenumber plane, while the other two lie in the lower half-plane, antisymmetric
with respect to the "rst two, as shown in Figure 2. To "nd v(0)(x), the roots j

1
and j

2
are

required to lie in the upper half plane and the integration contour given in Figure 2 is used.
Applying Jordan's lemma and invoking symmetry considerations in the x-co-ordinate,
v(0)(x) is found to be a sum of two waves,

v(0) (x)"c
1
eij

1
DxD
#c

2
eij

2
Dx D, (54)

with the coe$cients c
1

and c
2

given by

c
1
"

k2
f

4muj
1

, c
2
"!

k2
f

4muj
2

. (55)

Substituting equation (50) into equation (48) gives

>I &,1 (k)"
=
+

n/~=

v(0) (nd
1
) e!ind

1
k . (56)



Figure 2. Pictorial representation of the roots of the dispersion relation for a plate with no arrays. The
integration contour is also shown.
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Evaluating equation (54) at x"nd
1

and substituting into equation (56) gives

>I R,1 (k)"c
1

=
+

n/~=

e!ind
1
keij

1
Dnd

1
D
#c

2

=
+

n/~=

e!ind
1
keij

2
Dnd

1
D . (57)

The in"nite sums given in equation (57) are evaluated with the aid of the geometric series
formula

=
+
n/0

eand
1"

1

1!ead
1
, (58)

where a is a parameter with RMaN(0. The "rst sum in equation (57) reduces to

=
+

n/~=

e!ind
1
keij

1
Dnd

1
D
"

=
+
n/0

eind
1
(j

1
!k)

#

=
+
n/1

eind
1
(j

1
#k) . (59)

Identifying a"j
1
$k in equation (57) further simpli"es this result to

=
+

n/~=

e!ind
1
keij

1
Dnd

1
D
"

1

1!ei (j
1
!k)d

1
#

1

1!ei (j
1
#k)d

1
!1. (60)

Using the identities (e~*jd1#e*jd1)/2"cos (jd
1
) and (e!ijd

1!eijd
1)/2"!i sin (jd

1
) with

j"j
1,2

and rearranging, gives

=
+

n/~=

e!ind
1
keij

q
Dnd

1
D
"

!i sin j
q
d
1

cos j
q
d
1
!cos kd

1

where q"1, 2. (61)

Substituting equation (61) into equation (57) yields

>I R,1 (k)"A
1

sin (j
1
d
1
)

cos (j
1
d
1
)!cos (kd

1
)
#B

1

sin (j
2
d
1
)

cos (j
2
d
1
)!cos (kd

1
)
. (62)

This expression could also be obtained by applying formula 952 in reference [28].
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where the constants A
1

and B
1

are given by

A
1
"

k2
f

4imuj
1

and B
1
"!

k2
f

4imuj
2

. (63)

Next, the application of this procedure to >R,2
is summarized. Recall that

>I R,2 (k)"
1

d
2

=
+

n/~=

>I
2
(k#nk

d,2
), (64)

where

>I
2
(k)"

>I (k)

1#Z
1
>I R,1

(k)
and k

d,2
"

2n
d
2

. (65)

As before, >I R,2
is rewritten as

>I R,2
(k)"

1

d
2

=
+

m/~=

gJ
2
(mk

d,2
) where g8

2
(u)">I

2
(k#u). (66)

Following the steps in equations (47)}(50) leads to

g
2
(x)"

e~*xk

2n P
=

~=

e*xm>I (m)

1#Z
1
>I R,1 (m)

dm"e~*xkv(1) (x), (67)

where

v(1) (x)"
1

2n P
=

~=

e*xm>I (m)

1#Z
1
>I R,1 (m)

dm (68)

is the velocity due to a unit line force acting on the plate with only the p"1 array attached.
To obtain an explicit expression for v(1) by contour integration, we must "rst determine

the zeros of the denominator in the integrand of equation (68). These zeros are given by the
roots of

1#Z
1
>I R,1 (k)"0 (69)

which is the dispersion relation for the plate with only the "rst array attached. This relation
has been presented by others (see, for example, reference [10]). Using the closed-form
expression for >I R,1 in equation (62), the zeros of equation (69) are found to be the roots of
the following quadratic equation in cos (kd

1
):

cos2(kd
1
)#a

1
cos (kd

1
)#b

1
"0. (70)

The coe$cients are

a
1
"!cos (j

1
d
1
)!cos (j

2
d
1
)!Z

1

k2
f

4imuj
1

sin (j
1
d
1
)#Z

1

k2
f

4imuj
2

sin (j
2
d
1
), (71)

b
1
"cos (j

1
d
1
) cos (j

2
d
1
)#Z

1

k2
f

4imuj
1

sin (j
1
d
1
) cos (j

2
d
1
)

!Z
1

k2
f

4imuj
2

sin(j
2
d
1
) cos (j

1
d
1
). (72)
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Equations (70)}(72) agree with the dispersion relation presented by Ungar [9] for a beam
with one array of attached impedances.

Let m
1

and m
2

be the two roots of equation (70). Then the roots that satisfy the dispersion
relation (69) are generated by the equations

cos (kd
1
)"m

1,2
, where m

1,2
"(!a

1
$Ja2

1
!4b

1
)/2. (73, 74)

These roots are repetitive since cos(kd
1
)"cos (kd

1
#2nn), and they represent simple poles

in the integrand of equation (68). There are exactly two roots, k(1)
1

and k(1)
2

, in the strip
de"ned by

k
d,1

'RMkN*0, where JM(k)N*0. (75)

In the present work, this region of the complex wavenumber plane is de"ned as the
fundamental zone for the plate with the "rst array. Accordingly,

cos (k(1)
1,2

d
1
)"m

1,2
where

2n
d
1

'RMk(1)
1,2

N*0, JMk(1)
1,2

N*0. (76)

All roots of the dispersion relation equation (69) are given by those in equation (76) subject
to the nk

d,1
shift mentioned earlier.

To calculate v(1) in equation (68), the residue theorem is used with the integration contour
given in Figure 3. After applying Jordan's lemma and invoking symmetry in the
x-co-ordinate, the spatial velocity v(1)(x) is cast in the form

v(1) (x)"2ni
=
+

n/~=

1

2n
>I (k(1)

1
#nk

d,1
)

Z
1
>I @R,1 (k(1)

1
#nk

d,1
)
exp (k(1)

1
#nk

d,1
) DxD)#similar term with k(1)

2
,

(77)
Figure 3. Pictorial representation of the roots of the dispersion relation for a plate with one array of attachments.
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where the notation

>I @&,1 (k)"
d>I &,1 (k)

dk
(78)

has been introduced for convenience.
Upon recognizing that (see equation (62))

>I @R,1 (k#nk
d,1

)">I @R,1 (k), (79)

equation (77) is written as

v(1) (x)"=(1)
1

(x) eik(1)
1

Dx D
#=(1)

2
(x) eik(1)

2
Dx D , (80)

where=(1)
1,2

(x) are periodic functions with period d
1

and are given by

=(1)
q

(x)"
i

Z
1
>I @R,1 (k(1)

q
)

=
+

n/~=

>I (k(1)
q
#nk

d,1
) eink

1
Dx D where q"1, 2. (81)

The superscript (1) in equation (81) means that the corresponding quantities are related to
the problem where only the "rst array (p"1) is attached to the plate.

When x"0, one has

=(1)
q

(0)"
id

1
>I R,1 (k(1)

q
)

Z
1
>I @R,1 (k(1)

q
)

where q"1, 2. (82)

Using the Poisson summation formula in equation (16) and g8
2
(u)">I

2
(k#u) gives

>I R,2 (k)"
=
+

n/~=

v(1)(nd
2
) e~ind

2
k. (83)

Combining equation (80) and (83) and observing that

=(1)
q

(nd
2
)"=(1)

q
(nn

2
d
1
)"=(1)

q
(0), q"1, 2, where n

2
"

d
2

d
1

, (84)

leads to

>I R,2 (k)"=(1)
1

(0)
=
+

n/~=

e!ind
2
keik(1)

1
Dnd

2
D
#=(1)

2
(0)

=
+

n/~=

e!ind
2
keik(1)

2
Dnd

2
D (85)

with the constants=(1)
1,2

(0) given in equation (82). This is the desired expression for>I R,2 (k).
To obtain a closed-form expression for >I R,2

, the in"nite sum in equation (85) must be
evaluated. Following the procedure of equations (58)}(61) yields

>I R,2 (k)"A
2

sin(k(1)
1

d
2
)

cos (k(1)
1

d
2
)!cos (kd

2
)
#B

2

sin (k(1)
2

d
2
)

cos (k(1)
2

d
2
)!cos (kd

2
)
, (86)

where

A
2
"

d
1
>I R,1

(k(1)
1

)

Z
1
>I @R,1 (k(1)

1
)
, B

2
"

d
1
>I R,1 (k(1)

2
)

Z
1
>I @R,1 (k(1)

2
)
. (87)
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Equations (86) and (87), when compared with equations (62) and (63), have a structure that
allows generalization to any >R,p

, for p"1, 2,2 ,P, by induction. Speci"cally, the results
for the pth array are related to those of the (p!1)th array. Referring to equations (62) and
(86), the summed admittance is written as

>I R,p
(k)"A

p

sin (k(p~1)
1

d
p
)

cos (k(p~1)
1

d
p
)!cos (kd

p
)
#B

p

sin (k(p~1)
2

d
p
)

cos (k(p~1)
2

d
p
)!cos (kd

p
)
,

where p"2,2 ,P (88)

with the constants A
p

and B
p

found by induction of equation (87),

A
p
"G

k2
f

4imuj
1

if p"1,

d
p~1
>I R,p~1

(k(p~1)
1

)

Z
p~1
>I @R,p~1

(k(p~1)
1

)
if p"2,2 ,P,

(89)

B
p
"G

!

k2
f

4imuj
2

if p"1,

d
p~1
>I R,p~1

(k(p~1)
2

)

Z
p~1
>I @R,p~1

(k(p~1)
2

)
if p"2,2, P.

(90)

The kp~1
1,2

are the two Floquet wavenumbers of the plate with the "rst p!1 arrays attached.
They lie in the fundamental zone RMkN'(2n/d

p~1
) and JMkN*0 and they are simple poles

of the dispersion equation, where

QI (k)"[1#Z
1
>I R,1 (k)] [1#Z

2
>I R,2 (k)]2[1#Z

p
>I R,p

(k)]. (91)

To justify the above, we refer to equation (69)}(75). The generalization of equation (69) is
given by

1#Z
p
>I R,p (k)"0. (92)

5.2. GENERAL RECURSIVE DISPERSIONS RELATIONS

The zeros of equation (92) are the roots of the following quadratic equation with respect
to cos (kd

p
) (compare with equations (69)}(75)):

cos2 (kd
p
)#a

p
cos (kd

p
)#b

p
"0. (93)

The values of k that satisfy this equation are the Floquet wavenumbers of the waves that
propagate in the structure with p arrays. The coe$cients a

p
and b

p
, which are obtained

using the closed-form expression for >I R,p from the previous step, are given by

a
p
"!cos (k(p~1)

1
d
p
)!cos (k(p~1)

2
d
p
)!Z

p
A

p
sin (k(p~1)

1
d
p
)!Z

p
B

p
sin (k(p~1)

2
d
p
) , (94)

b
p
"cos (k(p~1)

1
d
p
) cos (k(p~1)

2
d
p
)#Z

p
A

p
sin (k(p~1)

1
d
p
) cos (k(p~1)

2
d
p
)

#Z
p
B
p
sin (k(p~1)

2
d
p
) cos (k(p~1)

1
d
p
). (95)
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Then from equations (88) and (93),

1#Z
p
>I R,p

(k)"
[cos (kd

p
)!cos (k(p)

1
d
p
)] [cos (kd

p
)!cos (k(p)

2
d
p
)]

[cos(kd
p
)!cos (k(p~1)

1
d
p
)] [cos (kd

p
)!cos (k(p~1)

2
d
p
)]

. (96)

Using equation (96) recursively for p"1, 2,2P, QI will acquire the form

QI (k)"
[cos (kd

p
)!cos (k(p)

1
d
p
)] [cos (kd

p
)!cos (k(p)

2
d
p
)]

[cos (kd
1
)!cos(j

1
d
1
)] [cos (kd

1
)!cos (j

2
d
1
)]

, (97)

which is useful for inversion to the spatial domain.

5.3. INVERSION OF THE RESPONSE TO THE SPATIAL DOMAIN

Using the closed-form expressions in equation (97) with p"P, the dispersion function
QI (k) is

QI (k)"
U (k)

W (k)
, (98)

where U (k) and W (k) are

U (k)"[cos (kd
P
)!cos (k(P)

1
d
P
)] [cos (kd

P
)!cos (k(P)

2
d
P
)], (99)

W (k)"[cos (kd
1
)!cos (j

1
d
1
] [cos (kd

1
)!cos (j

2
d
1
)]. (100)

Here, k(P)
1,2

are the Floquet wavenumbers of the plate with all P arrays attached and they are
computed using equation (93) with p"P. Since the quadratic equation (93) has recursive
coe$cients, then in order to obtain the Floquet wavenumbers of the P-array problem, we
have to compute "rst the wavenumbers k(1)

1,2
, then k(2)

1,2
and so on until k(P)

1,2
. In this way, we

adjust the wavenumbers as each array is added to the structure.
To evaluate the spatial velocity v (x) by Fourier inversion (see equation (10)), the residue

theorem is applied to the wavenumber velocity of the P-array problem whose velocity in the
wavenumber domain is

v8 (k)"
>I (k)

QI (k)
. (101)

The deformed integration contour is shown in Figure 4.
Using Jordan's lemma, recalling that all poles are simple, and taking into account the

physical symmetry in the x-co-ordinate gives

v (x)"
2
+
r/1

=
+

n/~=

i
W (k(P)

r
#nk

d,P
)>I (k(P)

r
#nk

d,P
)

U@ (k(P)
r
#nk

d,P
)

exp[(k(P)
r
#nk

d,P
) DxD], (102)

where '@ (k),d'/dk. Since

'@Ak#
2nn

d
P
B"'@ (k), (103)

the spatial velocity of the above multiple array problem can be cast in the form

v (x)"=
1
(x) eik(p)

1
Dx D
#=

2
(x) eik(p)

2
Dx D (104)



Figure 4. Pictorial representation of the roots of the dispersion relation for a plate with P arrays of attachments.
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with the newly de"ned quantities

=
q
(x)"

i

U@ (k(P)
q

)

=
+

n/~=

W (k(P)
q
#nk

d,P
)>I (k(P)

q
#nk

d,P
) eink

d,p
DxD where q"1, 2. (105)

We observe that=
q
(x) is periodic with the largest array spacing d

P
. Thus, each of the two

terms in equation (104) satis"es the Floquet theorem cited in the introduction. For
comparison to the eigenvalue analysis method, note that the propagation constants are
related to the Floquet wavenumbers by

k
q
"ik(P)

q
d
P

where q"1, 2. (106)

Thus, RM(k
q
)N measures attenuation in the x direction along the plate.

A closed-form expression for the spatial velocity at the cell boundaries, de"ned as x"nd
P

where n"0,$1,$2,2, follows from equation (104),

v (nd
P
)"=

1
(0) eik(p)

1
DnDdp

#=
2
(0)eik(p)

2
Dn Ddp. (107)

The expressions for the constant=
1,2

(0) are obtained following the procedure in equations
(77)}(82), which yields

=
q
(0)"

id
P
>I R,P

(k(P)
q

)

Z
P
>I @R,P (k(P)

q
)
, where q"1, 2 (108)

and >I @R,P (k)"d>I R,P (k)/dk.
The observation that the spatial velocity consists of two wave terms with two di!erent

propagation constants agrees with Mead's [14] observation that there are two propagation
constants in piecewise periodic structures on #exible supports. Also, it can be shown that
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one of the propagation constants is purely negative real with magnitude increasing with
frequency. Thus, one of the velocity terms represents a strongly decaying wave that becomes
negligible at high frequencies. When the real part of the propagation constant is small, the
energy injected through the harmonic force passes freely through the structure with very
little attenuation. Those frequency bands for which this is true are known as pass bands.

6. EXAMPLE SYSTEM*A THREE-ARRAY STRUCTURE

In this section, the Floquet wavenumbers are evaluated for a three-array structure and
compared to "nite element predictions computed using Mead's equations [14]. For ease of
"nite element computations, a beam was modelled instead of a plate. The results derived
above are applicable to a beam by replacing the bending rigidity D by EI/(oA), replacing the
line impedances with point impedances, replacing line forces by point forces, and replacing
m by oA. Recalling Figure 1, the attachments in all arrays were taken as point masses, with
each mass equal to the mass of the beam contained within a length d

1
. The parameters of

the beam were E"2]1011 Pa, o"7800 kg/m3, l"0)3, and g"0)01. The beam had
a square cross-section with thickness h"0)01 m.

As a test of the derived dispersion relations, several comparisons were made to numerical
calculations based on Mead's equations. To evaluate these equations, a "nite element model
was developed for one periodic section of the beam. A representative comparison is shown
for a three-array structure in Figure 5, which contains a plot of the imaginary part of the
Floquet wavenumber of the propagating wave. Di!erences between the two dispersion
curves, which were very small for the considered examples, were attributed to numerical
implementation of the two approaches.

A plot of the imaginary parts of the Floquet wavenumbers for the propagating wave is
given in Figure 6 for a structure with one, two, and three arrays attached to the beam. This
ordering coincides with the sequential ordering of the dispersion given by equations
(93)}(95). Large values of the imaginary part indicate high attenuation of a wave along the
structure. The real parts of the propagating Floquet wavenumbers in Figure 7 demonstrate
that, consistent with one-array structures, the real part of the wavenumber (i.e., the spatial
frequency) varies little within the stop bands.
Figure 5. Imaginary part of the propagating Floquet wavenumber, JMkN, versus normalized frequency, X, for
a beam with three arrays of attachments. The array spacings (in meters) are d

1
"1, d

2
"2, and d

3
"4. Computed

from equation (70) - - - -; computed by Mead's equations and a "nite element model **.



Figure 6. Imaginary part of the propagating Floquet wavenumber, JMkN, versus normalized frequency, X, for
a beam with one, two, and three arrays of attachments. The array spacings for the three cases (in meters) are d

1
"1;

d
1
"1 and d

2
"2; d

1
"1, d

2
"2, and d

3
"4. One array **; two arrays - - - -; three arrays - ) - ) - ).

Figure 7. Real part of the propagating Floquet wavenumber RMkN versus normalized frequency X for a beam
with one, two, and three arrays of attachments. The array spacings for the three cases (in meters) are d

1
"1; d

1
"1

and d
2
"2; d

1
"1, d

2
"2, and d

3
"4. One array **; two arrays - - - -; three arrays - ) - ) - ).
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The addition of each array alters the dispersion of the wave in a complex way. To see
this, compare Figure 6 with the Floquet wavenumbers of the three corresponding
one-array structures plotted in Figure 8. From these "gures, it is clear that the stop and pass
band features of the individual arrays are not linear (that is, additive). For example, note
that the large stop band above X"400 in Figure 6 is very similar to that of the one-array
structure with spacing d"1 m shown in Figure 8. For this stop band, the addition of the
other arrays has not signi"cantly changed the attenuation. However, the addition of the
other arrays does produce smaller stop bands that are visible in Figure 6 near X"275.
These stop bands may not be predicted from the corresponding one-array structures in
Figure 8.



Figure 8. Imaginary part of the propagating Floquet wavenumber, JMkN, versus normalized frequency, X, for
a beam with one array of attachments. Three array spacings are shown corresponding to d

1
"1, 2, and 4 m.

d"1 m **; d"2 m - ) - ) - ) -; d"4 m - - - -.

Figure 9. Drive-point velocity magnitude due to the propagating wave versus normalized frequency, X, for
a beam with one, two, and three arrays of attachments. The array spacings for the three cases (in meters) are d

1
"1;

d
1
"1 and d

2
"2; d

1
"1, d

2
"2, and d

3
"4. One array **; two arrays - ) - ) - ) -; three arrays - - - -.
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In order to understand the e!ects of stop and pass bands on the velocity at the
drive-point (x"0), Figure 9 shows the contribution of the propagating wave to the velocity
magnitude for the structures indicated in Figure 8. The velocity maxima occur as the
Floquet wavenumber goes through cuto! from a pass band to a stop band. The minima
occur as one moves from a stop band to a pass band. Figure 10 depicts the velocity due to
the propagating and evanescent waves at two positions away from the drive-point. As
anticipated, strong attenuation in the stop bands and weak attenuation in the pass bands
correlates with the magnitude of the imaginary part of the propagating Floquet
wavenumbers plotted in Figure 8.



Figure 10. Velocity magnitude due to the propagating and evanescent versus normalized frequency, X, for
a beam with three arrays of attachments, evaluated at various positions in the structure. At origin**; At x"4 m
- ) - ) -; At x"8 m - - -.
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7. CONCLUSIONS

In contrast to prior work that considered only one- and two-array structures, we have
presented a general analytical solution for the wavenumber and spatial velocities of a plate
with an arbitrary number of attached arrays. While prior analyses of two}array structures
resulted in algebraically complex expressions, one appealing feature of the results presented
here is their simplicity. In particular, the Floquet wavenumbers are obtained by analyzing
the bare plate "rst, and then treating the attachment of each array in turn according to their
relative spacing. As each array is added to the structure, a quadratic equation is solved for
the Floquet wavenumbers.

Another appealing feature of the analysis is its easy extensibility to other geometries and
loadings. For example, the analysis could be extended to thin cylindrical shells with arrays
of ring attachments by expanding the shell velocities in Fourier series about the
circumference of the shell. The Fourier harmonic number would then assume the role of the
plate wavenumber k

y
in the analysis presented here. The essential steps in the analysis

would be repeated and the Floquet wavenumbers k(1,2)
p

would describe propagation down
the axis of the shell. Similarly, extensions to attachments that apply forces and moments in
more than one direction would magnify the algebra but would otherwise be
straightforward.
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