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Abstract—Three dimensional ultrasound is a promising imag-
ing modality for minimally invasive robotic surgery. As the robots
are typically metallic, they interact strongly with the sound waves
in ways that are not modeled by the ultrasound system’s signal
processing algorithms. Consequently, they produce substantial
imaging artifacts that can make image guidance difficult, even
for experienced surgeons. This paper introduces a new approach
for detecting curved continuum robots in 3D ultrasound images.
The proposed approach combines geodesic active contours with a
speed function that is based on enhancing the “tubularity” of the
continuum robot. In particular, it takes advantage of the known
robot diameter along its length. It also takes advantage of the fact
that the robot surface facing the ultrasound probe provides the
most accurate image. This method, termed Tubular Enhanced
Geodesic Active Contours (TEGAC), is demonstrated through
ex vivo intracardiac experiments to offer superior performance
compared to conventional active contours.

I. INTRODUCTION

Real-time Three-dimensional Ultrasonography (3DUS) has

become available for clinical diagnostics and interventional

tasks [1], [2]. Compared with MRI or CT, ultrasound imaging

has a number of advantages, including affordability, portabil-

ity, patient and clinician safety owing to its use of non-ionizing

acoustic transducers and real-time 3D volumetric imaging at

20 frames per second. The real-time capability has enabled

instrument navigation during interventional procedures, such

as straight shaft detection in intra-cardiac surgery [3], [4], [5],

liver biopsies [6], prostate brachytherapy [7], and concentric

tube robots in cardiac surgery [8], [9]. The main drawbacks of

ultrasonography in contrast to MR and CT imaging, however,

are a lower spatial resolution and imaging artifacts. Thus,

accurate robot detection is the key challenging problem in the

3D ultrasound image-guided minimally-invasive interventions

[1], [2], [3], [4], [5].

As an example, Fig. 1 (a) depicts a concentric tube robot

inserted in the left atrium of a porcine heart. This configuration

reflects a typical procedure in which the robot enters the

heart through the vasculature under ultrasound guidance and

to perform intracardiac repairs. Fig. 1(b) shows the acquired

3D ultrasound images with the curved robot tip visible in the

middle of left atrium and artifacts from the robot obscuring

the contour of the right atrium. When the curved instrument

is manipulated through various positions and orientations, the
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Fig. 1: Continuum robot inserted inside a porcine heart. (a)

Experiment set up. (b) 3D ultrasound image showing both the

left atrium and the curved robot.

artifacts also vary such that different portions of the robot and

surrounding tissue are obscured.

This paper addresses the problem of instrument detection

problem in 3D ultrasound in the presence of imaging arti-

facts. The proposed tubular enhanced geodesic active contour

method addresses an an essential step for improving robot

visualization as well as for automation of surgical tasks in

which the robot is directed to target locations using image-

based localization.

The primary contribution of this article is the introduction

of a novel tubular enhanced speed image to the active contour

method for robot detection. The tubular enhanced speed image

is formulated based on a new eigensystem analysis on the

second-order image derivative and the prior observations of

tubular imaging characteristics, i.e., known tubular diameter

and discriminative tubular boundary contrast with respect to

the transducer. While demonstrated here for robot detection,

the intended application of this method is robot tracking. An

additional contribution of this study is to provide a better

understanding of the acquired 3DUS images, particularly, for

visualizing the tubular instruments that can produce various

significant artifacts.

The paper is organized as follows. Prior work related to 3D

ultrasound image based instrument detection is reviewed in

the next section. Section III presents the proposed algorithm

for tubular enhanced geodesic active contours applied to con-

tinuum robot detection. In Section IV, the proposed approach

is evaluated using ex vivo experiments. Conclusions appear in

the final section.
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II. RELATED WORK

For surgical robot detection in 3D ultrasound images, imag-

ing artifacts can be a major challenge since there are many

types of artifacts reflecting the various ways that ultrasound

waves can interact with the robot. Previous studies in [10],

[11], [4] have focused on detecting instruments with straight

tool shafts using methods such as Principle Component Anal-

ysis (PCA) [10], Hough transforms [11] or Radon transform

line detection [4]. These methods cannot be directly applied

to detect curved robots and imaging artifacts were not directly

addressed in these studies.

The main body of literature addressing artifacts focuses

specifically on reducing speckle artifacts, which are widely

present in ultrasound images due to the interference of sound

waves with randomly distributed scatterers. Despeckling typ-

ically uses nonlinear filtering approaches such as median

filtering or anisotropic diffusion [12]. There are also a few

post-processing approaches to remove artifacts (such as those

in Section IV) in 3D ultrasound and the filtering approaches

have to be tailored to specific applications, to enhance or

suppress particular structures.

A study of rod-like instrument imaging artifacts in 3D

ultrasound has appeared in [13]. Four types of reverberation

artifacts and two side-lobe artifacts were identified as major

sources in 3DUS instrument imaging. The paper [13] also sug-

gested appropriate ultrasound probe placement and instrument

modifications for reducing artifacts. The artifacts described in

[13] have been used to validate the method proposed here.

Active contour based detection methods have become pow-

erful tools in medical image analysis [14], [15], particularly

for boundary structure extraction, by applying local shape

constraints to the contour evolution. A variety of approaches

to active contour methods have been proposed and a good

survey is [15]. Detection in cluttered, noisy images, as is the

case in ultrasound detection of robots, suffers from a contour

leakage problem due to the strong and varied imaging artifacts

as shown in Section IV. Thus, it is necessary to apply new,

specific constraints to guide contour evolution.

To address this problem, this paper aims at tailoring

geodesic active contours to continuum robot detection in

3DUS by introducing both the tubularity of known diameter

and the imaging characteristic of a clearer tubular boundary

facing to the ultrasound probe.

III. METHODS AND MATERIALS

A. Algorithm Overview

In our prior work [9], a two-stage spatial circular pa-

rameter estimation method was proposed for estimating the

configuration of a continuum robot in image coordinates. The

volumetric image pre-processing pipeline proposed in that

paper consisted of thresholding, connected component analysis

and skeletonization to delineate the tubular robot object.

The block diagram in Fig. 2 outlines the overall working

flow of the proposed Tubular Enhanced Geodesic Active Con-

tour (TEGAC) algorithm. In the context of our earlier work in
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Fig. 2: Block diagram of the Tubular Enhanced Geodesic

Active Contour (TEGAC) algorithm

[9], TEGAC is intended to replace the pre-processing pipeline.

By incorporating the characteristics of 3D ultrasound imaging

artifacts and the robot tubular prior information, TEGAC is

more robust for robot detection in a cluttered environment.

For robot detection, the initial seed is placed manually. For

tracking, the labeled robot from TEGAC can serve to seed the

subsequent volumetric frame. The labeled robot can also be

used for two-stage spatial curvature parameter estimation [9].

A gray-level ultrasonic volume image, I , is defined as an

M × N × P matrix, where I(i, j, k) represents the intensity

of the voxel at the ith row, jth column, and kth slice, in

the image volume space, which corresponds to Cartesian

coordinates, x = (x, y, z)T , of the ultrasound transducer

system, in the physical space. Here, x represents increasing

azimuth, y represents increasing elevation and z indicates

increasing distance from the transducer.

The active contour model has been used to delineate an

object contour from a noisy image by minimizing an energy

function associated with the given contour C. Geodesic active

contours, derived in [14], reduce the traditional energy-based

active contour to the following equivalent intrinsic minimiza-

tion problem:

min
C(q)

∫
g(|∇I(C(q))|)|C′(q)|dq, (1)

where g(·) is a image-dependent speed function that controls

the evolution speed of the active contour. The formulated

speed function applies positive speed to the active contour in

the homogeneous image regions and near zero speed when
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approaching the object boundaries. A typical approach to

formulate the speed term is to associate it with the image

gradient or an alternate edge mapping. For example, the speed

image used in [14] is computed directly from an edge mapping

function related to the image gradient magnitude and is the

followed by a sigmoid filter. In 3D ultrasound robot images,

this approach is inadequate since the boundary information

is degraded by the various imaging artifacts, as illustrated in

Section IV.

For curved continuum robot detection in 3D ultrasound

volumes, the following two important tubular prior observa-

tions are useful for formulating a speed function. First, the

diameters of the robot’s sections are known along its length.

Second, the robot surface facing the transducer produces the

clearest boundary, whereas the surface facing away from the

transducer is typically blurred. Starting from the detectable

clearer boundary of the tubular structure and incorporating

the known tubular diameter information, we can estimate

the entire tubular location even it is blurred or cluttered, as

described below.

B. Tubular Enhancement Module

The objective of the tubular enhancement module is to em-

phasize the tubular structure while suppressing the other non-

tubular structures in the 3D ultrasound image. The approach is

based on the analysis of the eigensystem of the image volume’s

Hessian matrix [16]. Let σ denotes the image scale of the

analysis and Iσ = I ∗ G, is the image convolved with a 3D

Gaussian kernel G(x, σ) = 1/(2πσ2)
3
2 exp(−(xTx)/2σ2)).

Let ∇Iσ and H(Iσ) denote the gradient vector and Hessian

matrix in the scale space σ.

The Hessian matrix is a second order vector field, i.e., the

gradient of the image gradient, of an image at scale σ,

H(Iσ) = ∇2Iσ = σ2γ ∂2Iσ
∂xi∂xj

, (2)

where

∂2

∂xi∂xj
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2

∂x2
1

· · · ∂2

∂x1 ∂xn

...
. . .

...

∂2

∂xn ∂x1
· · · ∂2

∂x2
n

⎤
⎥⎥⎥⎥⎥⎥⎦
,

γ is the commonly used scale normalization parameter and

n = 3 for a 3D volume. For simplification, H(Iσ) at location

x and scale σ is represented as Hx,σ in what follows.

The eigensystem, including eigenvalues and eigenvectors,

of the Hessian matrix reveals the geometrical dissimilarity

of structures, based on the “vesselness” measure developed

by [16]. Let λ1, λ2, λ3 and v1,v2,v3 be the eigenvalues and

corresponding eigenvectors of Hessian matrix, with increasing

order of magnitude |λ1| ≤ |λ2| ≤ |λ3| and unit vector

length |v| = 1. Eigenvalue magnitude then corresponds to

the intensity variance in the corresponding direction. Thus,

v1 indicates the direction along the tubular structure with

minimum intensity variation and, for an idealized tube, λ1 → 0
while and λ2, λ3 should be equally negative and large to

represent the tubular cross-section.

Since the tubular surfaces facing the transducer are usually

smoother and brighter, while the surfaces facing away from

the transducer are blurred, it is useful to modify the vesselness

measure. To do so, an additional term is introduced to empha-

size the clearer probe-facing boundary by taking account of

the boundariness and tubular diameter, corresponding to the

image scale, σ, as defined by,

TI,σ =

{
0, if λ2 > 0 or λ3 > 0

(1− e
−A2

2a2 )e
−B2

2b2 (1− e
−||λ||2

2c2 )(1− e
−D2

2d2 ).
(3)

Here, λ = [λ1, λ2, λ3]
T , A = |λ2/λ3| for distinguishing

plate and line structures, B = |λ1|/
√

λ2λ3| for distinguishing

tubular structures from blob structures, a, b, c, d are the coeffi-

cients to control the weights of A,B,C,D, and the first three

terms containing a, b, c are those of the original vesselness

function in [16]. The parameter D accounts for the normalized

boundariness corresponding to the principal curvature of the

Hessian matrix, as given by,

D = |∇Iσ(x+ σv3)|
where v3 represents the direction corresponding to the maxi-

mum eigenvalue of the Hessian matrix.

C. Tubular Enhanced Active Contour Model

The results from the tubular enhancement module are used

to formulate a speed function that guides the active contour

evolution. In order to get an edge potential image to control the

contour evolution speed, the speed function for the geodesic

active contour model is formulated by passing the tubular

enhanced images through a sigmoid filter,

g(TI,σ) =
1

1 + (
n||∇TI,σ||

max||∇TI,σ|| )
m
, (4)

where m,n are user-specified parameters to adjust the

evolution speed. Thus, the resulting speed image, g(·), is now

an edge strength based stopping function for contour evolution:

slowing evolution near the boundary and speeding evolution

in homogeneous regions.

Similar to the derivations in [14], the Euler-Lagrange equa-

tion associated with (1) is a contour evolution model:

∂C(t)
∂t

= g(TI,σ)κN − (∇g(TI,σ) · N )N , (5)

and the associated level-set embedding function, φ, of the

curve, C, can be updated by,

∂φ

∂t
= g(TI,σ)κ||∇φ|| − ∇g(TI,σ) · ∇φ, (6)

where N = ∇φ
||∇φ|| is unit normal to the curve, κ =

div( ∇φ
||∇φ|| ) is the curvature.

Therefore, by incorporating the tubular enhanced speed

image, the contour represented by the zero level set of φ,
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is evolving according to three terms: 1) an image-dependent

speed function pushing the contour to the tubular boundaries,

2) an internal smoothness term to minimize the curvature, and

3) an inflation force to expand or contract the contour.

IV. EXPERIMENTS

Two types of experiments were performed to validate the

tubular enhancement based geodesic active contour (TEGAC)

algorithm. First, the tubular enhancement module was eval-

uated in tank tests against the presence of various 3DUS

imaging artifacts, in order to demonstrate the capability of gen-

erating effective speed images for the later steps. Second, the

active contour evolution module was subsequently validated

in ex vivo experiments in which a porcine heart is submerged

in the water tank and the curved portion of the robot is placed

inside the left atrium.

A. Materials and Setup

All experiments were performed in a water tank as shown

in Fig. 1. Three dimensional ultrasound images were acquired

using a Philips IE33 (www.philips.com) system with a 3D

probe. The probe was mounted as shown in a linear stage

while a piecewise constant curvature concentric tube robot [8]

constructed from a superelastic NiTi alloy was submerged in

the water. The bottom of the tank was lined with a rubber pad

to reduce reverberation. The robot’s distal section had a radius

of curvature of R1 = 60 mm, a diameter of 2 mm.

Standard settings of the imaging parameters were used

during image generation, including 50% overall gain, 50%

compression rate, frequency fusion mode 2, high density scan

line spacing, 10 cm image depth, and zero dB power level. The

resulting voxels have anisotropic spacing of {0.542 mm, 0.706

mm, 0.451 mm} in the x, y and z directions, respectively.

B. Tubular Enhancement Filtering to Reduce Imaging Arti-
facts

Comet Tail Artifacts (CTA) and Tip Reverberation Artifacts

(TRA), as indicated in Fig. 3, are prominent reverberation

artifacts generated by multiple echoes when sound waves

bounce back and forth between object interfaces with large

differences in acoustic impedance. Such is the case for the

interfaces between the water and the NiTi tubes. Each echo

returning to the transducer is interpreted as a surface whose

distance from the transducer corresponds to the return time.

Comet Tail Artifacts (CTA) show up as band-like structures

and get stronger when the robot tube is orthogonal to the beam

lines. For constant curvature tubes, the comet tail artifacts can

arise all along the tube when the tube curvature is similar to

beam curvature and the tube is placed conformal to the beam

sector, as shown in Fig. 3. In the configuration of Fig. 3, each

segment of the tube surface is close to a normal facing to

the ultrasound probe, and the resulted CTA severely degrade

imaging quality.

The proposed tubular enhancement is very effective at

reducing CTA, as shown in Fig. 4, since these artifacts possess

a plate-like pattern, which can be well distinguished from the

DSL

(a) MIP Top View

RAA

DSL

CTA

(b) MIP Front View (c) Side
View

Fig. 3: Original image with artifacts: CTA, Comet Tail Arti-

facts; DSL, diffractive side lobe; and RAA, Range ambiguity

artifacts. The images show 2D Maximum Intensity Projection

(MIP) views for 3DUS volumetric images. (a) MIP Top View,

b) MIP Front View, (c) MIP Side View.

(a) MIP Top View

(b) MIP Front View (c) Side View

Tube

Fig. 4: Tubular enhancement filtering results in 2D Maximum

Intensity Projection (MIP) views for 3DUS volumetric images.

(a) MIP Top View, (b) MIP Front View, (c) MIP Side View.

tubular structure. Since the Tip Reverberation Artifact (TRA)

also show ring-down effects, the tubular enhancement module

can suppress most of the bank-like artifacts but less of the

line-like artifacts as shown in Fig. 4.

Diffractive side lobe (DSL) artifacts are caused by off-axis

peripheral waves. Since the edges and corners of a metallic

robot are strong scatterers, the resulting reflections from the

side lobes are strong enough to be detected by the transducer

and misinterpreted as reflections arising from the main lobe

of the transducer. This results in fictitious structures, such as

shown in Fig. 3. Diffractive side lobe (DSL) artifacts can be

partially reduced by the tubular enhancement module as shown
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in Fig. 4. It works particularly well for artifacts far away from

tip. For those close to the tip, however, the tubular structure

of the artifacts makes them hard to distinguish from the robot

itself.

Finally, range ambiguity artifacts (RAA) arise when the

ultrasound beam undergoes multiple reflections of sufficient

duration before returning to the probe that echoes from a

prior pulse are misinterpreted as those from the most recent

pulse. As can be seen from Fig. 3 and Fig. 4, range ambiguity

artifacts can be suppressed to a certain degree, but cannot

be fully removed. It can be noted, however, that this type of

artifact is usually sufficiently far from the object being imaged

that it can be excluded using prior configuration information.

C. Ex Vivo Experiments

It is more difficult to visualize robots inserted inside the

body rather than in a water tank. To determine if the proposed

algorithm is applicable to clinical situations, a porcine heart

was submerged in the water tank and the concentric tube robot

was inserted inside the left atrium, as shown in Fig. 1.

2D slice views of the robot are shown in Fig. 5 (a)

and with the resulting overlaid TEGAC results in Fig. 5(b).

The effect of tubular enhancement in comparison with the

standard pre-processing of the geodesic active contour method

is shown in Fig. 6. Given the same speed function parameters,

n = 0.088,m = 2, the resulting speed images from the

proposed TEGAC and conventional GAC methods are shown

in Fig. 6 (a) and (b), respectively. These are applied to the

active contour method for delineating the robot. The contour

evolution model uses the same parameter set of inflation

force, 1, curvature force, 0.2, advection force, 3.81 for the

comparison. From the overlaid resulting contours, we can

see that TEGAC can effectively evolve the contours to the

object boundaries while the conventional GAC results in

contour leakage owing to blurred edge information arising

from artifacts. The leakage part can be clearly viewed in the

rendered 3D model of Fig. 7 (a).

We tested the algorithm on a set of 20 ultrasound volumetric

images containing the same robot and compared the results of

the algorithm with those obtained through manual segmenta-

tion using the degree of volumetric overlap as computed with

the DICE metric. It is defined as

DICE(A,B) = 2|A ∩B|/(|A| ∪ |B|),

where A and B are two labeled volumetric structures to

be compared. As plotted in Fig. 8, the average volumetric

overlap metric for the 20 ultrasound volumes by TEGAC was

0.804±0.0815 versers that by conventional Geodesic Active

Contour (GAC) of 0.497 ± 0.087. During the experiments,

we observed that TEGAC can evolve to an accurate tubular

shape representing the instrument, whereas the conventional

GAC cannot accurately estimate the tubular boundaries. The

resulting contour from GAC includes part of the artifacts and

takes the shape of a curved elongated triangular prism, as

partially shown in Fig. 7 (a).

(a) Acquired Volume (b) Overlay with TEGAC

Fig. 5: Raw robot images and overlaid TEGAC results. The 2D

slices correspond to front, top and side views. The crosshair

locations indicate tubular object. (a) 2D slices of volumetric

image. (b) 2D slices of volumetric image overlaid with the

evolved contour from TEGAC.

(a) Conventional GAC (b) TEGAC speed image

Fig. 6: Comparison between the conventional GAC and

TEGAC algorithms. The 2D slices correspond to front, top

and side views. The crosshair locations indicate tubular object.

(a) Speed image overlaid with resulting active contour from

conventional GAC; (b) Speed image overlaid with resulting

active contour from TEGAC algorithm.

(a) Conventional GAC (b) TEGAC speed image

Fig. 7: 3D rendering of detected robot using conventional GAC

and TEGAC algorithms. (a) Conventional GAC. (b) TEGAC

algorithm.
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Fig. 8: DICE metric comparing manual segmentation, the

TEGAC detection algorithm and the conventional Geodesic

Active Contour (GAC) algorithm.

D. Discussion

The proposed TEGAC algorithm provides substantially im-

proved results in comparison to standard geodesic active con-

tours. The speed images produced by the proposed approach

contain enhanced tubular structures at specific length scale

corresponding to tube diameter. If the artifacts include ghost

images of tubular structures with the same length scale, they

will not be removed by the filter. In these situations, however,

prior information on location can be incorporated to remove

the ghost structures.

V. CONCLUSIONS AND FUTURE WORK

Motivated by the image guided robot navigation techniques

of minimally invasive interventions, this paper has focused

on developing techniques that leverage the underlying tubular

geometry of continuum robots to ameliorate the effect of

imaging artifacts on robot and tissue visualization using 3D

ultrasound. Specifically, the proposed approach incorporates

the prior characteristics of tubular robot imaging, including

the clearer boundaries on the surface towards transducer, and

the known diameter of robot tubes. This provides a new speed

function for guiding the evolution of active contours.

As a next step, we plan to incorporate statistical prior shape

information of the tubular continuum robots to further restrain

contour evolution. We also plan to improve the computational

speed by parallelizing the tubular enhancement algorithm for

implementation on GPUs. Our long-term goals are to imple-

ment 3D ultrasound based tracking and servoing of continuum

robots.

For the specific application of intracardiac interventions,

the effect of heart motion on robot detection and tracking is

an important future consideration. It is anticipated that heart

motion will be beneficial in aiding robot tracking. This is

substantiated by our observations during surgery that the robot

is much easier to detect and track visually when viewing a

sequence of volumes rather than a single volume.
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