
  

 

Abstract— A recent approach to steerable needle design is 
based on combining pre-curved tubes concentrically. By 
rotating and extending the tubes with respect to each other, the 
position and orientation of the needle tip, as well as the shape of 
the inserted length, can be controlled. Prior models neglected 
torsional twisting in the curved portions of the tubes. This 
paper presents a mechanics model that includes torsion, applies 
to any number of tubes and allows curvature and stiffness to 
vary with arc length. While the general model is comprised of 
differential equations, an analytic solution is given for two 
tubes of constant curvature. This solution enables analytic 
prediction of “snap through” instability based on a single 
dimensionless parameter. Simulation and experiments are used 
to illustrate the results. 

I. INTRODUCTION 

HE challenge of most existing needle-based medical 
procedures is the safe and accurate navigation of the 

needle through tissue to the desired target. This topic has 
received considerable recent attention from the robotics 
community with efforts focused on two topics, path 
planning and image-based feedback control, to 
accommodate needle and tissue deformation in reaching a 
target.  

Once the target is reached, the subsequent step is very 
simple and usually consists of using the needle’s lumen to 
either deliver drugs or radioactive seeds or to capture a 
biopsy sample. Many new and exciting needle-based 
interventions could be developed, however, if the needle’s 
shape could be actively controlled along its entire length. An 
important class of applications for such a device would be to 
enter a body lumen by steering through tissue or through a 
body orifice. Once inside the lumen, the proximal portion 
can remain relatively fixed while the distal portion 
manipulates tools within the lumen to perform minimally 
invasive surgery. 

A promising technology for constructing such steerable 
needle robots is based on the concentric combination of 
precurved elastic tubes [6]-[12]. The shape of the robotic 
needle as well as its tip position and orientation can be 
actively controlled by relative rotation and translation of the 
tubes at their proximal end. The lumen of the tubes can 
house tubes and wires for control of tip-mounted tools. A 
simple example is shown in Fig. 1 in which actuated linear 
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motion of a wire inside the robot opens and closes the tip-
mounted forceps. 

  
Fig. 1.  Concentric tube robot with 1 mm diameter tip-mounted forceps. 

The kinematic modeling for real-time control of these 
robots is challenging in comparison to that of traditional 
robots whose links are relatively rigid and whose joints are 
discrete. The forward kinematics can be cast as a 3D beam 
bending problem in which the kinematic input variables 
(tube rotations and displacements at the proximal end) enter 
the problem as a subset of the boundary conditions. The 
remaining boundary conditions are comprised of point 
forces and torques applied to the distal ends of the tubes. 

 Contact along the robot’s length (e.g., with tissue) 
generates additional distributed and point loads. Thus, it can 
be anticipated that the forward kinematics can be expressed 
as a two-point boundary value problem involving a 
differential equation with respect to arc length along the 
common center line of the tubes. Phenomena which may be 
included in the model are bending, torsion, friction, shear, 
axial elongation and nonlinear  constitutive behavior. 

Real-time control necessitates balancing accuracy of the 
model with efficiency of its computation. Thus, efforts to 
date have modeled curved portions of the tubes as piecewise 
constant curvature and experiencing pure bending [6]-[12]. 
This choice results in an algebraic expression for curvature 
of the combined tubes which can be analytically integrated 
to yield position and orientation of the robot’s tip. Models of 
this type have been demonstrated to provide reasonable 
performance in combination with real-time sensing of the tip 
frame (teleoperation in [9], image servoing in [12]). It 
remains an open question, however, as to what the most 
appropriate kinematic control model may be and what 
phenomena it should include. Furthermore, certain 
phenomena may be important to model during robot design, 
but may not need be included in an on-line model. 

Toward answering these questions, this paper presents a 
mechanics model that incorporates bending and torsion for 
any number of tubes whose stiffness and initial curvature 
can be arbitrary functions of arc length. The paper is 
arranged as follows. The next section reviews related work. 
Section III presents the model. Section IV provides an 
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analytic solution of the model for two tubes of constant 
curvature and describes when such tubes can experience a 
“snap through” instability. Section V presents validation 
experiments and the final section presents conclusions. 

II. RELATED WORK 

When curved tubes are inserted inside each other, their 
common axis must conform to a mutual resultant curvature. 
By performing relative translations and rotations of the 
tubes, both the curvature as well as the overall length of the 
robot can be varied. The first robots of this type composed 
of two tubes were presented in [3],[4],[5]. Robots composed 
from three or more tubes were first proposed in [6],[7]. 

 In [6], a forward kinematic model was derived for an 
arbitrary number of tubes of piecewise constant curvature. 
The model assumes that the tubes are torsionally rigid, 
frictionless, linear elastic and that each tube experiences 
piecewise constant bending moments along its length. The 
latter assumption implies that shear deformation of the cross 
section as well as axial elongation are also negligible. In 
addition, it is assumed that no external loads are applied. 
Using this model, tubes of piecewise constant curvature 
combine to form robots of piecewise constant curvature 
whose shape can be computed using an algebraic equation. 
A similar equation for two constant-curvature tubes was 
conjectured, but not proven in [7].  

While it was shown in [8] that closed form inverse 
kinematic solutions can be derived for simple robot designs, 
they are difficult to obtain for more general designs. A  
Jacobian-based inverse kinematic solution for an arbitrary 
number of piecewise constant curvature tubes using the 
algebraic curvature model was formulated and demonstrated 
in simulation in [8] and experimentally on a 3-tube 
teleoperated system in [9]. 

Experimental evaluation of the curvature model on pairs 
of constant curvature tubes did not provide an accurate fit to 
the data [6],[9]. It was observed, however, that the combined 
tube shape closely matched constant curvature arcs. Thus, an 
accurate kinematic model could be obtained using a 
truncated Fourier series to represent curvature and plane 
angle as periodic functions of relative tube rotation angle 
[6]. Alternately, these functions could be implemented 
efficiently using a table driven model and this approach was 
implemented on a teleoperated 3-tube robot operated at 1 
kHz in [9]. 

Empirical input-output maps such as these are well suited 
to real-time control applications and have the benefit of 
accounting for all unmodeled phenomena including torsion, 
friction and nonlinear elasticity. Since they are not true 
representations of the underlying physics, however, they 
cannot provide insights for robot design (e.g, how to 
eliminate “snap through” instabilities). Furthermore, if 
physics-based models amenable to real-time control could 
be developed, they would likely require less complicated on-
line calibration and produce smaller errors than would a 
functionally approximate model.   

To this end, an energy model that included torsional 
windup in the straight transmission lengths of the tubes was 
proposed in [7] and numerical energy minimization was 
suggested as a means of solving for transmission twist. This 
model, which assumes that the curved portions of the tubes 
are torsionally rigid, was used to investigate solution 
multiplicity and stability for a pair of curved elements in 
[11] and employed for visual servoing of a two-tube robot in 
[12]. 

Torsional twist occurs along the entire length of the 
tubes. The relative contribution to the overall robot shape of 
twist in the straight transmission sections versus the curved 
sections will depend on both the design of the drive system 
and the application-specific robot design. Thus, it is 
desirable to develop a model that includes twist in both the 
curved and straight sections of the tubes. 

III. MECHANICS MODEL INCORPORATING TORSION 

 Here, we consider tubes of arbitrary initial curvature and 
incorporate the effect of torsion due to bending along the 
entire length the tubes. We show that the model can be 
derived either from the special Cosserat rod model or using 
the calculus of variations. The resulting model is a 
differential equation which must be integrated along the 
length of the tubes to determine twist angle, and thus 
curvature, as a function of arc length. To define coordinates 
and introduce terminology, we first briefly review the 
torsionally rigid model of [6]. 

A. Torsionally Rigid Algebraic Curvature Model 

The tubes are labeled with subscript indices, 
1, 2, ,i n=   , where 1 is the outermost tube and n is the 

innermost tube. As shown in Fig. 2, material coordinate 
frames for each cross section can be defined as a function of 
arc length s  along tube i  by defining a single frame at the 
proximal end, (0)iF , such that its z axis is tangent to the 

tube’s centerline. Under the assumption that the tubes do not 
possess initial material torsion, the frame, ( )iF s  , is obtained 

by sliding (0)iF  along the tube centerline without rotation 

about its z axis. As the tubes bend and rotate, the frames 
move with their cross sections. Assuming torsional rigidity, 
any relative rotation between the tubes will be constant 
along their entire length. We can also define a reference 
frame, 0 ( )F s , which does not rotate about its z axis. When 

needed for clarity, superscripts will be used to indicate the 
coordinate frame of vectors and transforms. 

As the thi  tube’s coordinate frame ( )iF s slides down its 

centerline, it experiences a body-frame angular rate of 
change per unit arc length given by 

( ) ( ) ( ) ( ) ( )i
TF s

i ix iy izu s u s u s u sé ù= ê úë û                (1) 

in which ( , )ix iyu u are the  components of curvature due to 

bending and 0izu = is the curvature component due to 

torsion. A circumflex on a curvature component is used to 
designate the initial undeformed curvature of a tube. In the 
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examples of Fig. 2, the tubes have nonzero y components of 

curvature. 
The algebraic curvature model can be derived by 

combining three equations – a constitutive model relating 
bending moments to changes in curvature of individual 
tubes, the equilibrium of bending moments for the 
assembled tubes and a compatibility equation relating the 
individual curvatures of the assembled tubes.  
 

 
Fig. 2.  Tube coordinate frames and initial curvatures. 

When the tubes are assembled concentrically, the bending 
moment vector at any point along tube i  is given by 

( )( ) ( ) ( )ˆ( ) ( ) ( )i i iF s F s F s
i i i im s K u s u s= -                     (2) 

 in which ( ) ( )iF s
im s  is the moment vector, ( ) ( )iF s

iu s  and 
( )ˆ ( )iF s

iu s  are the resultant and initial angular frame rates and 

iK  is the frame-invariant stiffness tensor for a tube given by 

0 0 0 0

0 0 0 0

0 0 0 0

ix i i

i iy i i

iz i i

k E I

K k E I

k J G

é ù é ù
ê ú ê ú
ê ú ê ú= =ê ú ê ú
ê ú ê ú
ë û ë û

           (3) 

in which iE  is the modulus of elasticity, iI is the area 

moment of inertia, iJ  is the polar moment of inertia and iG  

is the shear modulus.  
While (2) applies on a point-wise basis, the pure 

bending assumption permits it to be applied to sections of 
the robot in which each tube has constant initial curvature. 
The moment equilibrium equation can be applied to each of 
these sections by transforming (2) for each tube to a single 
frame such as 0 ( )F s . Defining iq  as the z  axis rotation 

angle from frame 0 ( )F s  to frame ( )iF s , the curvature 

vectors transform as  

0 ( ) ( )( ) iF s F s
i z iu R uq= .                             (4) 

in which ( )z iR q  is a rotation matrix. The moment 

equilibrium equation for the concentric tubes is  

0 ( )

1

0
n

F s
i

i

m
=

=å .                                  (5) 

Since all tubes must conform to the same final curvature, the 
compatibility equation is given by 

0 0 0( ) ( ) ( )
1 2
F s F s F s

nu u u= = =                               (6) 

Combining (2)-(6) yields an expression for the resultant 
angular frame rate for a section of needle length comprised 
of n  overlapping tubes of constant curvature, 

0 0

1

( ) ( )

1 1

ˆ
n n

F s F s
i i i i

i i

u K K u
-

= =

æ ö÷ç ÷= ç ÷ç ÷çè øå å .                  (7) 

Assuming torsional rigidity and piecewise constant 
curvature of the individual tubes, this expression is constant, 

0 ( ) ( ) 0
TF s

i ix iyu s u ué ù= ê úë û , for each section of the robot in 

which each tube has constant initial curvature.  

B. Torsionally Compliant Model  for Two Tubes Derived 
Using Special Cosserat Rod Equilibrium Model 

Instead of writing equilibrium and compatibility equations 
for each constant curvature section of the robot as was done 
in (5) and (6), we must now write them on a point-wise basis 
as a function of arc length. For clarity of presentation, the 
model is derived here for two tubes of constant curvature. It 
is convenient to define the relative twist angle ( )sa between 

tubes as a function of arc length, 

2 1( ) ( ) ( )s s sa q q= -                                     (8) 

where ( )i sq  is the angular displacement of the ith tube at arc 

length s. Equilibrium of moments must hold on every cross 
section and can be written in the body frame of tube 1 as 

( )1 2( ) ( )
1 2( ) ( )F s F s

zm s R s ma=- .                        (9) 

With torsional twisting, the compatibility equation enforcing 
the coincidence of tube centerlines becomes 

1 2( ) ( )
1 2( ) ( ) ( ) ( )F s F s

z zu s R u s s ea a= -                        (10) 

 in which [0,0,1]T
ze =  and /d dsa a= . This equation 

ensures that the tubes experience the same curvature in the 
plane of the cross section, but allows different rates of 
torsional twist. 
 In the subsequent presentation, all variables are defined in 
the body frames of the tubes and we omit reference to the 
frames. Thus, 2 ( )

2 ( )F su s is written as 2 ( )u s . 

Combining the moment equilibrium equation of (9) with 
the constitutive model (2) and the compatibility equation 
(10) leads to an expression for the curvature of tube 2. 
Assuming circular cross sections, ( )zR a and iK commute 

yielding 

( ) ( )1

2 1 2 1 1 2 2 1ˆ ˆ( )T
z zu K K R K u K u K ea a-= + + +          (11) 

The x and y components of this equation mirror those of the 
torsionally rigid case and provide explicit algebraic 
equations for curvature as a function of initial curvature and 
twist anglea . 

( ) ( )1

2 1 2 1 1 2 2, , ,
ˆ ˆ( )T

zx y x y x y
u K K R K u K ua-= + +              (12) 

( )1 2, ,
( )zx y x y

u R ua=                                                  (13) 

The z component of (11) provides an expression for twist 
angle rate,a . 

      ( )2 1 21 /z z zk k ua= +                                   (14) 

Here we have used the fact that initial curvature does not 

2 2

0

ˆ ˆ

0
yu u

é ù
ê ú
ê ú= ê ú
ê ú
ë û

2

0

ˆ 0

0

u

é ù
ê ú
ê ú= ê ú
ê ú
ë û

2 ( )F L

1( )F L

1 1

0

ˆ ˆ

0
yu u

é ù
ê ú
ê ú= ê ú
ê ú
ë û
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include torsional twist. To solve this expression, we need to 
be able to evaluate 2zu .   

We can obtain such an expression from the equilibrium 
equation of the special Cosserat rod model [2]. Setting time 
dependent terms to zero, the body-frame equilibrium 
equations for a curved rod undergoing distributed loading of 

3t Î torque per unit length and 3f Î force per unit 

length are given by 

[ ] [ ]
[ ]0

u vm m

un f n

t é ùé ù é ù é ù
ê úê ú ê ú ê ú= - ê úê ú ê ú ê úë û ë û ë ûë û




                (15) 

Here, derivatives are with respect to arc length along the 
rod, s , and 3,m n Î are the bending moment and shear 
force vectors acting on the rod’s cross section. The vectors 

3,u v Î  are the angular and linear strain rates per unit arc 
length and square brackets indicate the skew symmetric 
matrix form. If one imagines sliding along a curved rod, 
these vectors can be interpreted as linear and angular 
velocities (twist velocities) with arc length corresponding to 
time. Wrenches applied at either end of the rod enter the 
equations as boundary conditions. 

This equation can be used to predict the shape and forces 
exerted when two or more precurved tubes are combined 
concentrically. Since we anticipate that bending and twisting 
will be the dominant forms of deformation of the tubes, we 
continue to assume that shear strain and axial strain are 
negligible. In (15), this results in [0,0,1]Tv = . Furthermore, 

we assume that contact between the tubes is frictionless and 
that tubes can only exert distributed reaction forces, but not 
torques, on each other. As with the torsionally rigid model, 
we assume that concentrated moments are generated over 
negligibly short lengths at the ends of the tubes in order to 
satisfy compatibility (12),(13). These moments are treated as 
boundary conditions in (15). 

Since tube interaction is limited to distributed forces, 
0t =  in (15) and, for each tube, it reduces to 

[ ] [ ]i i i i im u m v n=- -                             (16) 

To eliminate moments from these equations, we can use the 
constitutive model for moments (2) and its derivative with 
respect to arc length, 

i i im K u=                                 (17) 
In the derivative, we have taken iK and ˆiu to be independent 

of s  for simplicity, but this is not necessary. Equation (16) 
can now be rewritten in terms of curvature 

[ ] ( ) [ ]1 1ˆi i i i i i i i iu K u K u u K v n- -=- - -          (18) 

Recalling [0,0,1]T
iv =  and assuming equal bending 

stiffness in the x and y directions, ix iyk k= , the z component 

of (18) provides an expression for the derivative of torsional 
twist rate as a function of bending curvature, 

2 2 2 2 2 2 2ˆ ˆ( / )( )z x z x y y xu k k u u u u= -                          (19) 

This simple equation indicates that the derivative of twist 
rate is given by the cross product between actual and initial 

bending curvature multiplied by the ratio of bending and 
torsional stiffness. For tubes, this ratio is given by  

/ / 1ix iz i i i ik k G J E I n= = +                    (20) 
in which n  is Poisson’s ratio. By equilibrium of torsional 
moments, we need only integrate for 1zu or 2zu since 

1 2 1 2( / )z z z zu k k u=-                              (21) 
Equations (12),(14),(19) comprise the set of equations that 
must be solved to compute 3D curvature along the length of 
the tubes. Equations (14) and (19) are two first-order 
differential equations that can be equivalently described by a 
second order equation ina . If we assume that the initial 
cross sectional curvature of both tubes is in the same 
direction (e.g., both in x  direction or both in y direction) 

when 0a=  then the three equations reduce to the 
following simple expression for initial curvature magnitudes 

1̂u  and 2û . 

( ) 1 2ˆ ˆ( ) 1 sin ( )s u u sa n a= +                      (22) 
This equation indicates that the second derivative of twist 
angle has a simple dependence on Poission’s ratio and initial 
curvatures of the tubes.  

Two boundary conditions are needed for the two state 
variables, ( , )a a  or 2( , )zua . Since the tube angles at the 

proximal end, (0)iq , are the kinematic input variables, 

2 1(0) (0) (0)a q q= - .                               (23) 

In addition, the torsional bending moment at the distal end 
of each tube is zero,  

2 2 2 2 2 2ˆ( ) ( ( ) ( )) ( ) 0z z z z z zm L k u L u L k u L= - = =           (24) 

This yields a second boundary condition 

2( ) ( ) 0zL u La = =                                     (25) 

This is a two-point boundary value problem. As we will 
show in a subsequent section, (22) can be integrated 
analytically. First, we show that it can be derived from 
energy considerations without employing the special 
Cosserat rod model. 

C. Torsionally Compliant Model for Two Tubes Derived 
Using Calculus of Variations 

The equation describing torsional twisting of the tubes can 
also be derived as the solution that minimizes strain energy 
in the tubes. An expression for total strain energy U due to 
bending and torsion is given by  

2
22

,

1 0

1

2

L
i x y iz

i i i i i

m m
U ds

E I G J=

æ ö÷ç ÷ç ÷ç ÷= +ç ÷ç ÷ç ÷÷çè ø
å ò                       (26) 

in which the first term accounts for bending and the second 
for torsion. Since strain energy will be invariant under rigid 
body motion of the tube pair, we anticipate that it can be 
written as a function of the relative twist angle ( )sa .  

The constitutive model (2) provides expressions for 
bending moment 

,i x y
m and torque izm , 

, ,
ˆ( )i i i i ix y x y

m E I u u= -                    (27) 

iz i i izm G J u=                               (28) 
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Substituting these into (26) results in 
2 2

2

,
1 0

1
ˆ( )

2

L

i i i i i i izx y
i

U E I u u G J u ds
=

æ ö÷ç= - + ÷ç ÷çè øå ò          (29) 

Equations (12) and (13) can be used to compute the norm in 
the first term yielding 

( )

2 2
2 2

1 1 2 12,

1 1 2 2

ˆ ˆ ˆ( ) ( )T
zx y

E I
u u u R u

E I E I
a- = -

+
  (30) 

( )

2 21 1
2 2 1 22,

1 1 2 2

ˆ ˆ ˆ( ) ( )zx y

E I
u u u R u

E I E I
a- = -

+
     (31) 

Equation (14) can be used to express 2zu  in terms of a . 

1 1
2

1 1 2 2
z

G J
u

G J G J
a

æ ö÷ç ÷= ç ÷ç ÷ç +è ø
                         (32) 

Moment equilibrium (9) and the constitutive model (2) 
provide an expression for 1zu , 

2 2 2 2
1 2

1 1 1 1 2 2
z z

G J G J
u u

G J G J G J
a

æ ö æ ö- -÷ ÷ç ç÷ ÷= =ç ç÷ ÷ç ç÷ ÷ç ç +è ø è ø
          (33) 

Using (30)-(33), total strain energy (29) can be written as a 
function of the tube parameters and relative twist angle, 

( )sa , 

2
21 1 2 2 1 1 2 2

1 2 ,

1 1 2 2 1 1 2 20

( )( ) ( )( )1
ˆ ˆ( )

2

L

x y

E I E I G J G J
U u Ru ds

E I E I G J G J
a= - +

+ +

æ ö÷ç ÷ç ÷ç ÷çè øò  (34) 

The Euler Lagrange equation provides necessary conditions 
for the function ( )sa  that minimizes (34) and is given by 

d U U

ds a a
æ ö¶ ¶÷ç =÷ç ÷çè ø¶ ¶

                        (35) 

Applying (35) to (34) results in 
( ) 1 2ˆ ˆ( ) 1 sin ( )s u u sa n a= +                 (36) 

which is the same as (22). 
 The Legendre condition provides a second-order 
necessary condition for (36) to be a minimum energy 
solution and is given by 

2

0, [0, ]
U

s L
a a
¶

³ " Î
¶ ¶ 

                        (37) 

which is clearly satisfied by (34). 
 In robotic applications, the proximal ends of the tubes are 
mounted in motor-controlled bearings and so (0)a  is under 

direct control. While tube length L  is fixed, the twist angle 
at the distal end ( )La  is free in the minimization. This leads 

to the natural boundary condition for the minimizing 
solution *a  

( )* *, , 0
U

La a
a

¶
=

¶



                        (38) 

from which we recover the zero-torque boundary condition 
(25). 

D.  Torsional Model for an Arbitrary Number of Tubes 

The equations above can easily be extended to include any 
number of tubes of arbitrary stiffness and initial curvature as 
is now shown. Consider the case of n concentric tubes 
numbered from outer tube to inner tube. To write equations 

in the coordinate frame of the outer tube 1, we define the 
relative twist angles as   

1( ) ( ) ( ), 2, ,i is s s i na q q= - =                   (39) 

where ( )i sq  is the angular displacement of the ith tube at arc 

length s. Equilibrium of moments and forces must hold on 
every cross section and can be written as 

( )
( )

( )
( )

1 2 2

1 2 2

( ) ( ) 0 ( )

( ) 0 ( ) ( )

( )( ) 0
0

( )0 ( )

z

z

nz n

nz n

m s R s m s

n s R s n s

m sR s

n sR s

a

a

a

a

+

+ + =

é ùé ù é ù
ê úê ú ê ú
ê úê ú ê úë û ë ûë û

é ù é ù
ê ú ê ú
ê ú ê úë ûë û



           (40) 

The compatibility equation enforcing the coincidence of 
tube centerlines becomes 

   
1 2 2 2( ) ( ) ( ) ( )

( ) ( ) ( )

z z

z n n n z

u s R u s s e

R u s s e

a a

a a

= -

=

= -






                             (41) 

Combining the moment equation of (40), the compatibility 
equation (41) and constitutive model (2) results in 

( )
( )

( )

1

1 1 2 2 2

1 1 2 2 2

2 2 2 2

ˆ ˆ ˆ

T T
n n n

n n n

T T
n n n n z

u K R K R R K R

K u R K u R K u

R K R R K R ea a

-
= + + +

æ ö+ + + ÷ç ÷ç⋅ ÷ç ÷ç ÷- + + ÷çè ø





 

     (42) 

where we have used the shorthand notation ( )i z iR R a= . 

This can be simplified when ix iyk k= , e.g., circular cross 

sections of homogeneous material, using T
i i i iK R K R= to 

obtain 

( )
( )
( )

1

1 1 2

1 1 2 2 2

2 2

ˆ ˆ ˆ

n

n n n

n n z

u K K K

K u R K u R K u

K K ea a

-= + + +

æ ö+ + + ÷ç ÷ç⋅ ÷ç ÷ç ÷ç- + +è ø





 

            (43) 

We can also write the more general equation for curvature of 
the ith tube as 

( ) ( )
1 1 1

ˆ
n n n

T T

j j j i i j j j j j j i j z

j j j

R K R R u R K u R K R ea a
= = =

= + -å å å      (44) 

In (44), note that 1R  is the identity matrix and 1 0a = . 

Again using T
i i i iK R K R= , we can solve for iu  as 

( )
1

1 1 1

ˆ
n n n

T
i j i j j j j i j z

j j j

u K R R K u K ea a
-

= = =

æ ö æ ö÷ ÷ç ç÷ ÷= + -ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
å å å    (45) 

The x and y components of curvature can be obtained from 
(45) as 

1

,
1 1

,

ˆ ,   1, ,
n n

T
i j i j j jx y

j j
x y

u K R R K u i n

-

= =

æ öæ ö æ ö÷ç ÷ ÷ç ç ÷ç ÷ ÷÷= =ç çç ÷ ÷÷ç çç ÷ ÷÷÷ ÷ç çè ø è øç ÷è ø
å å    (46) 

The rates of relative twist angles can be computed from (41) 
as 

1 ,    2, ,i iz zu u i na = - =                           (47) 

To obtain an expression for izu we combine the constitutive 

model (2) and its derivative with  
[ ] [ ]i i i i im u m v n=- -                                (48) 

to arrive at  
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[ ] [ ]( )1ˆ ˆ(i i i i i i i i iu u K u K u u v n-= - - +              (49) 

Using [0,0,1]T
iv =  and assuming equal bending stiffness in 

the x and y directions, ix iyk k= , the z component yields the 

desired expression as 
ˆ ˆ ˆ( / )( )iz iz ix iz ix iy iy ixu u k k u u u u= + -                (50) 

While (50) holds for 1, ,i n=  , we need only evaluate and 
integrate it for 2, ,i n=  . Equilibrium of moments (40) 
together with the constitutive model (2) enable us to solve 
for 1zu as 

1 1 2 2( 1/ )( )z z z z nz nzu k k u k u= - + +             (51) 

Equations (46), (47), (50) and (51) comprise the set of 
equations that must be solved to compute the curvature 
along the length of the n tubes. They can be summarized as 

1

1 1,
1 1

,

,                                     1, ,

ˆ
ˆ ˆ( / )( )

ˆ( ) ( )

i
iz

iz iz
ixy iz ix iy iy ix

n n
T

i j z i z j j jx y
j j

x y

d
u i n

ds
du du

k k u u u u
ds ds

u K R R K u

q

q q q q
-

= =

= =

= + -

æ öæ ö æ ö÷ç ÷ ÷ç ç ÷ç ÷ ÷÷= - -ç çç ÷ ÷÷ç çç ÷ ÷÷÷ ÷ç çè ø è øç ÷è ø
å å



 (52) 

Boundary conditions are needed for the 2 2n- state 

variables, { }, , 2, ,i izu i na =  .  Since the tube angles at the 

proximal end, (0)iq , are the kinematic input variables, 

1(0) (0) (0)i ia q q= - .                           (53) 

Assuming no wrench is applied to the distal end of the 
manipulator, the torsional bending moment in each tube is 
zero,  

ˆ( ) ( ( ) ( )) ( ) 0iz iz iz iz iz izm L k u L u L k u L= - = =          (54) 

This yields a second set of boundary conditions 
( ) 0izu L =                                       (55) 

Numerical solution of these equations is illustrated in the 
example below. 

E. Simulation Example  

To compare the predicted shapes of the torsionally 
compliant model with that of the torsionally rigid model, the 
results of a three-tube simulation are shown in Fig. 3 and 
Fig. 4. Equation (7) was used to compute the curvature of 
the torsionally rigid model which was then analytically 
integrated as described in [6] to solve for the location of the 
robot in space. For the torsionally compliant model, an 
iterative method was used with (52) to determine the tip 
rotation angles ( )i iLq  that produced the desired base 

rotation angles (0)iq . The resulting curvatures were then 

integrated numerically from the base to the tip to compute 
the shape of the robot. 

The parameters for the simulation are given in Table 1. 
The bending stiffnesses were selected since they are 
representative of values that could arise in robot design. The 
lengths of the tubes were selected such that more flexible 
tubes extend telescopically from stiffer tubes. The tubes’  
curvatures are constant over the entire lengths and the 

coordinate frames are defined such that when the initial 
curvatures of the tubes are aligned, the rotation angles at the 
base are all zero, 1 2 3 0q q q= = = . The configuration noted 

in the table and depicted in Fig. 3 and Fig. 4 corresponds to 
rotating tube 2 at the base by -150 degrees. As shown in the 
figures, this configuration demonstrates substantial variation 
in twist angle for all overlapping portions of the tubes. 

TABLE 1. TUBE PARAMETERS FOR SIMULATION. 

Tube 1 (outer) 2 3 (inner) 

Relative Stiffness 5 3 1 

Initial Curvature (cm) 5 9 1 

Length (cm) 4 8 10 

Base Rotation, 
i
q (degrees) 0 -150 0 

 
Fig. 3.  Three-tube robot comparing torsionally rigid and compliant models. 

 
Fig. 4.  Tube twist angle versus arc length. 

IV. ANALYTICAL SOLUTION FOR TWO TUBES OF PIECEWISE 

CONSTANT CURVATURE 

The differential equation governing the twist of two constant 
curvature tubes, repeated here,  

( ) 1 2ˆ ˆ( ) 1 sin ( ) sin ( )s u u s c sa n a a= + =             (56) 
has two trivial equilibrium solutions 

( ) {0, }, [0, ]s s La p= Î                             (57) 
These correspond to the situations in which the cross 
sectional curvature vectors of the tubes have the same and 
opposite direction, respectively. In neither case is an 
external torque needed to maintain the configuration. One 
can guess, however, that the solution ( )sa p=  is not a 

minimum energy solution for  the kinematic input value 
(0)a p=  and thus it is likely that additional solutions to 

(56) share the initial condition (0)a p= . 
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 To study solution multiplicity, we seek an analytic 
solution to (56). To integrate by separation of variables, we 

use 
d

d

a
a a

a
=

    and write 

( ) ( )

(0) (0)

sin
s s

d c d
a a

a a

a a a a=ò ò




                       (58) 

This results in the following expression for ( )sa  

( )2 2( ) (0) 2 cos( (0)) cos( ( ))s c sa a a a= + -          (59) 
Evaluating this equation using the boundary condition 

( ) 0La =  and substituting the result in (59) yields 

( )2 ( ) 2 cos( ( )) cos( ( ))s c L sa a a= -            (60) 

Separation of variables can be used again to obtain 
( )

(0)

1

2 cos( ( )) cos( )

s
d

s
c L

a

a

a
a a


=

-ò            (61) 

In (61), the sign is selected to match the sign of the 
integration interval, ( )sgn ( ) (0)sa a- . Recognizing  (61) as 

an elliptic integral of the first kind, we desire an expression 
for the upper limit of integration, ( )sa . This can be 

obtained in terms of Jacobi elliptic functions by a variety of 
methods including converting the integral of (61) to standard 
form or by assuming a solution and showing that it satisfies 
(60). This results in 

( ) ( ) ( ) ( )( )2sin ( ) / 2 sin ( ) / 2 dn cos ( ) / 2s L L s c La a a= -  (62) 

in which ( )dn |u m is a Jacobi elliptic function [1]. Equation 

(62) expresses relative twist angle in terms of the twist angle 
at the distal end and is well posed since ( )dn | 0u m > . We 

are specifically interested in the value at the proximal end 
since it is the kinematic input, 2 1(0) (0) (0)a q q= - . 

( ) ( ) ( )( )2sin (0) / 2 sin ( ) / 2 dn cos ( ) / 2L L c La a a=   (63) 

This expression involves a single dimensionless parameter 

L c . Fig. 5 plots (63) for several values of this parameter. 
It can be seen that at least one value of ( )La  exists for each 

value of [ ](0) 0,2a pÎ , but it is also apparent that there can 

be multiple solutions. Solution multiplicity produces sudden 
changes in tube twist in response to incremental changes in 
the kinematic input, (0)a . These “snap through” instabilities 

are indicated as dashed lines in the figure and correspond to 
the tubes traversing between minimum energy branches of 
the curve.  

To determine the dependence of “snap through” on the 
parameter 1/ 2Lc , we count the solutions for ( )La  given 

(0)a p= . Equation (63) reduces to  

( ) ( )( )2sin ( ) / 2 dn cos ( ) / 2L L c La a=              (64) 

Since ( )dn | 0 1u = , (64) always has at least one solution 

{ } { }(0), ( ) ,La a p p=  corresponding to no torsional twist 

along the tubes’ length. To determine when additional 
solutions exist, we use the identity [1] 

( ) 1

1

dn ( ) |

1,  0 1

K m m m

m m m

=

+ = £ £
                       (65) 

and note that dn is periodic in its first argument with period 
2 ( )K m . Here, ( )K m is the complete elliptic integral of the 

first kind which is a monotonically increasing function of m  
with (0) / 2K p=  and (1)K =+¥ . Combining (64) and 

(65) results in  

( ),  1,3,5,L c nK m n= =                     (66) 

This equation has no solutions for / 2L c p< and for 

/ 2L c p= the 1n = solution is identical to the original 

solution { } { }(0), ( ) ,La a p p= . For / 2 3 / 2L cp p< £ , 

one new solution to (66) exists. Since ( )2sin ( ) / 2m La= , 

this yields two new solutions, ( )sin ( ) / 2L ma = . As 

seen in Fig. 5, these solutions are symmetric about 

( )La p= . Similarly, 3 / 2 5 / 2L cp p< £ yields four 

solutions to (66). 

 
Fig. 5.  Tip versus base twist angle. 

The dimensionless parameter / 2L c p=  is very 
important from a design perspective. The model predicts that 

tubes for which / 2L c p< will not exhibit “snap through.” 
As this parameter increases, additional solutions exist which 
lie on unstable branches of the relation. The critical values 
of (0)a for “snap through” correspond to the extrema of 

(0)a  adjacent to the 1n = solutions of (66). 

V. EXPERIMENT 

To validate the behavior predicted in Fig. 5, tests were 
performed on two tube pairs shown in Fig. 6. Each tube is 
glued into a collar as shown and mounted in the motor drive 
system described in [9]. Motor positioning accuracy is better 
than 0.1 degrees. Equation (63) must be adjusted to relate 

(0)a  measured at the proximal end of the curved portion of 

the tubes to the relative angle measured by the motor 
encoders at the tube collars, ma . This is given by 

( ) ( )2 1 2(0) (0) 18 mm /m z z zk k ka a a= - +      (67) 

Unlike (63), this computation requires the stiffness ratio of 
the tubes. The outer diameters of the tubes were measured 
with a micrometer to be 1.455 and 1.257 mm. The inner 
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diameters of 1.346 and 1.067 mm were estimated by 
inserting drill bits of the largest available diameter inside the 
tubes and using a micrometer to measure the diameter of the 
bits. Thus, the ID measurement is less precise and suggested 
a stiffness ratio between 0.8:1 and 1.2:1. Computation 
shows that this variation produces a difference in ma  of at 

most one degree. 

 
Fig. 6.  Dimensions of two tube pairs. 

 

 To measure the twist at the distal end of the tubes, ( )La , a 

circular graduated disk was attached over the last 2 mm of 
the outer tube. A pointer attached to a tapered dowel was 
inserted into the end of the inner tube and zeroed for the 
configuration in which the curvature of the tubes is aligned. 
The error in measuring tip angle was estimated to be 

2 degrees.  
Fig. 7 and Fig. 8 compare the torsionally rigid and 

compliant models with experiment for stable and unstable 
pairs of tubes, respectively. The torsionally rigid model is a 
line of unit slope while the torsionally compliant model 
obtained from (63) and (67) predicts s-shaped curves. 
Experimental data was collected by rotating the tube pairs 
quasistatically through a complete revolution in the positive 
and negative directions. This data produced an envelope of 
the possible reachable values of ( ), ( )m La a . The envelope is 

due to unmodeled hysteretic phenomena. Also shown are 
additional data points collected through sequences of 
motions within the envelope. These points demonstrate that 
the entire interior of the envelope in Fig. 7, including the 
point ( ) ( ), ( ) ,m La a p p= , is reachable and stable. In 

contrast, there are stable and unstable portions of the 
envelope in Fig. 8. 

 
Fig. 7.  Tip versus motor twist angle for a stable tube pair. 

 
Fig. 8. Tip versus motor twist angle for an unstable tube pair. 

VI. CONCLUSION 

The torsional kinematic model presented here provides 
substantial improvement in predictive power in comparison 
to the torsionally rigid model. It also enables analytic 

prediction, through the dimensionless parameter L c , of 
the existence of instability as well as the stable range of 
kinematic input parameters. While the model requires the 
integration of a two-point boundary value problem, it is 
likely that efficient techniques can be developed to enable its 
application to both robot design and real-time control.  
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