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Stability of Frictional Contact in Constrained
Rigid-Body Dynamics

Pierre E. Dupont and Serge P. Yamajako

Abstract—The use of rigid-body models during frictional con-
tact is often justified by proving the existence of a unique solution
to the forward dynamic equations. The implicit assumption here
is that the contact forces so obtained are stable. In this paper,
the rigid-body assumption is relaxed and body-to-body contacts
are modeled using springs and dampers. A singular perturbation
analysis reveals additional necessary conditions to ensure contact
force stability in the reduced rigid-body model. Furthermore,
the analysis indicates that stability depends on a damping ratio
associated with the rigid contacts.

Index Terms— Complementarity problem, contact constraints,
Coulomb friction, rigid-body dynamics, stability.

1. INTRODUCTION

HERE ARE MANY robotic applications which necessi-

tate the computation of the forward and inverse dynamics
of constrained bodies. These include the automated planning
of mechanical assembly tasks, dextrous manipulation, virtual
reality systems, and in some cases, robotic grasping and parts
fixturing as well. For the forward problem of simulation,
the main goals are to compute system motion accurately
and efficiently. In the case of inverse dynamics, a thorough
understanding of the dynamic phenomena is needed in order
to develop motion planning strategies.

Most often rigid-body models are used to represent con-
strained systems. Of course, real bodies are compliant. Rigid
bodies are reduced order models introduced for ease of com-
putation. As such, their use must be justified. The singular
perturbation method presented in this paper is a rigorous way
to provide this justification (assuming, of course, that the
complete order model is correct). This is in contrast to the
common approach of justifying the rigid model by proving the
existence and uniqueness of the rigid-body forward dynamics
solution.

The analysis in this paper reveals that with sufficient
normal-force-dependent friction (e.g., friction coefficients are
sufficiently high), the normal contact forces become unstable
and the rigid-body assumption is invalid. Only in certain
cases is contact force instability manifested as existence
and uniqueness problems of the rigid-body forward dynamic
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equations. Other dynamic instabilities cannot be detected
directly from the reduced-order rigid-body models.

The paper is organized as follows. Related work is de-
scribed in the next section. The following section describes
the assumptions and formulates the dynamic equations. In
Section IV, the singular perturbation analysis is presented
using lumped viscoelasticity at each friction contact. The
validity of the rigid model is related to the stability of the
boundary layer describing the contact forces. A criteria for
deciding instability is given and is related to the existence
and uniqueness result of the Linear Complementarity Problem
(LCP) formulation. Section V summarizes the results.

II. LITERATURE REVIEW

For frictionless systems, proofs of forward dynamics exis-
tence and uniqueness for rigid-body systems can be found
in dynamics texts. When small amounts of normal-force-
dependent friction are included, experience has shown that the
rigid-body equations remain well behaved. However, starting
with Painlevé, examples of rigid-body systems with Coulomb
friction were published which produced either no solution or

multiple solutions to the forward dynamics problem [3], [7],

[91, 1], [12].

The related literature addresses two issues. The first involves
the detection or prediction of existence and uniqueness prob-
lems. due to normal-force-dependent friction, e.g., [3], [4], [7],
[9], [11], [12], [15]). The second issue concerns modification
of the system model in order to achieve an understanding and
resolution of the forward dynamics existence and uniqueness
problems.

The most general method for checking solution existence
and uniqueness is that of casting the forward dynamics prob-
lem as an LCP in which unilateral contact constraints are
described using complementarity constraints between the nor-
mal contact forces and the normal relative acceleration. This
method was developed by Lotstedt for planar motion of
systems with Coulomb friction at sliding unilateral contacts
[7], [8]. Generalizations to include rolling contacts and spatial
motion have been proposed by Trinkle et al. [13]. For spatial
motion, the complementarity formulation becomes nonlinear
unless Coulomb’s law is approximated.

Given applied forces or torques, one does not expect a
mechanism to produce any of several possible motions or no
motion at all. A failure to predict the actual motion is indicative
of an inadequate model, an insufficient description of system
state or both. The likely suspects are two: the rigid-body
assumption and the friction model.

1042-296X/97$10.00 © 1997 IEEE
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While Coulomb’s law is an extreme simplification of actual
friction, any friction law depending on normal force could
educe similar instabilities in rigid-body mechanics. The au-
thors are not aware of any attempts to resolve the existence
and uniqueness problems solely through modification of the
friction law.

In this paper, rigid bodies are considered as simplifica-
tions of bodies with compliant contacts. The normal force at
each contact is modeled by a spring and damper in parallel.
Consequently, the reaction forces, as functions of contact
displacement and velocity, depend directly on system state.

We are not the first to consider models of this type [1],
[5], [14], [15]): Whitney used Hertzian contact models [15].
Wang et al. discretize the contact area into a collection of
patches with lumped stiffness [14]. Howard et al. extend
this work to enable transient analysis of contact forces and
displacements given assumptions on the maximum friction
forces [5]. Baraff used a damping/stiffness contact model to
. argue that the Principle of Constraints, which advocates the
use of finite forces over impulses whenever possible, has no
physical basis [1].

III. CONSTRAINED RIGID-BODY DyNAMICS

Consider an n degree of freedom system with generalized
coordinates given by the vector ¢ which is subject to m
unilateral contact constraints. Let ¢:(q) be the minimum
distance between the bodies comprising the ith contact. The
unilateral contact constraint can be written as

®i(g) 20 M
with the equality holding only when the bodies are in contact.

The assumptions which are employed in the rest of the paper
are as follows.

* Contact is defined by a finite number of point contacts.

* Contact normals are well defined and are linearly inde-
pendent in the space of system generalized forces.

* Contact friction obeys Coulomb’s law. ‘

* The direction of the friction forces is known (always the
case for planar motion).

* All contacts are sliding (not rolling).

While this last assumption precludes direct application

sufficient to demonstrate our major result. Namely, contact
- force uniqueness does not necessarily imply contact force
stability. v
The constraint distance functions can be written as a column
- vector ®(q) € R™. Its Jacobian matrix D, = 09/dq is used
to project contact forces into the space of generalized forces
and torques. In this way, the constrained dynamic equation
. can then be written as
M(q)q + h(g,4) = u+ 7 (g, )\ + £ )
where M (q) is the inertia matrix and % consists of centrifugal,
Coriolis and gravity terms. The generalized input forces and
torques are given by . A is the vector of constraint force

of our results to many practical robotic applications, it is
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magnitudes in the normal direction and [y is the sum of fric-
tion forces and torques expressed in terms of the generalized
coordinates.

Following the Coulomb model, we assume friction depends
linearly on the contact forces during sliding. Let the relative
velocity in the tangential direction at contact ; be I'i(¢)g where
I'T € R". Thus, the components of f; can be written as

fri = 97(q, 4, p:)) = ~ d_oumsen(Tgdrir,. (3
=1

For convenience, we introduce the matrix <]3q € R™*" whose
rows are <i>qi, i=1,--- m.

Collecting the coefficients of friction into the vector pu =
[ie1, 12, -+, pim )T, the dynamic equation can be written as

M(9)§+h(a,d) = u+ [®] (q) + T (q, 4, w)] . (&)
The vector of normal contact accelerations can be obi;ained
by differentiating the vector ® twice with respect to time.

b = P+ d,q. )

A. Formulation as a Linear Complementarity Problem

At a rigid, unilateral, slidin_g contact, the normal force \;
and the normal acceleration, ®;, form a complementary pair
as they must satisfy

Ai>0, & >0, \d, =0 (6)

Either the normal contact force is positive and the normal
acceleration is zero or the normal acceleration is positive and
the contact force is zero. Using (4) and (5), the vector of
normal contact accelerations can be written in terms of the
normal forces A and the inputs .

® = &M [®F + &T| A + (0,M(u - h) +&,4). (7)

In itslgeneral form, the linear complementarity problem is
to solve for a vector z € R™ given the matrix D € fHmxm
and the vector y € R™ which satisfies

De+y20, >0, z;(Dz+y);=0. (®)

The existence and uniqueness of z are described by the
following definition and theorem from Cottle et al. [2].

Definition 3.1: A matrix D € R™*™ is a P-matrix if all
of its principal minors are positive.

Theorem 3.1: A matrix D € R™*™ is a P-matrix if and
only if the LCP given by D and y has a unique solution z
for all vectors y € ®™,

We can make the following identifications with the rigid-
body dynamics problem.

TR
Y~ (PgM ™ (u— h) + byq)
D~ & M~ ST + &7.

®

This result provides a necessary and sufficient condition on the
matrix D for the existence and uniqueness of normal contact
forces given arbitrary input forces and torques u.
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IV. SINGULAR PERTURBATION ANALYSIS

While the LCP results discussed above provide conditions
under which a solution to the rigid-body forward dynamics
problem with unilateral contacts exists and is unique, they do
not directly address the stability of the rigid-body solution. In
this section, we assume a full-order model which includes con-
tact compliance and damping and use a singular perturbation
analysis to determine under what conditions the reduced-order
rigid-body model is stable and thus valid.

“Of course, the correctness of the results depends upon the
validity of the full-order model used in the analysis. For the
purposes of this paper, we employ the simplest full-order
model in which contact forces are a function of system state.
In particular, we relax the r1g1d -body assumption by modeling
the contact force using lumped stiffness and damping. The
constraint equations ® = 0 are satisfied exactly only when
there is contact with zero normal force. Therefore, we can
write A as

N :{S[C@JFKCI)L-, P, <0 (10)

otherwise

where C, K € ®R™*™ are diagonal damping and stiffness
matrices, respectively.

Apparent interpenetration corresponding to ® < 0 is justi-
fied physically as normal deformation of the contact asperities.

The damping and stiffness matrices are expressed in terms
of a small parameter ¢ such that the rigid model is recovered
in the limit ¢ — 0. For simplicity, stiffness and damping as
well as ¢ are assumed the same at each contact with ¢ > 0,
k>0and I € ™™™,

el kI

c=F K=" ~ay

The contact forces are given by

c . k
A= — [%q) + E(I)]i > 0. (12)

This contact model was used by McClamroch to represent a
manipulator constrained by a frictionless environment [10].

The relative scaling of C and K is chosen so as to preserve .

the damping ratio of the contact, { = v/c2/k/2, in the limit.
In an: impact between two bodies with this contact model,
a coefficient of restitution e = 1 for an elastic collision
corresponds to ¢ = ¢ = 0. For an inelastic collision, e = 0
corresponds to k < oo and ¢ = oc. To ensure separation
of time scales, however, the stiffness term must dominate
damping in the limit. Specifically, £ and ¢ must satisfy k/c >
NG

The resulting dynarhic equation is given by

. .. sl e 2k
M(q)i + hlg,§) = u— [®] + 7] [%tﬁ + ;cb}. (13)

To reveal the two time scales of (13), it must be written in

standard form which separates the fast and slow variables.
Following [10], the contact interpenetration distances are

used as the fast variables z and the constrained rigid-body

modes are taken to be the slow variables z. They can be
written in terms of ¢ as

[ez] _ [q)((Ith)] c R (14)

x q2

where ¢ has been partitioned such that ¢; € R and ¢ €
R(»—m) Given our assumption on the linear independence
of contact normal vectors, we know rank(®,) = m and the
inverse function theorem allows us to write

l:‘h] - [Q(ezvx)}' (15)
Q2 T

To express (13) in the new coordinates, we write the invertible.
Jacobian of (15)

299 90
J(ez,z) = [36z 311‘] (16)

and obtain, with all quantities expressed in terms of (ez,x)
and their derivatives,

JTMJ[ ] + JTMJ[ ] +JTh

—JT(@F + ) (cv/ez + kz) +JTu. (A7)
Smce the Jacobian of
(g1, q2) = ®(Qez,z);7) = ez (18)
is given by
5(%% =&, = 0] (19)
its transpose, appearing in (17), is
Jrel = m (20)

and rearranging we have
[ef’] = - J—lj[e.z] —J'M
Z &
_ J_lM__lj._T [C\/EZ + kz]
0
—JIMT (e +kz) + T M T 21)
Defining the notation

(A)uv = [aij], i=1,.--

the fast dynamics can be written as

7u;j=]-a"'7v (22)

M | = M
( JIMTNIT T)mm(c\/_z‘l'kz
_(JIMTIET) (ev/ed + k2) |
+ (JIM ™Y nu (23)
(21) is in standard form if (23) has one or more isolated real
roots Z(z, &) when evaluated at € = 0 [6]. The reduced, rigid-

body model (Z,Z) is obtained from the last n — m rows
of (21) through substitution of z and = 0. (23) can be
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solved for Z as long as the matrix sum (J~'M~1J-T), .. +
(J~ M “1<i>qT)mm is invertible. Furthermore, it must be the
case that z; < 0 to satisfy (12) and (14) for unilateral
constraints. The ability to solve for 2, however, tells us nothing
of the stability of this point and consequently nothing of the
stability of the rigid model. '

To study stability of the boundary layer, the change of
coordinates y = z—Z is introduced along with a stretched time
scale, 7 = t//e. Since in the time scale r, the quantities ¢ and
x are slowly varying, (23) can be evaluated at ¢ = 0. With
the elimination of terms associated with the steady solution,
Z, the boundary layer dynamics, with equilibrium at y = 0,
are described by

'+ [(JTMTT ) (JTIMTIET) L T(ey + hy) =0
24)

where / indicates differentiation with respect to 7. Recalling
the form of J from (16), its inverse is
21T -8

J_l(ez,x) = [ Oez ez ox :| (25)
and the matrix products in (24) involve only the first m rows
of this. matrix. Note that the Jacobian of (14) is the inverse
of J(ez,z). ‘
2%

% = [%{; ﬁ”] = J ez, z). (26)
Equating (25) and (26), we have .
= ([52] " (2] [32]]
=[g 2]-0, 27)

Thus, we can express the boundary layer system in the original
coordinates.

Y+ [Q)qM_l (@f + ég)] (cy +ky)=0 29)
or
y' ] [ 0 I Y
1y~ |-kD -cD ||y
D= [e,M7* (2] + &])]. 29)

Our result can be stated as the following theorem.
Theorem 4.1 (Validity of Rigid-Body Model): Consider the
system described by (13), which can also be written as (21),
with initial conditions that are smooth functions of e. If
the following conditions are satisfied in a neighborhood of
(z,&,2, %) for all time ¢ € [0,%4]:
1) the terms on the right-hand side of (21) and their first
partial derivatives are bounded and continuous;
2) the origin of the boundary layer system is exponentially
stable; and
* 3) Z(z,4) has continuous first partial derivatives with re-
: spect to its arguments;
then the following are true

* the reduced rigid-body model, (Z,z), obtained from the
last n — m rows of (21) by substitution of ¢ = 0 and
z = z, has a unique bounded solution for all ¢ € [tg,t1]
where ty € [0,¢1), and
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» there exist positive constants § and €* such that for all
initial conditions z(to,¢€), Z(to,€), z(to,€) and %(to,¢€)
satisfying ,

et R

and 0 < € < €*, on the interval [{o,?1], the singular pertur-
bation problem has a unique solution z(¢,¢€), (¢, ¢€), z(¢,¢€),
2(t,€) and.

€29)
(32)

Proof: The first result follows from conditions 1 and 2. A
necessary condition for the boundary layer to be stable is that
D be invertible. Thus, Z and the corresponding A exist, and
are unique for all bounded inputs. Together with 1, standard
existence and uniqueness results for differential equations yield
the first result for Z. The second result follows directly from
Tikhonov’s theorem. See, e.g., Theorem 8.1 in [6]. O

In the;. formulation of this result, the normal acceleration
vector, ¢, was set to zero. Consequently, Theorem 4.1 applies
directly to bilateral constraints in which the reaction forces
can be of either sign.

However, the theorem also applies to all active unilateral
constraints. For a given input vector, the problem of solving
for the active constraints such that (6) is satisfied is nothing
more than solving the LCP. Therefore, in solving the forward
dynamics problem, we must first solve the LCP to determine
the active constraints and then use Theorem 4.1 to check if
they are stable.

Since we expect that, during many motions, a set of con-
straints will remain active for some time interval, we would
like to know whether or not the LCP existence and uniqueness
result implies the result of the preceding theorem or vice
versa. The main constraint of the theorem is the requirement
for stability of the boundary layer. In the following section,
the conditions for boundary layer stability are developed and
compared with the LCP result of Theorem 3.1.

A. Stability of Boundary Layer

By linearization at the origin, stability of the boundary
layer depends on the eigenvalues of D = &, M~ (®T + <I>qT)
evaluated at Z(x, &) as well as the values of ¢ > 0. and & > 0.

Remark 4.1: The matrix D which, along with ¢ and £,
determines stability of the boundary layer is the same matrix
used to determine solution existence and uniqueness in the
rigid-body LCP formulation.

In what follows, we show that while the LCP formula-
tion requires only that D be a P-matrix to ensure solution
existence and uniqueness, the singular perturbation analysis
imposes additional constraints on the D associated with active
constraints.

Given that the columns of @5 depend linearly on the friction
coefficient of the associated contact, the frictionless boundary
layer depends on the eigenvalues of &, M ~1®T. Since M is a
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positive definite, symmetric matrix, ®,M ‘1<I>; is as well and
the frictionless boundary layer is always stable. As the friction
coefficients are increased from zero, the eigenvalues of D can
migrate from their starting values on the positive real axis.

In the most general case, the matrix may be defective and
the most a coordinate transformation of (28) will achieve is
the Jordan form, J, of &, M~ (<I>T+(I>T) This transformatlon
leads to the charactensuc equation

det(Is> 4+ cJs+kJ) =0 (33)

where I € R™*™ is the identity matrix. The determinant of
a triangular matrix is given by the product of the diagonal
elements which are of the form

s+ cla+ib)s+k(a+ib) =0 34

where a + 4b is a complex eigenvalue of ®,M (&L + CT>T)
The boundary layer is stable if (34) has stable roots for all
eigenvalues of ®,M~1(3T + 3T).

Examining (34) it is easy to show that for exponential
stability

a>0
ac(a® + b?) - b%k > 0.

This leads to the following theorem.

Theorem 4.2: Only in the case of a single sliding contact
can we say that the LCP solution exists and is unique if and
only if the boundary layer is exponentially stable for any
¢ >0

Proof: For a single contact, ®,M~1(®T + &T) is a
scalar and the result follows from (35) and from the fact
that the real eigenvalues of P-matrices must be positive [2].
For multiple contacts, if ®,M~1(®7 + &T) is a P-matrix,
it can possess complex eigenvalues w1th positive or negative
real parts. (Complex eigenvalues with negative real parts can
occur for P-matrices in R3*3 or higher. See Cottle et al.
for an example [2].) If the real part of an eigenvalue is
negative, the boundary layer is unstable. If the real part of
an eigenvalue is positive, boundary layer stability depends
on the particular value of ( = 4/c%/k/2. In either case,
boundary layer instability corresponds to contact forces which
are exponentially growing sinusoids. Finally, we demonstrate
that boundary layer stability does not imply LCP existence
and uniqueness. The following matrix has eigenvalues 1 and 3
which would produce a stable boundary layer for any ¢ > 0,
however, it is clearly not a P-matrix.

-1 4
[—2 5] ‘ (36)

O

(35

B. Example

The results of Theorems 4.1 and 4.2 are illustrated by the
planar motion of a rod in contact with two walls depicted
in Fig. 1. The rigid rod possesses three degrees of freedom
which can be described by the z and y coordinates of its
center of mass and by its angular orientation, 6. Thus, we take
q = [z, y,0]T. The rod has a mass, m, and a moment of inertia,

////////T///////////////////

nl

Fig. 1. Planar rod of mass m and moment of inertia J in contact with two
immobile walls.

J, about its mass center. This is analogous to geometries
studied in [12] and [15].
There are two constraints which are given by

= y—lsing B
¢ = [(a; +1lcos@)sine — (y+ lSiH@)Cosa] =0. 37
This can be differentiated to obtain
0 1 —lcosf
<I>q - [sin a —cosa —l Cos(9 _ a):l . (38)

The Coulomb friction forces at the contacts are given by
fr=9Ix (39)

where the signs of A\’s components to maintain contact are
taken to be positive and

R ~p1 sgn(Zey) — 2 8gn(Zeg) COS
<1>;F = 0 —p2 sgn(Zeo) sina
— i1 sgn(Ze1)lsind  pg sgn(Zez)lsin(f — )
40)

where 1.; denotes the = component of rod velocity at contact 1.
In this case, ®,M 1 (®T + &T) = [a,;] where
ayr = m~ Y+ (12/J)(cos? 6 + p1 sgn(dc1)sinf cos )
a1z = —(cos a + po sgn(ies)sina)/m + (12/J) cosd
x (cos(f — a) — p2 sgn(Eez)sin(f — a))
as, = —(cosa + py sgn(de)sina)/m
(l /J) cos(8 — a)(cos b + py sgn(de1)sinf)
age =m L+ (12/J) cos(f — a)
x (cos(f — a) — p2 sgn{ie)sin(f — a))
(41
For a given rod and wall configuration described by (9, a),
the eigenvalues of ®,M~1(®T + &T) are determined by the
dimensionless group 1 < mi?, /J < oo.
Consider the case when o = /4, § = /2.3 (78°) and
mlz/ J = 3 (uniform distribution of mass). The stability map
for this case appears in Fig. 2. The two solid curves 'labeled
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=10 |
Unstable: I‘a>0, b%0 i

W2 sgn(xcy)

. Sublea>0,b=0 |
-------- o ——— e S
Ncdk=0 : | ;

U:nstable:: a>0, b%#o

4 3 2 41 0 1 2 3 4
Wi sgn(icr)

Fig. 2. Stability map for rod in contact with two walls. 8 = /2.3,
o = x/4,mi2/J = 3. Stability of the boundary layer is indicated in terms
of eigenvalues a + b of matrix D. Region marked stable is marginally stable
for ¢/k = 0 and exponentially stable for ¢2/k > 0. Boundary of stable
region is shown for several values of c?/k.

. det(D)<0 |
s e e
No solution or : : :

1L... multiple solutions.

[

~~
3 ! ‘
) : :
Nt ' T
a, oV”"””‘]—“""”)’ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
F / P- matrix
- _,ﬁ_._.-.‘rv”‘".._f. T AR TELEREERE
d; <0 : Solution exists
R Pt and is-unique.
Multiple , _ .
8- solutions. " S S e from
4 i i i i H i i
-4 -3 -2 -1 0 1 2 3 4
p’lsgn(xc])

Fig. 3. P-matrix map for rod of Fig. 2. In the regions where one or more
principal minors are negative, some input vectors do produce unique solutions.

¢®/k = 0 mark the boundaries of unstable regions containing
complex eigenvalues with positive real parts. These eigenval-
ues produce contact forces which are exponentially growing
sinusoids. As contact damping, described by 4¢% = c?/k, is
increased, the stable region expands to include portions of
these regions as shown by dashed lines.

There is a small unstable region labeled at the top of the
graph which contains complex eigenvalues with negative real
parts. For large values of c?/k, the region of instability is
reduced to the union of the two regions with ¢ < 0. As can
be seen from the figure, boundary layer instabilities can occur
for friction coefficients typical of unlubricated contact.

Fig. 3 shows the region in which &, M~1(®T + &7) is
a P-matrix. In this region, zero, one or both contacts may
be maintained depending on the value of the input vector. In
all cases, a unique solution exists. The region in which the
P-matrix conditions are not satisfied is composed of three
subregions which each correspond to at least one of the three

7 11]
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principal minors being negative. In these regions, certain input
vectors may produce multiple solutions to the LCP while for
others, no solutions exists. , ‘

This example clearly demonstrates the result of Theorem
4.2. Boundary layer stability does not imply that the P-matrix
condition is met nor does the latter imply the former.

V. CONCLUSION

Justification of the reduced (rigid body) model requires both
the uniqueness and the stability of the contact forces. Prior
work has assumed that contact force uniqueness, obtained from
an LCP model, implies their stability. The major contribution
of this paper is to disprove this assertion by counterexample.

- In fact, contact force stability depends both on the full-

order contact model assumed and on how the rigid-body
limit is taken. In particular, for sliding contacts modeled by
lumped stiffness and damping, the conditions for solution
uniqueness and stability are equivalent only in the case of
a single contact. Furthermore, it is shown that even as the
rigid limit is approached, contact force stability depends on
the damping ratio of the contacts—a quantity usually only
indirectly associated with rigid bodies through the coefficient
of restitution.

Testing the validity of the rigid-body problem during sim-
ulation involves three steps. First, LCP theory can be used to
confirm the existence and uniqueness of the contact forces.
Next, given the input vector, the LCP can be solved to
determine the active constraints. Finally, Theorem 4.1 (or its
equivalent, extended to include a combination of rolling and
sliding contacts and based on the appropriate contact model)
can be employed to verify the stability of the active constraint
forces.
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