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Abstract

It s well known that the introduction of Coulomb fric-
tion n rigid-body dynamics can lead to problems of exis-
tence and uniqueness in the forward equations. In this pa-
per, it is shown that these problems relate to jamming and
wedging. Separate conditions for jamming and wedging are
provided in the three common formulations of constrained
systems. These conditions are illustrated with examples.

1 Introduction

As precision becomes more important in manipulation
and assembly tasks, increasing emphasis has been placed
on obtaining accurate dynamic models for motion planning
and simulation. Friction is important in many robotic sys-
tems. This includes internal friction from nonbackdrivable
transmission elements (e.g., screws) as well as friction aris-
ing through contact with the environment.

Many assembly and dextrous manipulation tasks have
been studied as quasistatic processes under the assumption
that precision assembly is inherently a slow process. In this
context, jamming and wedging have been thoughtfully ex-
amined by Whitney and his colleagues [11]. However, to
increase productivity and cost effectiveness, higher speeds
and the inertial forces which produce them must be consid-
ered. The possibility of jamming or wedging arises when
friction depends on the magnitude of the contact force.
The main contribution of this paper is to provide tests for
identifying the onset of jamming and wedging from the
dynamic equations.

In the next section, jamming and wedging are defined
and illustrated by simple examples. In section 3, three
common descriptions of the constrained dynamic equations
are formulated to include friction. In the following section,
jamming and wedging conditions for each formulation are
presented and proven. These are followed by two examples
and concluding remarks.

*This work was supported in part by the Dynamic Systems
and Control Program of the National Science Foundation under
grant MSS-9302190.
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Figure 1: Block sliding to right on horizontal surface.
Moment associated with friction force is neglected.

2 Background

We assume a simple Coulomb model described by the
following equation in terms of normal force, f,, friction
force, fy and velocity, v.

fr >0, (unilateral contact)
v# 0= | fr| = plful, vff <O (1)
v=0=[fsl=wlfal, 0 €10,4]

The last equation indicates that during static contact, the
friction force assumes the direction and magnitude neces-
sary to prevent motion. The actual friction coefficient, g,
is fixed and depends on the materials in contact.

By definition, friction and thus acceleration are discon-
tinuous at velocity reversals. Much more subtle is the fact
that Coulomb friction can produce discontinuities in ve-
locity as well. To understand how this can occur, consider
the case of a block sliding on a horizontal surface with co-
efficient of friction u as shown in Figure 1. The forces fa,
fr and f; are the applied, reaction and D’Alembert iner-
tial forces, respectively. If the block starts from rest then
motion will ensue only if the applied force, fq, lies outside
the “friction cone” defined by g = tand. Similarly, if the
block is sliding, it will smoothly decelerate to rest if the
applied force lies inside the friction cone. In both cases,
the D’Alembert inertial force, f;, is directed horizontally.

Now assume that the horizontal surface accelerates up-
ward. Assume that motion constraints between the surface
and block cause the inertial force of the block, f;, to lie
along the line labeled “Locus of inertial forces” in Figure
2. (This is analogous to the inertial coupling between a
screw and nut [3]). We can express the balance of forces
on the block as

fat fi+ fr=0. (2)
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Figure 2: Block sliding to right on horizontal surface
which accelerates upward.

Figure 3: Wedging during peg insertion. Overlapping
friction cones at contacts represent sets of possible reaction
forces, fr1 and fr2.

For the small applied force, f; and f,. must take on large
magnitudes in their given directions for the forces to sum
to zero as shown.

If the locus of inertial forces is, in fact, collinear with the
active edge of the friction cone, the magnitudes of f; and f,
approach infinity. Considering the directions of f, and f;,
this indicates that the block comes to rest instantaneously
with respect to the horizontal surface — a discontinuity in
velocity indicating the onset of jamming — a condition in
which no motion can occur at a contact given the applied
forces.

If f; lies inside the friction cone, this also corresponds
to jamming. To understand this important point, note
that during static contact, the Coulomb model produces
the force necessary to inhibit sliding. Consequently, the
reaction force produced is collinear with the inertial force
and thus produces jamming.

Wedgingis a static phenomenon which occurs when the
resultant forces at the constraints are linearly dependent.
An example of a planar peg-in-hole insertion presented by
Whitney [11] is shown in Figure 3. If the friction cones
at the two contact points overlap, static contact allows
four independent reaction components to constrain only
three degrees of freedom. This is the familiar problem of
a statically indeterminate system.

Starting with Painlevé, examples of rigid-body systems
with Coulomb friction were published which produced ei-
ther no solution or multiple solutions to the forward dy-
namics problem [2,4,5,6,8]. While not stated, the examples
described all correspond to jamming. This is made espe-

cially clear in [2] and [5] which indicate the impact-like
transition which occurs.

Recently, it has been shown that the inclusion of compli-
ance at the contacts resolves the existence and uniqueness
problems [3,10]. Of course, this is the method used to re-
solve statically indeterminate problems and so compliant
models eliminate the rigid-body ambiguities of both jam-
ming and wedging. Issues related to jamming and wedging
are discussed in [1,7,9,11].

3 Constrained Rigid-body Dynamics

Consider an n degree of freedom system with general-
ized coordinates given by the vector ¢ which is subject to
the m holonomic (rheonomic) constraints

®(q,t) = 0. (3)

Using Lagrange multipliers, the constrained dynamic equa-
tion is

M(q)§+h(g,4) =7+ P (¢, )X + f; (4)

where M (q) is the inertia matrix and h consists of cen-
trifugal, Coriolis and gravity terms. The generalized input
forces and torques are given by 7, A is the vector of con-
straint forces and f; is the friction forces and torques.

We can write the normal force at contact ¢, fn;, in terms
of the generalized coordinates as

fri = @l 1) A (5)

Following the Coulomb model, we assume friction at the

ith contact, fri, to depend linearly on the contact forces,

fri=00(q, 4, i t) A (6)

where é); depends linearly on the coefficient of friction pu;.
In contact coordinates p;, the friction force is orthogonal
to the constraint direction, i.e.,

by d 7 T By =0 (1)

assuming the inverse of the Jacobian matrix J; = dp;/dq
exists.

Collecting the row vectors ®, into the matrix &,
and the coefficients of friction into the vector pu =
[11, #2, - . ., )T, the dynamic equation can be written as

M(q)§+ k(g §) =7+ [®g (¢, 1) + D5 (¢, . m, )] X (8)

Three common matrix representations of (3) and (8) are
developed below.

3.1 Differential-algebraic Equations

In order to obtain a set of (n + m) differential-algebraic
equations, we differentiate (3) twice to obtain the con-
straint acceleration equation.

Dyj =2, (9)
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oG = —(Pqd)gq — 2Pqrg — Pre = T'(q, 4, 1) (10)
(10) and the dynamic equation (8) can be expressed to-
gether in matrix form as

M —(dF 4+ o7 i r—h
IR (G

It is easily seen that the choice of generalized coordinates
does not affect the rank of the leading matrix. Provided
that this matrix is invertible, the equation can be solved
for the n accelerations, ¢, and the m contact forces, A.

3.2 Embedding Method

The preceding equation (11) is redundant since, with
m constraints, there are only (n — m) independent gener-
alized coordinates. It is common to reduce these to a set
of n equations. To do so, we partition ¢ into (n — m) in-
dependent coordinates, ¢;, and m dependent coordinates,
¢a. The acceleration constraint equation can be written as

gi
[(I)q, | ¢qd][_]zr (12)

Assuming the existence of @;dl, the accelerations can be
written as

.. i I .. 0
= . = _ i+ _ 13
! |: q4d :| |: _@qdl@q’ :| ! |: ®qdlr :| ( )

Defining

I 0
A= _ , b= _ 14
[ _(I)qdlq)qz :| [ (I)qdlr :| ( )

the dynamic equation (8) combined with constraint equa-
tion (13) can be written as

[ A, —(@T +&7) | [ 1 ] =r—h—Mb (15)
involving the (n—m) independent generalized accelerations
and the m reaction forces. It can be shown that the rank
of the matrix in (15) does not depend on the choice of in-
dependent coordinates. [1]is an example of the embedding
method.

3.3 Coordinate Reduction

Without friction, it is customary to premultiply (15) by
AT since AT@g = 0. This eliminates the contact forces A
and produces (n —m) equations involving the independent
accelerations while preserving the positive definite prop-
erty of the inertia matrix.

With friction, it is still possible to eliminate the contact
forces, A. This can be accomplished by premultiplying (15)
by an orthogonal complement of (®, + &,)”. Define

T = {T e Rin—mixn | T(®y+ &))" =0, rank(T) =n — m}

(16)

In other words, T+ is the set of matrices whose null space
is spanned by the columns of (&, + &,)7.
For T € T, (15) is reduced to

[TMA] G = T(r — h — Mb) (17)

[9] is an example of this approach. Note that it is not
possible to define a change of coordinates ¢; = Bp such
that BT AT € T+ 50 as to ensure a positive definite inertia
matrix BT AT MAB.

If the contact forces are of interest, the accelerations,
§i, can be eliminated from (15) by premultiplying it by
S € St where

St={SeR™" | S(MA) =0, rank(S) =m} (18)
This yields the equation

[S(@5 +&7)] A =—S(r—h— Mb) (19)
4 Jamming and Wedging Conditions

The conditions for jamming and wedging are presented
in two theorems below.

Theorem 1: Jamming - Assuming no wedging, the
rigid-body system described by (11), or (15), or (17) and
(19) is jarmnmed if there exists a vector p; with components
p7i in the intervals [0, ;] such that a linear combination
of columns of [@g + ég] lie in the subspace of admissi-
ble inertial forces and torques spanned by the columns of
MA in (15). If in motion, the generalized accelerations
and contact forces associated with the linearly dependent
columns become infinite and the sliding velocities at these
contacts jump discontinuously to zero. Evaluated at pu;,
the matrices in (11), (15), (17) and (19) are singular.

Proof: The theorem is proven for jamming at the ¢
contact. It can be generalized for simultaneous jamming
at multiple contacts.

Based on our assumption of no wedging and rank(A) =
n —m, we know

th

rank((i) = [@g + ég]) = m (20)
rank[MA] = n—m (21)

Clearly, the columns of M A span the subspace of inertial

forces and torques expressed in the generalized coordinate

th

directions. Assume that the :"" column of ® is almost a

linear combination of the columns of M A. That is,

O, =[MAla+ v (22)
where o € R"7™™, ¢ € ® > 0 and v € R™. The latter is
chosen so that [MA, @] has full rank when € # 0.

Using the properties of determinants,

det [MA, @]

= det [MA, él,...,éi_l,fv,éi+1,...,ém] (23)
= edet [MA, él,...,éi_l,v,éi+1,...,ém]

= €A
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with A # 0.
Using Cramer’s rule to solve for A;,

det [MA, ®1,...,0i1,7 —h — Mb, Diy1,..., O]
i = n
€

(24)
Note that 7 — h — Mb is a function of the input forces and
torques and so can be chosen arbitrarily. Assuming it is
linearly independent of the other columns in the numera-
tor,

lim X\; = o0 (25)

€e—0

If 7 — h — Mb was not independent of the other columns,

lim A; = 0

— =0 26
e—0 lime_o €A ( )

However, any input perturbation with a linearly indepen-
dent component will cause A — oco.

Now solving for the kth acceleration,

det [(MA), ']

A (27)

Gk =

where (M A)' is M A with its k1 column replaced by 7 —
h — Mb and ®' is ® with its ith column replaced by ev +
ar(MA)g, (MA); being the kth column of MA. When

a, = 0, € can be factored out of the numerator of (27) and
limc_g ¢ 1s finite. When ay # 0, limc_g gx = 0.

In particular, we can determine that a degree of free-
dom 1is lost since the infinite accelerations are caused by
friction forces which, according to Coulomb’s model, are
directed opposite the relative velocity. Analogous to the
original holonomic velocity constraints described by (9),

th

the jammed system possesses a new constraint at the ¢
contact,

(i)qiq' = —(i)m‘. (28)
The rgid-body assumption indicates that this constraint
is imposed instantaneously.

To complete the proof, we note from (1) that friction
employs the minimum force necessary to resist sliding.
Since we have shown that sliding velocity jumps to zero
at the jamming contact for gy < ps, it 1s clear that jam-
ming also occurs at ;.

Clearly, the matrix in (15) evaluated at p; is singular.
By the definition of T+ in (16), TM A in (17) also loses
rank at g. Similarly, the definition of St indicates that
[S(@g + @g)] in (19) loses rank at ps. Lastly, for (11),
the existence of p; implies the existence of § € R™ such

that B
M D,
L] s

Selecting # = Aa gives the desired result since $,4 = 0.
O

At the onset of jamming, despite finite input forces and
torques, the relevant contact and friction forces, as well as
accelerations, approach infinity producing loss of a degree
of freedom under impact-like conditions.

Theorem 2: Wedging - Assuming no jamming, the
rigid-body system described by (11), or (15), or (17) and
(19) is wedged if there exists a vector pw with components
pwi in the intervals [0, u;] such that

rank [@g(q, t) + (fg(q, q, pw, t)] < m, (30)

i.e., its columns are linearly dependent. In this case, stick-
ing occurs for at least one of the contacts corresponding to
the linearly dependent columns and the rigid-body system
becomes underconstrained. Evaluated at pw, the matrices
in (11), (15) and (19) are singular.

Proof: According to the rank condition given above, it
is clear that the matrices in (11), (15) and (19) are singular.
This condition appears to indicate that it is only possible
to solve for a linear combination of those contact forces
associated with the linearly dependent columns. Further-
more, the equations appear overconstrained. In particular,
the forces generated during sliding contact cannot balance
all possible right hand sides in (11), (15) and (19). How-
ever, since @g has full column rank m and given the linear
dependence of the columns of &7 on their respective coef-
ficients of friction, the rank of (®, 4 ®,)7 will be restored
to m if one or more of the components of puw is reduced.
This corresponds to zero sliding velocity at the affected
contacts.

For each static contact, we have a new variable given
by its component of u. Thus, by considering at least one
of the linearly dependent contacts to be sticking, we have
not only restored full rank to the matrices of (11), (15)
and (19), we have at least one more unknown than we
have equations.

Clearly, any contact & with pwr < pr will stick. In
particular, consider the case when columns j and k of
(®, + &,)" corresponding to scleronomic (time indepen-
dent) constraints are linearly dependent. For some o € R,

CY((I)qj + (i)qJ)T = ((I)qk + (i)qk)T (31)

Transposing this equation, postmultiplying by ¢ and ap-
plying (9) yields

a®qiq=Pgrg =0 (32)

This equation indicates that when two columns of (@q +
(i>q)T are linearly dependent, static contact at one con-
straint implies static contact at the other. T'wo additional
equations are needed to solve uniquely for the n + 2 vari-
ables ¢i, A, p; and pp. O

In a similar fashion to the previous proof, we can con-
sider the singularity as the limit as the friction coefficients
approach pw from below and show that the linearly de-
pendent contact forces go to infinity while the accelerations
remain finite. The latter is possible because the infinite
contact forces effectively cancel each other. However, the
rigid body assumption becomes implausible under these
conditions. As in statically indeterminate problems, the
additional equations needed to solve for the unknowns can
be obtained by relaxing the rigid body assumption.
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Figure 4: Planar rod of mass m and moment of inertia
J in contact with immobile wall.

5 Examples

Example 1: Sliding Rod — Jamming

This problem has been used as an example of frictional
ambiguities in many papers including [4,5,8]. As shown in
Figure 4, the rigid rod possesses three degrees of freedom
in planar motion which can be described by the z and y
coordinates of its center of mass and by its angular orienta-
tion, . Thus, we take ¢ = [z,y,8]7. The rod has a mass,
m, and a moment of inertia, J, about its mass center.

The constraint for the rod to maintain contact with the
wall can be written as

O(z,y,8)=y—1Isinf =0 (33)

This can be differentiated to obtain the velocity and accel-
eration constraint equations of (9) and (10) giving

®, = [0 1 —lcosd | (34)
I = —If’sind (35)

Noting that the Coulomb friction force on the rod is
fr=1[—psgn(z:)A,0,0] (36)

where z. denotes the & component of rod velocity at the
point of contact, we have

b, = [ —psgn(é.) 0 —psgn(d.)lsinf ] (37)

we can write (11) for the rod as

m 0 0 posgn(se) ¥
0 m 0 1 i
0 0 J {(cos8 + p sgn(d.)sin 9) ]
0 1 —lcos¥ 0 A

—[ fo f, T —1§sing |
(3%)
To obtain the form of (15), we select ¢; = [z,y]T and
ga = 8. For 8 # /2, this choice yields A and b of (14) to
be

1 0 0
A=|0 1 L b= 0 (39)
0 1/lcosd 6% tan 6

f

/AV%O%O7AV%O%T&QV<//

(Xr:zn ycz)

ff2

2L

(Xclv ycl)

Figure 5: Planar rod of mass m and moment of inertia
J in contact with two immobile walls.

and [ MA, —(@g—l—(i)g) ]
m 0 posgn(gc)
0 J/lcos® lI(cosf + p sgn(i.)sind)

To obtain (17), we compute an orthogonal complement of
@g + @g. One such matrix is

_ 1 posgn(ée) 0
= [ —lsin§ lcos b 1 (41)

from which [T'M A] is found to be

m posgn(ge)m
[TMA] = [ —mlsind mlcosd+ J/lcosd :| (42)
Since there is one friction contact, only jamming is pos-
sible. From Theorem 1, the minimum coefficient of fric-
tion necessary for jamming, s corresponds to the value
at which the matrices of (38), (40) and (42) lose rank. This
value is

ks = —sgn(i2) ( (1)
which is the critical value obtained in [5,8]. From this
equation, jamming is only possible for § € (0, 7/2) if ¢. <
0. This is analogous to the situation in pole vaulting.

Example 2: Sliding Rod — Wedging

As an example of wedging, we consider the case of the
sliding rod in contact with two walls depicted in Figure 5.
This is analogous to geometries studied in [8,11].

There are now two constraints which are given by

J + mi? cos?® 9)

ml? sin 8 cos 8

y—lsmH—I—L:|:0 (44)

®”Wﬁ):[y+mme—L

The velocity and acceleration constraint equations of (9)
and (10) become

0 1 —lcoséb
b, = [0 1 ] (45)

lcos b

—16% sin 6
b= [ M%me] (46)
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The Coulomb friction force at contact 7 is
fri = [—n sgn(@ci)Ai, 0,0] (47)

where &.; denotes the £ component of rod velocity at con-
tact ¢ and the signs of A to maintain contact are taken to
be A1 > 0 and A2 < 0. Thus,

(i)q _| -~ sgn(xcl) 0 —p sgn(aécl)lsm@ (48)
psgn(de2) 0 —psgn(dez)isind
The matrix of (11) can now be assembled from
m 0 0
0 m 0
[ é‘f ] =l o o J (49)
4 0 1 —lcos¥
0 1 lcos
. T
and [ (Pg+ Pg), 0 ] =
posgn(der) —p sgn(dc2)
-1 -1
l(cosf + p sgn(@c1)sind) —l(cosf — u sgn(z.2)sinf)
0 0
0 0

(50)
Selecting ¢; = = and gq = [y, 0] yields the following for A
and b of (14).

! 0
A= 8 ’ b:|:é2tan9:| (51)

The matrix of (15) is [ MA, —(of +o7) ] =

m  sgn(Eer) —p sgn(Fc2)
0 -1 -1
0  l(cos@+ psgn(sc1)sing) —I(cosf — p sgn(&eo)sinb)

(52)
To investigate wedging in the third formulation, we must
obtain the form of (19). An orthogonal complement of M A

s[04 o

from which —S(@g + @g) is found to be

1 1
l(cosf + p sgn(@c1)sind) —l(cosf — u sgn(z.2)sinf)
(54)
From inspection of (49) and (50) or (52), it is easy to verify
that jamming is not possible. Examination of (50) or (52)
or (54) provides two conditions for wedging.

T <0, T2 >0 (55)

pw =[1/tan8, 1/tand] (56)
The condition on the contact velocities is equivalent to
6 < 0 which violates the contact constraints of (45). How-
ever, the friction forces were written in terms of velocity
direction only for convenience and it is recognized that the
same forces can be produced by static contact which does
not violate the constraints. At pw, the contact forces are
collinear.

6 Conclusion

Given the Coulomb model, singularities in the dynamic
equations associated with jamming and wedging are due to
a breakdown of the rigid-body assumption. At the onset of
jamming, the assumption of adequate separation between
the time scales governing the contact force dynamics and
those governing the “rigid-body” dynamics is violated. In
wedging, the rigid-body reaction forces are indeterminate
and the system is capable of storing elastic energy. By
adding compliance to the model, the reaction forces can
be made functions of system state and the dynamics of
jamming and wedging become well-posed problems.
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