For your advising appointment you will need:
✓ Course Directory
✓ Degree Advice Report
✓ Major/Specialization Guidelines
✓ Registration Class Planner
✓ Transcript

REGISTRATION NOTES:

- For permission required courses: If contact information is not listed on the Student Link, email Stacy Straaberg Finfrock at stacysf@bu.edu.
- Full time students may take up to 18 credits per semester. Seniors are automatically awarded a fee waiver so that they may take up to 20 credits per semester without additional fees.
- PDP, ROTC, and CAS FY/SY courses do not count towards graduation credits.
- The following courses do not count as Biology or BMB electives and cannot be applied to Biology or BMB majors:

 CAS BI 106 Human Anatomy
 CAS BI 114 Human Infectious Diseases: AIDS to Tuberculosis
 CAS BI 119 Sociobiology

<table>
<thead>
<tr>
<th>COURSES:</th>
<th>pg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMB Courses</td>
<td>2-3</td>
</tr>
<tr>
<td>Cell & Molecular</td>
<td>4-7</td>
</tr>
<tr>
<td>Neurobiology & Physiology</td>
<td>8-9</td>
</tr>
<tr>
<td>Ecology, Behavior & Evolution</td>
<td>10-12</td>
</tr>
<tr>
<td>MET College Courses</td>
<td>13</td>
</tr>
<tr>
<td>Research & Readings</td>
<td>14</td>
</tr>
</tbody>
</table>

Courses fulfilling breadth requirements:

- Cell & Molecular
 - CAS BI 206 Genetics
 - CAS BI 216 Intensive Genetics

- Neurobiology & Physiology
 - CAS BI 315 Systems Physiology
 - CAS BI 325 Principles of Neuroscience

- Ecology, Behavior & Evolution
 - CAS BI 260 Marine Biology
 - CAS BI 303 Evolutionary Ecology
 - CAS BI 306 Biology of Global Change

Upper Level Lab Courses Offered Spring 2016:

- CAS BB 522 Molecular Biology Lab
- CAS BI 302 Vertebrate Zoology
- CAS BI 303 Evolutionary Ecology
- CAS BI 306 Biology of Global Change
- CAS BI 315 Systems Physiology
- CAS BI 416 Herpetology
- CAS BI 422 Biochemistry II
- CAS BI 445 Cell & Molecular Neurophysiology
CAS BB 192: UNDERGRADUATE RESEARCH IN BIOCHEMISTRY AND MOLECULAR BIOLOGY I

Prereq: freshman standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (laboratory advisor), and approval of application by the BMB Research and Honors Committee.

[2 cr] Not for BMB major credit. Laboratory research under the supervision of a faculty member.

CAS BB 292: UNDERGRADUATE RESEARCH IN BIOCHEMISTRY AND MOLECULAR BIOLOGY II

Prereq: sophomore standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (laboratory advisor), and approval of application by the BMB Research and Honors Committee.

[2 cr] Not for BMB major credit. Laboratory research under the supervision of a faculty member.

CAS BB 392: UNDERGRADUATE RESEARCH IN BIOCHEMISTRY AND MOLECULAR BIOLOGY III

Prereq: junior standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (laboratory advisor), and approval of application by the BMB Research and Honors Committee.

[2 or 4 cr] Two credit option is not for BMB major credit. Laboratory research under the supervision of a faculty member. A maximum of 4 credits earned in undergraduate research courses may be counted toward the BMB major.

CAS BB 492: UNDERGRADUATE RESEARCH IN BIOCHEMISTRY AND MOLECULAR BIOLOGY IV

Prereq: senior standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (laboratory advisor), and approval of application by the BMB Research and Honors Committee.

Laboratory research under the supervision of a faculty member. A maximum of 4 credits earned in undergraduate research courses may be counted toward the BMB major.

CAS BB 402: HONORS RESEARCH IN BIOCHEMISTRY AND MOLECULAR BIOLOGY

Prereq: senior standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.5, consent of instructor (laboratory advisor), and approval of application by the BMB Research and Honors Committee.

Coreq: CAS BB 498

Independent laboratory research under the supervision of a faculty member. Minimum of 12 hours per week in the lab, not including preparation and evaluation. Course grade is determined by laboratory performance, oral presentation, written thesis, and defense of the thesis before a committee of three BMB faculty members. Successful completion of both CAS BB 401 and BB 402 may lead to a degree with honors in the major, although only 4 of the credits may count toward the BMB major. Students must also present a research talk at the BMB symposium at the end of the Spring semester of the academic year. No more than 12 credits of undergraduate research may be counted toward the 128 credits required for graduation from CAS.

CAS BB 498: HONORS RESEARCH IN BIOCHEMISTRY AND MOLECULAR BIOLOGY SEMINAR II

Prereq: CAS BB 497. For students currently enrolled in the Honors BMB Program.

[1 cr] A one-credit research seminar for students enrolled in Honors Research in BMB (CAS BB 402) or in BA/MA in Biotechnology research (CAS BB 592). Students present at the BMB Symposium. A minimum grade of B+ in this seminar and in CAS BB 401 and BB 402 is required to graduate with Honors in BMB.

Grading: Regular attendance required.

CAS BB 522: MOLECULAR BIOLOGY LAB

Prereq: CAS BI 552

Introduction to techniques of cellular and molecular biology research, including analysis of DNA and protein molecules by techniques such as plasmid isolation, restriction enzyme digestions, PCR, subcloning, DNA sequence analysis, reporter gene assays, mammalian cell culturing, immunofluorescence, and yeast molecular biology.

Independent

A1 Spilios, Gilmore Tue,Thu 1:00pm - 5:00pm

Notes: Permission required

Text(s): Xeroxed lab note packet

Grading: Midterm (20%); final (20%); lab reports (35%); lab participation and preparation (25%)
CAS BB 592: GRADUATE RESEARCH IN BIOCHEMISTRY AND MOLECULAR BIOLOGY

Prereq: admission to the combined BA/MA Biotechnology Program.

Coreq: CAS BB 498 is encouraged.

Continuation of the laboratory research project initiated in CAS BB 591, under supervision of a faculty member. Externships are acceptable if approved and overseen by a BMB faculty member or the BMB Director. Minimum of 15 hours per week in the lab, culminating in a presentation at the BMB symposium.

GRS MB 722: ADVANCED BIOCHEMISTRY

Prereq: BI 422, BI 622, MB 721, or CH 273.

An advanced treatment of the underlying theories, principles, mechanisms, and chemistry of current biochemical investigation. Selected topics may include enzyme mechanics, protein structure and folding, bioinformatics, signal transduction, nucleic-acid protein interactions, techniques in proteomics, and genetic disease mechanisms.

Lecture
A1 Tolan Tue,Thu 12:30pm - 2:00pm

Discussion
Wed 4:30 - 6:30pm

Grading: Exams, homework, discussion.
CELL & MOLECULAR

CAS BI 108: BIOLOGY II

Prereq: High school biology and one semester college chemistry strongly recommended.

For students planning to concentrate in the natural sciences and for premedical students. It is strongly recommended students complete CAS CH 101 (or equivalent) before this course. High school biology is assumed. Cell and molecular biology, Mendelian & molecular genetics, physiology, and neurobiology. Three hours lecture, three hours lab. Carries natural science divisional credit (with lab) in CAS.

Lecture

A1 Monnette, Eldred, Loechler Mon,Wed,Fri 10:00am - 11:00am
A2 Monnette, Eldred, Loechler Mon,Wed,Fri 12:00pm - 1:00pm
A3 Monnette, Eldred, Loechler Mon,Wed,Fri 2:00pm - 3:00pm

Lab

Spilios

B1 Mon 1:00pm - 4:00pm D5 Wed 1:00pm - 4:00pm
B2 Mon 1:00pm - 4:00pm D7 Wed 4:00pm - 7:00pm
B3 Mon 4:00pm - 7:00pm D8 Wed 4:00pm - 7:00pm
C1 Tue 9:00am - 12:00pm E1 Thu 9:00am - 12:00pm
C2 Tue 9:00am - 12:00pm E2 Thu 9:00am - 12:00pm
C3 Tue 9:00am - 12:00pm E3 Thu 9:00am - 12:00pm
C4 Tue 1:00pm - 4:00pm E4 Thu 1:00pm - 4:00pm
C5 Tue 1:00pm - 4:00pm E5 Thu 1:00pm - 4:00pm
C6 Tue 1:00pm - 4:00pm E5 Thu 1:00pm - 4:00pm
C7 Tue 5:00pm - 8:00pm E6 Thu 5:00pm - 8:00pm
C8 Tue 5:00pm - 8:00pm E7 Thu 5:00pm - 8:00pm
C9 Tue 5:00pm - 8:00pm E8 Thu 5:00pm - 8:00pm
D2 Wed 8:00am - 11:00am E9 Thu 5:00pm - 8:00pm
D3 Wed 8:00am - 11:00am F1 Fri 10:00am - 1:00pm
D4 Wed 12:00pm - 3:00pm F2 Fri 10:00am - 1:00pm

Grading: Four hourly exams, lecture 68%, lab 32%

CAS BI 114: HUMAN INFECTIOUS DISEASES: AIDS TO TUBERCULOSIS

Prereq: None

Not for Biology major or minor credit. A study of the world’s major human diseases, their causes, effects on history, pathology, and cures. Principles of immunology. Emphasis on present maladies such as AIDS, herpes, cancer, mononucleosis, tuberculosis, influenza, and hepatitis. This course is appropriate for non-majors and students in the health and paramedical sciences (Sargent College). Three hours lecture, three hours lab. Carries natural science divisional credit (with lab) in CAS.

Lecture

A1 Co Mon,Wed,Fri 9:00am - 10:00am

Lab

B1 Mon,Wed 3:00pm - 4:30pm C3 Tue,Thu 3:30pm - 5:00pm
C1 Tue,Thu 9:30am - 11:00am D1 Mon,Wed 11:00am - 12:30pm
C2 Tue,Thu 1:30pm - 3:00pm D2 Mon,Wed 1:30pm - 3:00pm

Notes: Not for biology concentration credit

Grading: 4 lecture exams; laboratory

CAS BI 206: GENETICS

Prereq: CAS BI 108 and CAS CH 203 or equivalent

Principles of classical, molecular, and evolutionary genetics derived from analytical, molecular, and whole genome cytological evidence in animals, plants, and microorganisms. Three hours lecture, one hour discussion.

Lecture

A1 Celenza Tue,Thur 11:00am - 12:30pm

Discussion

B1 Mon 12:00pm - 1:00pm D1 Wed 8:00am - 9:00am
B2 Mon 12:00pm - 1:00pm D2 Wed 12:00pm - 1:00pm
B3 Mon 1:00pm - 2:00pm D3 Wed 2:00pm - 3:00pm
B4 Mon 2:00pm - 3:00pm D5 Wed 2:00pm - 3:00pm
C1 Tue 8:00am - 9:00am

Notes: Meets with CAS BI 282/216

Text(s): 1) Hartwell et al. *Genetics: From Genes to Genome*. McGraw-Hill Edition: 5th edition. 2) Recommended, but not required: Solutions Manual for the text. (These will be available through the BU bookstore or as an ebook.)

Grading: 80% avg. of four exam scores given during the semester. 20% discussion.
CAS BI 216: INTENSIVE GENETICS

Prereq: CAS BI 108 & BI 203 or equivalents to both, and CAS CH 203 or consent of instructor

Advanced alternative to CAS BI 206, emphasizing depth of coverage, class discussion, and reading research papers. Principles of classical, molecular, and evolutionary genetics derived from analytical, molecular, and whole genome cytological evidence in animals, plants, and microorganisms. Three hours lecture, one hour discussion.

Lecture

A1 Celenza Tue,Thu 11:00am - 12:30pm
A2 Celenza Tue,Thu 11:00am - 12:30pm

Discussion

Loechler

B1 Mon 12:00pm - 1:00pm D2 Mon 11:00am - 12:00pm
B2 Mon 2:00pm - 3:00pm E1 Tue 10:00am - 11:00am
D1 Wed 2:00pm - 3:00pm E2 Tue 5:00pm - 6:00pm

Notes: Meets with BI 206/282

Text(s): 1) Hartwell et al. *Genetics: From Genes to Genome*, McGraw-Hill. 5th edition. 2) Recommended, but not required: Solutions Manual for the text. (These will be available through the BU bookstore or as an ebook.)

Grading: 80% avg. of four exam scores given during the semester. 20% discussion.

CAS BI 385: IMMUNOLOGY

Prereq: CAS BI 203, CAS BI 206 and junior standing

The constituents and regulation of the mammalian immune system are described at the levels of the gene, protein and cell. Topics include the innate immune system, T and B cell response, immune memory, tolerance, response to pathogens, inflammation, allergy & hypersensitivity, the role of the immune system in cancer. Three hours lecture, one hour discussion.

Lecture

A1 Siggers Mon,Wed,Fri 1:00pm - 2:00pm

Discussion

B1 Tue 8:30am - 9:30am C1 Wed 12:00pm - 1:00pm
D1 Thu 8:30am - 9:30am E1 Fri 2:00pm - 3:00pm

Grading: 3 exams (2 midterms and 1 final) 80%, Discussion/ participation: 20%

CAS BI 410: DEVELOPMENTAL BIOLOGY

Prereq: CAS BI 203 / BI 213 or consent of instructor

Contemporary aspects of embryonic development, drawing from current literature. Emphasis on the use of experimental approaches to address topics such as polarity in the egg, body axis specification, embryonic patterning, and organogenesis. Three hours lecture, one hour discussion.

Lecture

A1 Bradham Tue,Thu 2:00pm - 3:30pm

Discussion

B1 Wed 2:00pm - 3:00pm B2 Wed 3:00pm - 4:00pm

Notes: Meets with GRS BI 610

Text(s): Recommended: Gilbert, *Developmental Biology*, Sinauer Assoc. 2000

Grading: Two midterms, final exam, class participation.

CAS BI 411: MICROBIOME: OUR INTIMATE RELATIONSHIP WITH MICROORGANISMS

Prereq: CAS BI 203 , CAS BI 206 and CAS BI 311 or consent of instructor

The microbial community - referred to as "microbiome" - that colonizes our body is essential for our health and has been implicated in several diseases, including depression, obesity, diabetes and cancer. Topics include (1) the human microbiome; and (2) fundamental aspects of the interactions between animals and the microorganisms that reside on them. Three hours lecture; one hour discussion.

Lecture

A1 Frydman Tue,Thu 3:30pm - 5:00pm

Discussion

A2 Thu 5:00pm - 6:00pm

Notes: Meets with GRS BI 611. Permission Required

Text(s): Scientific papers will be made available to the students throughout the course

Grading: Midterm 30%, Oral Presentation and Discussion 20%, Final Exam 40% Participation 10%
CELL & MOLECULAR

CAS BI 422: BIOCHEMISTRY II
Prereq: CAS BI 421 or CAS CH 421 or equivalent

Cell metabolism, with special emphasis on the uptake of food materials, the integration and regulation of catabolic, anabolic, and anaplerotic routes, and the generation and utilization of energy. Lectures include consideration of events in prokaryotic and eukaryotic organisms. Lab exercises are described under BI 528. Three hours lecture, four hours lab, one hour discussion.

Lecture
A1 Kornberg Mon,Wed,Fri 9:00am - 10:00am

Lab & Discussion
Tolan, Kornberg
B1 Mon 10:00am - 2:00pm Lab
B2 Mon 3:00pm - 7:00pm Lab
B3 Tue 6:00pm - 10:00pm Lab
B4 Wed 1:00pm - 5:00pm Lab
B5 Wed 5:30pm - 9:30pm Lab
B6 Thu 6:00pm - 10:00pm Lab
C1 Fri 8:00am - 9:00am Discussion
C2 Fri 10:00am - 11:00am Discussion
C3 Fri 11:00am - 12:00pm Discussion

Notes: ALSO OFFERED AS CH 422. Meets with CAS CH 422 A1, GRS BI/CH 622 A1 and MET CH 422.

Grading: Hour exams, lab, final.

CAS BI 553: MOLECULAR BIOLOGY II
Prereq: CAS BI 552, recommended: BI/CH 421/422

Continuation of CAS BI 552 with emphasis on eukaryotes. General areas of focus include genome organization, mechanisms of gene regulation, and cell signaling. Topics including genomics, mouse transgenics systems, signal transduction, chromatin structure, and cell cycle.

Lecture
A1 Naya Tue,Thur 9:30am - 11:00am

Discussion
B1 Mon 1:00pm - 2:00pm
B2 Mon 5:00pm - 6:00pm

Text(s): TBA

Grading: Two midterms, final, discussion participation

CAS BI 576: CARCINOGENESIS
Prereq: BI 203, BI 206, BI 552

The course covers multiple aspects of cancer biology with a focus on molecular mechanisms underlying cancer development and progression, and the implications for therapy. Topics include oncogenes, tumor suppressors, apoptosis, angiogenesis, metastasis, mouse models, cancer immunity, immunotherapy, and chemotherapy. Emphasis on current research.

Lecture
A1 Gilmore, McCall Mon 3:00pm - 5:00pm
Wed 3:00pm - 4:00pm

Discussion
B1 Wed 4:00pm - 5:00pm
B2 Arranged
B3 Arranged

Notes: No credit if CAS BI 327 or GMS BT 520 were taken previously.

Grading: Three exams, presentation, participation

CAS BI 528: BIOCHEMISTRY LABORATORY II
Prereq: BI 421 or BI 527

Emphasizes protein, carbohydrate, nucleic acid, and lipid chemistry. Development and use of modern instrumentation and techniques. Same as CAS CH 528 and laboratory portion of CAS BI/CH 422. Required for BMB students enrolled concurrently in GMS BI 555. Four hours lab, one hour discussion.

Lecture
A2 Tolan Fri 10:00am - 11:00am

Lab
B1 Mon 10:00am - 2:00pm B4 Wed 1:00pm - 5:00pm
B2 Mon 3:00pm - 7:00pm B5 Wed 5:30pm - 9:30pm
B3 Tue 6:00pm - 10:00pm B6 Thu 6:00pm - 10:00pm

Notes: Meets with CAS CH 422, CAS BI 422, CAS CH 528, GRS CH 622 and GRS BI 622

Grading: Lab preparation, lab reports, final exam.
CAS BI 106: HUMAN ANATOMY

Prereq: CAS BI 105 or equivalent

Not for biology concentration credit. Intensive preprofessional course for students whose programs require anatomy. Gross structure of the human body: skeletal, muscular, nervous, respiratory, circulatory, digestive, urinary, and reproductive systems. Three hours lecture, two hours lab (lab requires dissection). Carries natural science divisional credit (with lab) in CAS.

Lecture

A1 Co Mon,Wed,Fri 11:00am - 12:00pm

Lab

Pasino

C2 Tue 12:30pm - 2:30pm
C3 Tue 3:30pm - 5:30pm
C4 Tue 6:00pm - 8:00pm
D1 Wed 8:30am - 10:30am
D2 Wed 12:30pm - 2:30pm
D3 Wed 3:30pm - 5:30pm
D4 Wed 6:00pm - 8:00pm
E1 Thu 9:30am - 11:30am
E2 Thu 12:30pm - 2:30pm
E3 Thu 3:30pm - 5:30pm
F1 Fri 12:30pm - 2:30pm

Notes: Not for Biology or BMB major credit

Grading: 3 midterm lecture exams; 1 cumulative lecture final, 2 laboratory practical exams

CAS BI 315: SYSTEMS PHYSIOLOGY

Prereq: CAS BI 108 or CAS BI 118 or ENG BE 209, and CAS CH 101 and CAS CH 102, or equivalent.

Examines the structure and function of the body’s major organ systems (nervous, endocrine, circulatory, respiratory, digestive and urinary) at the cell, tissue and organ levels. Special emphasis on regulatory and integrative aspects of feedback systems underlying the maintenance of optimal internal state required for survival in a dynamic environment.

Lecture

A1 Widmaier Tue,Thu 12:30pm - 2:00pm

Lab

Seliga

B1 Mon 2:00pm - 5:00pm D2 Wed 9:00am - 12:00pm
B2 Mon 6:00pm - 9:00pm D3 Wed 2:00pm - 5:00pm
C1 Tue 9:00am - 12:00pm D4 Wed 6:00pm - 9:00pm
C2 Tue 2:00pm - 5:00pm E1 Thu 9:00am - 12:00pm
C3 Tue 2:00pm - 5:00pm E2 Thu 2:00pm - 5:00pm
C4 Tue 6:00pm - 9:00pm E3 Thu 6:00pm - 9:00pm
C5 Tue 6:00pm - 9:00pm F1 Fri 9:00am - 12:00pm
D1 Wed 9:00am - 12:00pm

Grading: Two hourly exams, final exam, lab quizzes and write ups, cumulative lab final.

CAS BI 325: PRINCIPLES OF NEUROSCIENCE

Prereq: CAS BI 203 or consent of instructor.

Fundamentals of the nervous system, emphasizing synaptic transmission; hierarchical organization; autonomic nervous system; mechanisms of sensory perception; reflexes and motor function; biorhythms; and neural mechanisms of feeding, mating, learning, and memory. Three hours lecture, one hour discussion.

Lecture

A1 Cruz-Martin, Gavornik Tue,Thu 2:00pm - 3:30pm

Discussion

B1 Mon 3:00pm - 4:00pm
B2 Wed 3:00pm - 4:00pm
B3 Thu 1:00pm - 2:00pm

Notes: Meets with NE 203 in the fall only.

Grading: Two midterms and a final exam.
CAS BI 445: CELLULAR AND MOLECULAR NEUROPHYSIOLOGY

Prereq: CAS BI 203, CAS BI 315, CAS NE 203, or consent of instructor

Cellular and molecular basis of neural excitability and synaptic transmission. The molecular understanding of ion channels is extrapolated to higher brain functions such as learning, memory, and sleep. Three hours lecture, three hours lab.

In the lab, we learn to obtain intracellular and extracellular recordings from muscle fibers and the third motor nerve of crayfish ventral nerve cord. The extracellular recordings allow us to monitor the network activity that controls the animal’s posture while the intracellular recordings allow us to investigate synaptic transmission. Quantitative analyses of experimental data will be performed. The entire class will contribute to a research project with the expectation that the data pooled from all students should be of sufficient quantity and quality for a publication.

Lecture

A1 Lin Mon, Wed, Fri 10:00am - 11:00am

Lab

B1 Fri 1:00pm - 4:00pm

Notes: Meets with CAS GRS BI 645, CAS NE 445, BI 645. Also offered as NE 445

CAS BI 542: NEUROETHOLOGY

Prereq: CAS BI 563 or CAS BI 325 (or CAS NE 203) or consent from instructor

The purpose of this course is to link neurobiology to behavioral ecology and the properties of the sensory stimulus environment. Examples include vocal learning in songbirds, sensory-motor integration in bats, and marine odor plume navigation in lobsters and sharks. Students choose and develop a research topic in the second half of the course. Three hours lecture; one hour discussion.

Lecture

A1 Atema Tue, Thu 9:30am - 11:00am

Discussion

A2 Wed 2:00pm - 3:00pm Meets with NE 542

Notes: Also offered as CAS NE 542

Grading: Two midterm exams (25% each) ; Presentations of Individual Research Topics (50%)

CAS BI 525: BIOLOGY OF NEURODEGENERATIVE DISEASES

Prereq: CAS NE 102 or CAS BI 203, and CAS NE 203 or CAS BI 325

This course focuses on understanding the molecular mechanisms that are at the basis of neurodegenerative diseases and on their impact and relevance in clinical diagnosis and treatment. Neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington Disease and Creutzfeldt-Jacob disease are becoming more and more common since people are more exposed to pathogenic agents (as in Creutzfeldt-Jacob disease and Mad Cow disease) or just encounter these diseases as a result of aging (like Alzheimer's or Parkinson's disease). Although very different from one another, these diseases share common mechanisms and features leading to neuronal death, including protein misfolding and aggregation, oxidative stress, impaired protein degradation, and apoptosis. This course will study how these molecular pathways define each disease, contributing to neurodegenerative phenomena. Relevance will be given to Alzheimer's disease.

Independent

A1 Pastorino Mon, Wed, Fri 9:00am - 10:00am

Pastorino Wed 10:00am - 11:00am

Notes: Meets with CAS NE 525 INDEPENDENT.

Text(s): Detailed handouts, powerpoint presentation, PDF files on course website

Grading: 2 midterm exams 46%; final exams 24%; assignments 15%; paper presentation 15%

CAS BI 582: NEUROBIOLOGY OF BRAIN DISORDERS

Prereq: Suggested BI 203 and BI 325

[2 cr] This course reviews recent topics and readings in the field of neurodegeneration that span disorders affecting neurodevelopment, learning and memory and aging. Specifically, the course will probe cellular and molecular mechanisms underlying cell death. In addition, the class will probe commonalities of the diseases, genetic risk factors and the usefulness and limitations of animal models. Also, we will discuss different interdisciplinary approaches that include molecular genetics tools in mice, biochemistry, cell biology and electrophysiology in addressing biomedical-related problems in neuroscience.

Lecture

A1 Ho Friday 10:00am - 12:00pm

Text(s): Scientific papers will be posted to the blackboard website.

Grading: Participation 50%, Oral presentation 50%
CAS BI 119: SOCIOBIOLOGY

Prereq: None

Not for biology concentration credit. Designed for non-science concentrators to fulfill natural science divisional requirements. The evolution of animal and human societies; genetics and the development of social behavior; the adaptive significance of social organization; altruism; cooperation; courtship, mate choice, and reproductive behavior; human sociobiology; evolutionary psychology; religion; impact of evolutionary theory on social thought. Three hours lecture plus discussion. Carries natural science divisional credit (without lab) in CAS.

Lecture
A1 Traniello Tue,Thu 12:30pm - 2:00pm

Discussion
B1 Thu 2:00pm - 3:00pm
B2 Fri 2:00pm - 3:00pm

Notes: Not for biology concentration credit.

Text(s): Suggested - Alcock, Animal Behavior, 2005; selected readings

Grading: Three exams; weekly participation in discussion section and lecture/section assignments and projects

CAS BI 260: MARINE BIOLOGY

Prereq: CAS BI 107 or consent of instructor.

Lecture
A1 Buston Mon,Wed,Fri 3:00pm - 4:00pm

Discussion
B1 Wed 10:00am - 11:00am
B2 Wed 4:00pm - 5:00pm
C1 Thu 2:00pm - 3:00pm
C2 Tue 10:00am - 11:00am
C3 Tue 2:00pm - 3:00pm
E1 Thu 1:00pm - 2:00pm
F1 Fri 9:00am - 10:00am
F2 Fri 10:00am - 11:00am

Text(s): Castro & Huber. Marine Biology. 9th Edition

Grading: Three exams, participation in discussion.

CAS BI 302: VERTEBRATE ZOOLOGY

Prereq: CAS BI 107

Methods and principles of comparative vertebrate zoology. Phylogeny, natural history, adaptation, and taxonomy. Laboratory emphasis on correlation among structural, physiological, and evolutionary features of selected vertebrates by both dissection and experimentation. Field trips. Two hours lecture, six hours lab.

Lecture
A1 Wasserman Tue,Thu 12:30pm - 2:00pm

Lab
B1 Tue,Thu 2:00pm - 5:00pm
B2 Tue,Thu 9:00am - 12:00pm

Text(s): Pough, et al. Vertebrate Life. 9th edition

Grading: Three exams, lab quizzes and participation.

CAS BI 303: ECOLOGY

Prereq: CAS BI 107 recommended: CAS BI 206

Investigation of ecological processes and patterns at the individual, population, and community level. An evolutionary approach is emphasized. Three hours lecture, three hours lab. One research paper and one day-long field trip required.

Lecture
A1 Stewart Mon,Wed,Fri 9:00am - 10:00am

Lab
B1 Mon 2:00pm - 5:00pm
D1 Wed 2:00pm - 5:00pm
F1 Fri 2:00pm - 5:00pm

Text(s): Molles. Ecology. 6th Edition

CAS BI 306: BIOLOGY OF GLOBAL CHANGE
Prereq: CAS BI 107, Recommended: CAS CH 101 or CH 171
The ecological impacts of human activity on terrestrial and aquatic ecosystems. Climate change, forest decline, eutrophication, acidification, loss of species diversity, and restoration of ecosystems. Three hours lecture, three hours lab.

Lecture
A1 Finzi Mon, Wed, Fri 10:00am - 11:00am

Lab
C1 Tue 10:00am - 1:00pm
E1 Thu 10:00am - 1:00pm

Text(s): Richard Wright, Environmental Science Toward a Sustainable Future, 10th Ed. Pearson, Prentice Hall.

Grading: Two exams (20%), final exam (30%), lab and participation (30%)

CAS BI 307: BIOGEOGRAPHY
Prereq: GE 101 and BI 107
Examines the spatial distribution of plants and animals from historical, ecological, and analytical perspectives. Environmental and human influences on species distribution, abundance, and diversity are considered, as are changes resulting from past and projected climate change.

Independent
A1 Phillips Wed 4:00pm - 7:00pm

Notes: Independent. Also offered as GE 307

CAS BI 416: HERPETOLOGY
Prereq: CAS BI 107 or equivalent.
Examines the diversity, life history, physiology, behavior, ecology, and evolution of amphibians and reptiles. Three hours lecture, three hours lab. Field trips (including required Spring Recess trip to Florida).

Lecture
A1 Schneider Tue, Thu 9:30am - 11:00am

Lab
A2 Wed 3:00pm - 6:00pm

Notes: Meets with GRS BI 616

Text(s): Herpetology, 4th edition by Pough, Andrews, Cadle, Crump, Savitsky and Wells

Grading: Lecture Participation (10%), Midterm & Final Lecture Exams (30%), Midterm & Final Lab Exams (20%), Field Trip Participation & Notebook (20%), Term Paper (20%)

CAS BI 448: BIODIVERSITY AND CONSERVATION BIOLOGY
Prereq: CAS BI 303 or CAS BI 306 consent of instructor.
The study of biological diversity and modern methods to protect endangered plant and animal species. The environment, population, and genetic and human factors that affect the survival of species are examined for temperate and tropical communities, as well as terrestrial and aquatic habitats. Three hours lecture, one hour discussion.

Lecture
A1 Primack Mon, Wed, Fri 1:00pm - 2:00pm

Discussion
A2 Mon 2:00pm - 3:00pm

Notes: Meets with GRS BI 648

Grading: Exams, course paper, oral presentation, quizzes, course participation.

CAS BI 486: BIOLOGICAL DESIGN FOR SUSTAINABLE DEVELOPMENT
Prereq: CAS BI 107 and one EBE (ecology, behavior, and evolution) course numbered CAS BI 260 or higher
Study of biological constraints on the problem of human society’s relationship with the ecosystems, terrestrial and marine, that sustain it. Case studies combining natural history, ecological theory, dynamical modeling, and experimental design in the search for workable solutions.

Lecture
A1 Stewart Mon, Wed, Fri 11:00am - 12:00pm

Discussion
A2 Wed 12:00pm - 1:00pm

Notes: Meets with GRS BI 686

Text(s): Select chapters from Morse (2010) Sustainability: A Biological Perspective (pdf) and contemporary literature (pdf) will be made available on Blackboard. Textbook purchase is not required.

Grading: Seminar discussion, write and submit an original Op-Ed, co-present a final project within the framework of the course.
CAS BI 542: NEUROETHOLOGY

Prereq: CAS BI 563 or CAS BI 325 (or CAS NE 203) or consent from instructor

The purpose of this course is to link neurobiology to behavioral ecology and the properties of the sensory stimulus environment. Examples include vocal learning in songbirds, sensory-motor integration in bats, and marine odor plume navigation in lobsters and sharks. Students choose and develop a research topic in the second half of the course. Three hours lecture; one hour discussion.

Lecture
A1 Atema Tue,Thu 9:30am - 11:00am

Discussion
A2 Wed 2:00pm - 3:00pm Meets with NE 542

Notes: Also offered as CAS NE 542

Grading: Two midterm exams (25 % each) ; Presentations of Individual Research Topics (50 %)

CAS BI 582: SPECIES AND SPECIATION

Prereq: Consent of instructor. Open to seniors and graduate students concentrating in biology.

[2 cr] Defining and understanding how new species arise remains a major goal of evolutionary biology. Indeed, there are few topics as controversial among biologists, in general, as the subject of how to define species. This course will introduce students to modern study of speciation and provide an historical overview of the field, spanning the ~150 years between Darwin's first publication of the Origin and the present.

Objectives:
1) Students will gain familiarity with the strengths and weakness of the most commonly utilized species concepts.
2) We will examine how pre- and postzygotic barriers to gene exchange arise and discuss the consequences of these different isolating mechanisms on the maintenance of species boundaries.
3) The class we explore the geographic context in which speciation occurs (allopatry, sympatry, parapatry, etc) as well as the evolutionary forces that drive divergence (natural selection, sexual selection, genetic drift, etc.).
4) The students should, ultimately, be able to identify unanswered questions about speciation and will conduct independent research projects to review current theory and data in the area of their choice.

Independent
M1 Mullen

Notes: 2 credits; 12:00pm - 2:00pm Thursday or by arrangement after the first meeting

Grading: Attendance 25%, Presentation 50%, Review Paper 25%
Juniors and seniors can take one MET course per semester.
All other students must request permission from Steve Jarvi,
Associate Dean for Student Life, at sjarvi@bu.edu.

MET BI 106: HUMAN ANATOMY
Prereq: MET BI 105

Not for biology concentration credit. Gross structure of the
human body: skeletal, muscular, nervous, respiratory, circulatory,
digestive, urinary, and reproductive systems. Laboratory course.
Three hours lecture, two hours lab.

Lecture
A1 Pasino Mon 6:00pm - 9:00pm

Lab
B4 Tue 6:00pm 8:00pm Meets with CAS BI 106
D1 Thu 6:00pm 8:00pm

Notes: Not for Biology or BMB major credit

MET BI 108: BIOLOGY II
Assumes year of high school biology and chemistry. For
premedical students and students who plan to concentrate in
the natural sciences. Required of biology concentrators. It is
recommended that MET CH 101 and CH 102 be taken prior to
or concurrently with this sequence. Each course has three hours
lecture and three hours lab. Course examines cells, genetics,
development, physiology, and neurobiology.

Lecture
A1 Spilios Mon 6:00pm - 9:00pm

Lab
C1 Wed 6:00pm- 9:00pm

MET BI 206: GENETICS (CM)
Prereq: MET BI 108 or equivalent

MET CH 203 recommended. Principles of heredity as derived from
genetic, biochemical, and cytological evidence in animals, plants,
and microorganisms. Three hours lecture, one hour discussion.

Lecture
B1 Celenza Tue,Thu 6:00pm - 7:30pm

Discussion
Tues 7:30pm- 8:30pm

MET BI 303: ECOLOGY (EBE)
Prereq: MET BI 107

Basic principles of ecology, population dynamics and
behavior, interrelationships of plants and animals and their
physical and chemical environment. Structure and function of
ecosystems and community dynamics. Laboratory course.
Three hours lecture, three hours lab.

Lecture
B1 Wasserman Tue 6:00pm - 9:00pm

Lab
C1 Wed 6:00pm 9:00pm

MET BI 315: SYSTEMS PHYSIOLOGY (PN)
Prereq: MET BI 108 & MET BI 203

An introduction to the basic physiological principles applied across
all levels of organization (cell, tissue, organ system) and intended
to prepare the student for more advanced courses in physiology.
Topics include homeostasis, neural, muscle, cardiopulmonary,
renal, endocrine, and reproductive physiology. Three hours lecture,
three hours lab.

Lecture
D1 Vyshedskiy Thu 6:00pm - 9:00pm

Lab
Seliga
C1 Wed 6:00pm- 9:00pm

Notes: Permission Required for non-MET students.
RESEARCH & READINGS

CAS BI 192: UNDERGRADUATE RESEARCH IN BIOLOGY I
Prereq: freshman standing, consent of instructor, and completed application.

[2 cr] Not for biology concentration credit. Research in biological science for students at the freshman level. Students design and implement a research project with a faculty member.

CAS BI 292: UNDERGRADUATE RESEARCH IN BIOLOGY II
Prereq: sophomore standing, consent of instructor, and completed application.

[2 cr] Not for biology concentration credit. Research in biological science for students at the sophomore level. Students design and implement a research project with a faculty member.

CAS BI 392: UNDERGRADUATE RESEARCH IN BIOLOGY III
Prereq: junior standing, consent of instructor, and completed application.

[2 or 4 cr] Two credit option not for Biology concentration credit. Research in biological science for students at the junior level. Students design and implement a research project with a faculty member. One 4 credit research course can count toward the 3-lab requirement and fulfill an upper level elective. A second 4 credit research course can fulfill an upper level elective.

CAS BI 492: UNDERGRADUATE RESEARCH IN BIOLOGY IV
Prereq: junior or senior standing, consent of instructor, and completed application.

Research in biological science for students at the senior level. Students design and implement a research project with a faculty member. Research topic must be defined at the time of registration. Course grade is to be determined by laboratory performance and written report. One 4 credit research course can count toward the 3-lab requirement and fulfill an upper level elective. A second 4 credit research course can fulfill an upper level elective.

CAS BI 172: READINGS IN BIOLOGY I
Prereq: freshman standing, consent of instructor, and completed application.

[2 cr] Not for biology concentration credit. Library research on a well-defined topic in biological sciences, chosen in conjunction with a faculty member. Individual conferences and discussion with the faculty member are required as well as a paper presentation.

CAS BI 272: READINGS IN BIOLOGY II
Prereq: sophomore standing, consent of instructor, and completed application.

[2 cr] Not for biology concentration credit. Library research on a well-defined topic in biological sciences, chosen in conjunction with a faculty member. Individual conferences and discussion with the faculty member are required as well as a paper presentation.

CAS BI 372: READINGS IN BIOLOGY III
Prereq: junior standing, consent of instructor, and completed application.

[2 cr] Not for biology concentration credit. Library research on a well-defined topic in biological sciences, chosen in conjunction with a faculty member. Individual conferences and discussion with the faculty member are required as well as a paper presentation.

CAS BI 472: READINGS IN BIOLOGY
Prereq: junior or senior standing, cumulative GPA in biology of at least 3.0, and consent of instructor.

[2 cr] Not for biology concentration credit. Intensive library research on a well-defined subject, followed by individual conferences and discussion with a faculty member. May be taken as preparation for CAS BI 401, 402, 491, and 492.

CAS BI 498: HONORS IN BIOLOGY SEMINAR
Prereq: CAS BI 107 & CAS BI 108 and at least two additional biology courses. For students currently enrolled in or intending to apply to the Honors Biology Program

[2 cr] A 2-credit weekly research seminar for students in the Honors in Biology Program. A minimum grade of B+ and a written assignment based on a research topic in one of the seminars is required to graduate with honors. Juniors enrolled in BI 497 or 498 must have a current faculty research mentor (See the Biology website or contact the Undergraduate Program Coordinator in the Department of Biology).

Grading: Regular attendance at seminars (50%) and the review paper (50%). The student’s research advisor assigns the course grade. A minimum grade of B+ is required to graduate with Honors in Biology.
INDEX

CAS

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB 192</td>
<td>Undergraduate Research in BMB I</td>
<td>2</td>
</tr>
<tr>
<td>BB 292</td>
<td>Undergraduate Research in BMB II</td>
<td>2</td>
</tr>
<tr>
<td>BB 392</td>
<td>Undergraduate Research in BMB III</td>
<td>2</td>
</tr>
<tr>
<td>BB 402</td>
<td>Honors Research in BMB</td>
<td>2</td>
</tr>
<tr>
<td>BB 492</td>
<td>Undergraduate Research in BMB IV</td>
<td>2</td>
</tr>
<tr>
<td>BB 498</td>
<td>Honors in Biology Seminar</td>
<td>2</td>
</tr>
<tr>
<td>BB 522</td>
<td>Molecular Biology Lab</td>
<td>2</td>
</tr>
<tr>
<td>BB 592</td>
<td>Graduate Research in BMB</td>
<td>3</td>
</tr>
<tr>
<td>BI 106</td>
<td>Human Anatomy</td>
<td>7</td>
</tr>
<tr>
<td>BI 108</td>
<td>Biology II</td>
<td>4</td>
</tr>
<tr>
<td>BI 114</td>
<td>Human Disease Infectious Diseases: AIDS to Tuberculosis</td>
<td>4</td>
</tr>
<tr>
<td>BI 119</td>
<td>Sociobiology</td>
<td>9</td>
</tr>
<tr>
<td>BI 172</td>
<td>Readings in Biology</td>
<td>13</td>
</tr>
<tr>
<td>BI 192</td>
<td>Undergraduate Research in Biology I</td>
<td>13</td>
</tr>
<tr>
<td>BI 206</td>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td>BI 216</td>
<td>Intensive Genetics</td>
<td>5</td>
</tr>
<tr>
<td>BI 260</td>
<td>Marine Biology</td>
<td>9</td>
</tr>
<tr>
<td>BI 272</td>
<td>Readings in Biology II</td>
<td>13</td>
</tr>
<tr>
<td>BI 292</td>
<td>Undergraduate Research in Biology II</td>
<td>13</td>
</tr>
<tr>
<td>BI 302</td>
<td>Vertebrate Zoology</td>
<td>9</td>
</tr>
<tr>
<td>BI 303</td>
<td>Ecology</td>
<td>9</td>
</tr>
<tr>
<td>BI 306</td>
<td>Biology of Global Change</td>
<td>10</td>
</tr>
<tr>
<td>BI 307</td>
<td>Biogeography</td>
<td>10</td>
</tr>
<tr>
<td>BI 315</td>
<td>Systems Physiology</td>
<td>7</td>
</tr>
<tr>
<td>BI 325</td>
<td>Principles of Neuroscience</td>
<td>7</td>
</tr>
<tr>
<td>BI 372</td>
<td>Readings in Biology III</td>
<td>13</td>
</tr>
<tr>
<td>BI 385</td>
<td>Immunology</td>
<td>5</td>
</tr>
<tr>
<td>BI 392</td>
<td>Undergraduate Research in Biology III</td>
<td>13</td>
</tr>
<tr>
<td>BI 402</td>
<td>Honors Research in Biology</td>
<td>13</td>
</tr>
</tbody>
</table>

CAS (cont.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI 410</td>
<td>Developmental Biology</td>
<td>5</td>
</tr>
<tr>
<td>BI 411</td>
<td>Microbiome: Our Intimate Relationship with Microorganisms</td>
<td>5</td>
</tr>
<tr>
<td>BI 416</td>
<td>Herpetology</td>
<td>10</td>
</tr>
<tr>
<td>BI 422</td>
<td>Biochemistry II</td>
<td>6</td>
</tr>
<tr>
<td>BI 445</td>
<td>Cellular and Molecular Neurophysiology</td>
<td>8</td>
</tr>
<tr>
<td>BI 448</td>
<td>Biodiversity and Conservation Biology</td>
<td>10</td>
</tr>
<tr>
<td>BI 472</td>
<td>Readings in Biology</td>
<td>13</td>
</tr>
<tr>
<td>BI 486</td>
<td>Biological Design for Sustainable Development</td>
<td>10</td>
</tr>
<tr>
<td>BI 492</td>
<td>Undergraduate Research in Biology IV</td>
<td>13</td>
</tr>
<tr>
<td>BI 498</td>
<td>Honors in Biology Seminar</td>
<td>13</td>
</tr>
<tr>
<td>BI 525</td>
<td>Biology of Neurodegenerative Diseases</td>
<td>8</td>
</tr>
<tr>
<td>BI 528</td>
<td>Biochemistry Lab II</td>
<td>6</td>
</tr>
<tr>
<td>BI 542</td>
<td>Neuroethology</td>
<td>11</td>
</tr>
<tr>
<td>BI 553</td>
<td>Molecular Biology II</td>
<td>6</td>
</tr>
<tr>
<td>BI 576</td>
<td>Carcinogenesis</td>
<td>6</td>
</tr>
<tr>
<td>BI 582</td>
<td>Neurobiology of Brain Disorders</td>
<td>8</td>
</tr>
<tr>
<td>BI 582</td>
<td>Species and Speciation</td>
<td>11</td>
</tr>
</tbody>
</table>

GRS

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB 722</td>
<td>Advanced Biochemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

MET

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI 106</td>
<td>Human Anatomy</td>
<td>12</td>
</tr>
<tr>
<td>BI 108</td>
<td>Biology II</td>
<td>12</td>
</tr>
<tr>
<td>BI 206</td>
<td>Genetics</td>
<td>12</td>
</tr>
<tr>
<td>BI 303</td>
<td>Ecology</td>
<td>12</td>
</tr>
<tr>
<td>BI 315</td>
<td>Systems Physiology</td>
<td>12</td>
</tr>
</tbody>
</table>