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Abstract
Sustained attention is critical for tasks where perceptual information must be continuously processed, like reading or driving;
however, the cognitive processes underlying sustained attention remain incompletely characterized. In the experiments that
follow, we explore the relationship between sustaining attention and the contents and maintenance of task-relevant features in
an attentional template. Specifically, we administered the gradual onset continuous performance task (gradCPT), a sensitive
measure of sustained attention, to a large web-based sample (N>20,000) and a smaller laboratory sample for validation and
extension. The gradCPT requires participants to respond to most stimuli (city scenes – 90 %) and withhold to rare target images
(mountain scenes – 10%). By using stimulus similarity to probe the representational content of task-relevant features—assuming
either exemplar- or category-based feature matching—we predicted that RTs for city stimuli that were more Bmountain-like^
would be slower and Bcity-like^ mountain stimuli would elicit more erroneous presses. We found that exemplar-based target-
nontarget (T-N) similarity predicted both RTs and erroneous button presses, suggesting a stimulus-specific feature matching
process was adopted. Importantly, individual differences in the degree of sensitivity to these similarity measures correlated with
conventional measures of attentional ability on the gradCPT as well as another CPT that is perceptually less demanding. In other
words, individuals with greater sustained attention ability (assessed by two tasks) were more likely to be influenced by stimulus
similarity on the gradCPT. These results suggest that sustained attention facilitates the construction and maintenance of an
attentional template that is optimal for a given task.
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Introduction

To sustain visually-directed attention in real-world contexts
(e.g., driving at night), a complicated stream of incoming vi-
sual information must be continuously monitored for task- or
goal-relevant features, locations, or objects (e.g., deer). An
important component of this process is constructing and main-
taining a task set whereby select features stored in an atten-
tional template are mapped to the appropriate behavioral re-
sponses. For example, when driving on a highway through the
forest at dusk, the driver should maintain a task set that poten-
tiates deer or deer-like features and link these features with an
avoidance response (e.g., break, accelerate, swerve). If a driv-
er fails to develop an efficient attentional template—potenti-
ating features that are either too specific (e.g., Bambi) or too
broad (e.g., brown)—it will hinder the driver’s ability to rap-
idly identify and avoid deer. Even if an optimal attentional
template is constructed, it must be maintained, and failure to
do so may result in a sub-optimal attentional state so that the
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presence of deer-like features would fail to elicit a rapid avoid-
ance response. In the sustained attention literature, such fail-
ures to respond to target features are labeled attentional lapses
and, as described above, the underlying causes of such lapses
can be variable and multifaceted. Individual differences in the
ability to sustain attention are stable (trait-like) and the factors
driving these individual differences are likely multifaceted for
similar reasons. In the present paper, we seek to better char-
acterize the relationship between individual differences in
sustained attention ability and the content and maintenance
of an attentional template during a sustained attention task.

Probing attentional templates using T-N similarity

In order to assess the strength and content of individual atten-
tional templates we rely on the notion that the similarity of a
target stimulus to its nontarget distractors (called T-N similarity
by Duncan & Humphreys, 1989) and vice versa can influence
performance. This influence has been thoroughly explored and
validated in static visual search paradigms (for a recent review
see Hout et al., 2015), where participants must give a response
indicating whether a target stimulus exists amongst a complex
scene of simultaneously presented nontarget stimuli.
Specifically, as visual T-N similarity increases (the targets and
nontargets are more similar to one another), participants be-
come slower and more error prone (Duncan & Humphreys,
1989). Additionally, RSVP and masked priming experiments
have demonstrated that T-N similarity can reduce the likelihood
of target detection when nontargets are temporally (within 400
ms) adjacent (Raymond, Shapiro, & Arnell, 1995).

Because T-N similarity has a consistent effect on visual
search, T-N similarity effects have been used to probe the con-
tent and dynamics of attentional templates during visual search
tasks (Geng, DiQuattro, & Helm, 2017; Lee & Geng, 2017). It
is assumed that target detection is accomplished bymatching an
incoming stimulus representation with the features stored in the
attentional template (Carlisle, Arita, Pardo, &Woodman, 2011;
Desimone & Duncan, 1995; Hout & Goldinger, 2015; Lee &
Geng, 2017). Therefore, differences in the influence of T-N
similarity on performance could reflect differences in the atten-
tional template. In one study, Lee and Geng (2017) demonstrat-
ed that individual differences in the representational similarity
for face-morph stimuli predicted behavioral differences in an
identity search task. Specifically, individuals who found a given
face-pair to be more similar were more likely to be distracted
when one item in the pair was a target and the other was a
distractor. The differences in the perceptual similarity space of
faces were shown to influence individual attentional templates
and thus modulate the degree of behavioral interference due to
T-N similarity on the visual search task. Aside from this study
(see also Charest, Kievit, Schmitz, Deca, & Kriegeskorte,
2014), little work has been done exploring individual differ-
ences in the representation of stimulus similarity and how this

relates to attentional templates and performance on a given task.
Accordingly, we sought to determine the relationship between
individual differences in sensitivity to T-N similarity and more
standard measures of performance during a sustained attention
task. On the one hand, heightened sensitivity to T-N similarity
could be a sign of poor filtering/greater interference and thus
would lead to conflicting or incorrect signals sent from percep-
tual and decision processes to motor responses. On the other
hand, it could be that those with more robust and efficient at-
tentional templates aremore accurate overall but—because both
target and non-target features are strongly potentiated—more
susceptible to stimulus-specific differences in T-N similarity.

Quantifying T-N similarity in naturalistic scenes

Experimentally measuring the influence of T-N similarity on be-
havior depends on correctly identifying (or at least approximat-
ing) the behaviorally-relevant features involved in the matching
process. In a visual search task where a single target is precisely
cued, exemplar-specific features are used to identify the target
from thedistractors.However, as theprecisionof the cuedeviates
from the target (e.g., the cue deviates by a size or orientation
transformation, or the cue is a category label), the features used
to discriminate the target from nontargets become increasingly
abstract (Hout & Goldinger, 2015; Maxfield & Zelinsky, 2012;
Peelen & Kastner, 2011; Schmidt & Zelinsky, 2009a; Vickery,
King,&Jiang, 2005;Yang&Zelinsky, 2009). In the experiments
presentedbelow,participantsneeded todiscriminatephotographs
of city scenes from photographs of mountain scenes. While the
discrimination falls across a basic category boundary, there were
only ten exemplars in each category and each exemplar was re-
peated many times. This experimental design allowed for both
category-level and exemplar-level features to mediate the target-
matching process. Therefore,we quantified the strength and con-
tent of attentional templates as the degree of observed T-N simi-
larity and either exemplar or category-level feature spaces were
consideredwhen computing T-N similarity.As a consequence of
making explicit the feature spaces underlying T-N similarity, we
also explored how task demands shape the representational con-
tent of attentional templates. It could be that category-level fea-
tures were optimal as they mediate our ability to rapidly identify
novel scenesmore generally; however, because this task enabled
the use of exemplar-level features, leveraging such features may
be optimal to thematching process.

Relating sustained attention to attentional templates

By using T-N similarity to measure the contents and strength
of an individual’s attentional template during a sustained at-
tention task, we sought to determine if individual differences
in the influence of T-N similarity on performance were asso-
ciated with more standard measures of sustained attention
ability. This required a sustained attention task that uses a
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complex enough stimulus set and target/non-target category
boundary to allow for measurable individual differences in
attentional templates while providing a reliable measure of
sustained attention ability. Conventionally, studies of
sustained attention use variants of go/no-go tasks called con-
tinuous performance tasks (CPTs) where stimuli are shown in
succession and participants are instructed to respond to non-
target stimuli while withholding their response to target stim-
uli (Conners, 2000; Esterman, Noonan, Rosenberg, & Degutis,
2013; Robertson, Manly, Andrade, Baddeley, & Yiend, 1997;
Rosenberg, Noonan, Degutis, & Esterman, 2013). Performance
is generally evaluated using response errors (commission errors
for target stimuli and omission errors for nontargets) and vari-
ability in response times (RTs) with greater variability indica-
tive of worse attentional ability. When these tasks are used to
measure dynamic changes in attentional states (e.g., Cheyne,
Carriere, & Smilek, 2009; Christoff, Gordon, Smallwood,
Smith, & Schooler, 2009; Esterman et al., 2013; Smallwood
et al., 2004; Weissman et al., 2006), it is generally assumed that
the fluctuations in performance are driven by internal cognitive
processes falling under the broad category of cognitive control.
On the other hand, stimulus-driven properties such as stimulus
quality, complexity or T-N similarity are either rarely consid-
ered or controlled for with the use of very simple stimuli (but
see Head & Helton, 2012; Helton & Russell, 2011;
Parasuraman et al., 2009). However, given a sufficiently com-
plex stimulus set, the stimulus-driven influences on perfor-
mance are those that would be most likely to be modulated
by the strength and efficiency of a given attentional template.
Accordingly, we tested participants on the gradual onset con-
tinuous performance task (gradCPT), a CPT variant that
removes phasic onsets/offsets between stimuli (Esterman
et al., 2013; Fortenbaugh et al., 2015; Rosenberg et al., 2013).
Participants were shown a series of images of natural scenes
selected from ten photographs of city scenes (nontargets, 90 %
of trials) and ten photographs of mountain scenes (targets, 10%
of trials) and made a category decision on each stimulus image.
Critically, because the stimulus set involved complex natural
images with immense numbers of visual features in each stim-
ulus, the diagnostic features selected in the attentional template,
and the degree to which these features were potentiated and
maintained, could vary considerably across participants.

In the current study, we report two experiments that exam-
ined the relationship between T-N similarity and sustained
attention performance using the gradCPT. First, using data
collected from a massive online dataset (TestMyBrain.org, N
> 20,000), we established that T-N similarity influenced per-
formance (Experiment 1)—evident in both RTs for go trials
(nontarget city scenes) and the probability of an erroneous
button press (commission errors) on no-go trials (target moun-
tain scenes). Critically, we examined the degree to which in-
dividual differences in sensitivity to visual T-N similarity pre-
dicted overall performance (as measured by accuracy and RT

variability) on the task, showing greater sensitivity was asso-
ciated with better performance. In Experiment 2, we replicated
the primary findings from Experiment 1in a lab-based sample
and found that individual differences in sensitivity to similar-
ity derived from performance on the gradCPT predicted per-
formance on a clinically used CPT that used simple stimuli
instead of complex scenes.

Experiment 1: Examining the effect of stimulus
similarity on gradCPT performance using a large
online dataset

In Experiment 1, we set out to determine if and how visual T-
N similarity influenced performance on the gradCPT. Data in
this dataset have been published in previous studies
(Fortenbaugh et al., 2015; Riley et al., 2016; Riley,
Esterman, Fortenbaugh, & DeGutis, 2017). Thus, we include
a very similar description of the methods below with the ad-
dition of new analytic procedures.

Methods

Participants We included 21,406 unpaid volunteers between
the ages of 10 and 70 years in the analyses. A total of 25,519
participants performed the gradCPT by visiting TestMyBrain.
org, a website containing various cognitive tests, but 3,739
participants were removed due to participant exclusion
criterion reported in Fortenbaugh (2015). An additional 374
participants were removed because either their accuracy (d’ or
criterion), RT variance, or mean RT fell outside 3 standard
deviations of the sample mean. There was a nearly equal
ratio of males and females (46 % female).

Procedure and stimuli Participants visited TestMyBrain.
org—a website that allows users to participate in experimental
tasks and provides feedback on performance relative to other
users. The gradCPT was presented on its home page as a
BContinuous Concentration Task.^ TestMyBrain.org receives
traffic mostly from social-networking sites and search engines
(Germine et al., 2012). The gradCPTwas one test out of several
on TestMyBrain.org (others included face recognition and
working memory). Participants were free to complete one or
more of these tasks; for some participants, the gradCPTwas the
first or only test they completed, while others may have
completed other tasks first. Single experiment studies on
TestMyBrain.org are kept brief (< 10 min) in order to
maintain a balance between task completion, participation,
and test length. Given the demanding nature of continuous
performance tasks, the web-based gradCPT was a shortened
version (4 min) of the continuous go/no-go task originally re-
ported in Esterman et al. (2013). This test length was chosen
because it was sufficiently short that participant attrition rates
would be comparable with those of other experiments on the
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site. The concern with participants dropping out during testing
regards a selection bias in which individuals with poorer
sustained-attention ability would be less likely to complete the
experiment. This led to a total experiment time of approximate-
ly 7 min from consent to debriefing.

Before starting the gradCPT, participants gave informed
consent according to the guidelines set by the Committee on
the Use of Human Participants at Harvard University and the
Wellesley College Institutional Review Board. Participants
were then asked to complete a voluntary demographic survey
asking about their age, gender, native language, and ethnicity.
Comprehensive instructions as well as three practice sessions
(30 s each) were then provided to familiarize participants with
the scenes and the task so that it could be completed without
assistance from an experimenter. Across these practice ses-
sions, each stimulus exemplar was presented at least twice.
After completing 4 min of the gradCPT, participants were
asked if they had cheated or if any problems occurred during
the task and then they were provided with performance feed-
back. This feedback consisted of a personal score, which was
the percentage of correct withholdings to mountains, as well
as how this score compared with the average participant.

The current version of the gradCPT contained 20 round,
gray-scale photographs; half depicting mountain scenes and
half depicting city scenes (Esterman et al., 2013). The stimu-
lus images were resized to a 256 × 256 pixel image and then
cropped to appear within a circular frame (radius ~ 126
pixels). In the gradCPT, the scene images were presented in
a pseudo random order with 10 % of trials displaying moun-
tain scenes and 90% city scenes without allowing an identical
scene to repeat on consecutive trials. Scene images gradually
transitioned from one to the next, in a linear pixel-by-pixel
interpolation, with each transition occurring over 800 ms.
The new image increased in clarity at the same rate as the
old image decreased in clarity. Participants were instructed
to press the space bar for city scenes (267 trials) and withhold
a response for mountain scenes (32 trials). Trial order was
fixed across participants to ensure that stimulus-driven diffi-
culty was matched across participants.

Computing stimulus similarity In order to quantify T-N simi-
larity, we considered the degree to which the task-relevant
features were exemplar-based or category-based. According
to the exemplar-based1 hypothesis, participants memorized
information about each of the ten city and ten mountain image

stimuli and these exemplar-specific features were used to
match an incoming stimulus to one of the exemplars stored
in memory. Responses could be based entirely on exemplar
image identification instead of a broader category label assign-
ment or the exemplar-specific features could facilitate the
proper categorization. Alternatively, the category-based hy-
pothesis predicted that participants used the same general fea-
tures that enable them to categorize any photograph upon its
first viewing. In assessing T-N similarity, the exemplar-based
hypothesis predicted that the relevant similarity would be be-
tween a given city image and the most similar (nearest neigh-
bor) mountain image in the sample. Specifically, if a given city
exemplar was visually similar to a mountain exemplar, even if
the city exemplar was not particularly Bmountain-like,^ the
stored visual representation of that mountain exemplar would
interfere with the response to the city, resulting in a slower
response. Alternatively, if T-N similarity was category-based,
we predicted the relevant similarity would be between a given
city image and the set of stored mountain features that were
abstract enough to classify scene images despite the large
degree of possible physical image variability within its basic
category. As such, cities that shared more Bmountain-like^
attributes would elicit slower responses.

Along with considering how abstract the task-relevant fea-
tures were, we also examined how to sensibly characterize the
features that composed the scene representations at an exem-
plar and basic-category level. The exemplar-based hypothesis
would rely on image features that could reliably distinguish
the exemplars within a category. Here we considered two
types of features—pixel intensity and the GIST descriptor.
Pixel-based feature matching assumed the stimulus images
were represented as a set of position-specific pixel intensity
values. Indeed, pixel intensity correlations have been shown
to be a neurally-relevant (but not necessarily behaviorally rel-
evant) measure of image similarity for objects (e.g., Peelen &
Caramazza, 2012) and scenes (Walther, Caddigan, Fei-Fei, &
Beck, 2009). Additionally, pixel-based similarity measures
can be used to approximate visual similarity judgments better
than chance (Sinha&Russell, 2011). It is worth noting that we
do not suggest that pixel intensity correlations were the best
approximation of exemplar-level perceptual or representation-
al similarity. However, pixel intensity correlations were easy
to compute and sensitive to position-specific, high-frequency
commonalities and variations across image pairs. Further, pix-
el intensity features provided a computational maximum for
the fidelity of exemplar representations as the stimulus images
were composed of gray-scaled pixel intensity values so iden-
tical exemplars were necessarily identical in this feature space
and different exemplars were necessarily different. Like any
image feature descriptor, the success of pixel intensity values
for this purpose rested on the assumption that these features
bear a second-order isomorphic relationship to the representa-
tions of the actual task-relevant features. The second type of

1 We wish to differentiate this exemplar-based hypothesis with exemplar the-
ories recognition more generally. In our task, using exemplar features could be
beneficial because each exemplar was repeated multiple times. Therefore,
memorizing and leveraging exemplar-specific features could provide a fast
and accurate way to identify an incoming stimulus by matching it to the stored
exemplar features of that stimulus. However, due to the task-specific nature of
this exemplar-based hypothesis, results reported here should not be taken as
evidence for or against more general theories of exemplar recognition.
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image features consisted of the GIST descriptor values for
each image (Oliva & Torralba, 2001). The GIST descriptor
is a feature vector that is thought to provide an important
summary of the spatial layout of a scene that helps mediate
the rapid identification of scene images (Oliva & Torralba,
2001, 2006). This measure is less sensitive to high frequency
local variations and more sensitive to spectral features distrib-
uted throughout the image.

Accordingly, we computed two exemplar-based T-N simi-
larity values for each stimulus, assuming either pixel image
features or GIST descriptor feature vectors. The procedures
are depicted in Fig. 1. To construct the exemplar-pixel simi-
larity values, each of the 20 stimulus images were converted
into vectors of pixel intensity values. To quantify the influence
of exemplar-specific similarity, we reasoned that the most
similar cross-category stimulus would lead to the greatest in-
terference and consequently would best reflect the influence
of exemplar-specific feature similarity. Therefore, for each
stimulus, we computed ten pairwise Pearson correlation
values by correlating the pixel image vector of a given stimu-
lus with the pixel vectors of the ten cross-category stimuli. We
then selected the largest r (the nearest cross-category neigh-
bor) to be the exemplar-pixel T-N similarity value for that
stimulus. For example, the pixel vector for a given city stim-
ulus was correlated with each of the ten mountain pixel vec-
tors and the largest correlation coefficient value was selected.
To construct the exemplar-GIST similarity values, the same
procedure was employed but instead of using pixel intensity
values, each stimulus image was represented by a GIST de-
scriptor feature vector with a length of 512. To construct the
GIST feature vector, a 4 × 4 grid was used to divide each
stimulus into 16 equal subsets. Within each image subset,
Gabor-like filters tuned to 8 different orientations and four
different sizes were applied resulting in 32 values for each of
the 16 subsets that combined to 512 values in total (Oliva &
Torralba, 2001).

In order to quantify each stimulus image’s T-N similarity
assuming more abstract, category-level features, we used a
pre-trained support vector regression model to estimate pa-
rameter weights for 102 scene attributes (Patterson & Hays,
2012; Patterson, Xu, Su, & Hays, 2014; Xiao et al., 2013).
Briefly, Patterson and Hays (2012) used Mechanical Turk to
obtain binary scene attribute judgments for 102 attributes and
14,340 scene images taken from the Sun database (Xiao,
Hays, Ehinger, Oliva, & Torralba, 2010). A kernel-based sup-
port vector regression model was trained to predict the attri-
bute judgments using as input a set of four image descriptors:
the GIST descriptor, Histogram of Gradients (HOG) 2×2, self-
similarity, and color histograms (for more details about each
descriptor, see Xiao et al., 2010). This pre-trained model
allowed us to take any scene image and compute a vector of
102 scene attribute values for that image. Using images from
the Places database (Zhou, Lapedriza, Xiao, Torralba, &

Oliva, 2014), these scene-attribute vectors were computed
for a sample of 1,200 city images taken at random from the
street and the downtown categories as well as 1,200 mountain
images taken from the mountains and the snowy mountains
categories. Images were resized and gray-scaled in order to
match the gradCPT stimuli. For each category, the 1,200 attri-
bute vectors were averaged to compute a template attribute
vector. The resulting mountain and city template attribute vec-
tors were tested for accuracy using a novel sample of 1,200
images from each category. Finally, attribute vectors were
computed for each of the gradCPT stimuli and attribute-
based T-N similarity was quantified as the Pearson correlation
between a given stimulus’s attribute vector and the template
attribute vector from the opposing category.

When evaluating the feasibility of our category-attribute
feature templates on the selected 2,400 novel images (1,200
from each category) we found that a simple correlation clas-
sifier achieved 93 % accuracy for both the city and mountain
images (chance = 50 %) suggesting that the templates
contained information about city and mountain scenes that
generalized to novel images. The templates also correctly clas-
sified all ten of the gradCPTcity stimuli and nine out of the ten
mountain stimuli (Mountain 2, shown on Table 2, was
incorrectly classified as a city). To further help motivate the
use of these attribute vectors, we determined what the most
and least informative attributes were. By taking the absolute
difference between each attribute from the two category tem-
plate vectors, we found the ten most informative attributes
(greatest absolute difference) were natural, man-made, rug-
ged scene, mostly vertical components, far-away horizon,
hiking, climbing, snow, camping, and enclosed area. Further,
the ten least informative attributes were cleaning, rubber/
plastic, carpet, stressful, shingles, smoke, exercise, playing,
spectating/being in an audience, and reading. That the most
and least informative attributes made intuitive sense as being
features that should (or should not) distinguish images of city
and mountain scenes suggested the templates were success-
fully approximating components of this abstract feature space.

Reaction time Throughout the task, response times (RTs)
were recorded. RTs were calculated relative to the beginning
of each image transition such that an RT of 800 ms indicated
a button press at the moment the image was 100 % coherent
and not mixed with other images. A shorter RT indicated that
the current scene was still in the process of transitioning from
the previous scene, and a longer RT indicated that the current
scene was in the process of transitioning to the subsequent
scene. For example, an RTof 720 ms would indicate a button
press at the moment of 90 % image n and 10 % image n-1,
and so forth. On rare trials with highly deviant RTs (before
70 % coherence of image n and after 40 % coherence of
image n-1) or multiple button presses, an iterative algorithm
maximized correct responses. The algorithm first assigned
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unambiguous correct responses, leaving few ambiguous but-
ton presses. Ambiguous presses were then assigned to an
adjacent trial if one of the two trials had no response. If both
adjacent trials had no response, the press was assigned to the
closest trial unless one trial was a no-go target, in which case
participants were given the benefit of the doubt that they
correctly omitted. If there were multiple presses that could
be assigned to any one trial, the fastest response was select-
ed. Slight variations to this algorithm yielded highly similar
results, as most button presses showed a 1:1 correspondence
with presented images.

Measures of gradCPT performance Taking a signal detection
approach, we defined hits as correct omissions to mountains
and false alarms as incorrect omissions to cities. Following
these definitions, we computed discrimination ability (d’)
and criterion (a measure of strategy or bias to respond in the
case of uncertainty). We used standard procedures to correct
for cases in which hit rates were 100 % or false alarm rates
were 0 %, with one-half error deducted or added on the basis
of the number of target or nontarget trials presented, respec-
tively. In addition to d prime and criterion, we computed, for
each participant, RT variance or more precisely the coefficient
of variation of their RTs (CV), which is a measure of ability
with lower CV corresponding to greater ability. Finally, we
computed the mean of their RTs, which is a measure of strat-
egy with slower RTs corresponding to a more conservative
strategy. This ability/strategy distinction stems from
Fortenbaugh et al. (2015), who found, through a factor anal-
ysis, that the ability (d prime and CV) and strategy (criterion
and mean RT) factors dissociate across the lifespan.

Quantifying the influence of T-N similarity on RTs Following
Duncan and Humphreys (1989), we predicted that city stimuli
that had a greater degree of T-N similarity would result in
slower RTs. To test this (see Fig. 2), an estimate of the popu-
lation RT time course for the 267 city trials was constructed by
averaging together, at each trial, the RTs across the 21,406
participants. The trial order was identical across participants
so averaging together the RTsmaintained trial-to-trial variance
in RT due to stimulus-driven factors like T-N similarity.
Furthermore, the N was large enough for us to treat the mean
RT as an approximate to the population values.2 Because we
wanted to see which type of T-N similarity best explained
trial-to-trial variance in RTs, the RT time course was tested
for the influence of T-N similarity by running a simultaneous
regression analysis including four predictors—the pixel-based
exemplar T-N similarity measure, the GIST-based exemplar T-
N similarity measure, the attribute-based T-N similarity mea-
sure, and a linear trend. The linear trend predicted RT slowing
over the course of the experiment. Each of the 3 T-N similarity
predictors assigned the T-N similarity value corresponding to
the city stimulus shown on that trial for each of the 267 trials.
The R2 computed from this model reflected the amount of
trial-to-trial RT variance the similarity measures and the linear
trend explained and the standardized beta coefficients
reflected the unique relative contributions of each of the T-N
similarity measures. In order to compute standardized beta
coefficients, a constant was added to each model and all

2 We computed 95 % confidence intervals for the average RTs from each trial
in the 267 trial time course. On average, the 95% CIs spanned 3.7 ms with the
largest CI spanning 4.7 ms.

Figure 1. The three types of T-N similarity. The figure depicts how each type of T-N similarity was computed for city exemplar # 6 (see Table 1). Each
column indicates a different type of T-N similarity and each row indicates a step in the procedure used to compute T-N similarity
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variables were normalized to have a mean of 0 and a standard
deviation of 1.

Quantifying the influence of T-N similarity on commission
errors We additionally predicted that greater T-N similarity
for mountain stimuli (i.e., mountain images that looked more
Bcity-like^) should result in more errors. To test this, we ran
the same type of group regression analysis as described in the
previous section but adapted them for mountain trials. First,
for each of the 32 mountain trials, the rate of erroneous button
presses or commission error rate (CE rate) was computed by
dividing the number of participants that made an error at a
given trial by the total number of participants. This CE rate
time-course was the dependent variable for the regression
analysis that included the three T-N similarity predictors for
the mountain stimuli and a linear trend that predicted an in-
crease in error likelihood over the experimental time course.

Individual differences To examine whether individual differ-
ences in sensitivity to similarity were related to performance
on the gradCPT, we computed individual sensitivity to T-N
similarity by running the regressions described above on each
participant’s data separately. Therefore, for each participant,
we ran two regression analyses, one predicting mountain-trial
accuracy and one predicting the city-trial RTs. Each model
produced four beta coefficients and sensitivity to T-N similar-
ity was quantified as the t-values from the beta coefficients.
The set of beta t-values from each participant resulted in four

individual-difference indices—three quantifying individual
differences in sensitivity to T-N similarity (pixel-based,
GIST-based and attribute-based) and one for linear trend.
First, each of the t-values were correlated (Pearson) with the
four different measures of gradCPT performance (d prime,
criterion, RT variance, or mean RT). Next, to determine the
unique contribution of the sensitivity to similarity measures,
they were entered into second-level regression models—one
for each of the measures of gradCPT performance.

Results

We set out to determine (1) if T-N similarity influenced perfor-
mance on the gradCPTand (2) if individual differences in sensi-
tivity to T-N similarity were related to more conventional mea-
sures of task performance. To do this, we computed three mea-
sures of T-N similarity—one assuming a pixel-based exemplar
matching procedure, another assuming a GIST-based exemplar
matching procedure, and a third assuming an attribute-based
category templatematchingprocedure.Tables1and2showeach
of the stimuli alongwith their three T-N similarity values aswell
as mean RT for city stimuli (Table 1) and CE rate for mountain
stimuli (Table 2). Tables 3 and 4 show the degree towhich these
measures covary.

The influence of T-N similarity on city RTs To determine if (and
if so, which measure of) T-N similarity influenced perfor-
mance on the gradCPT, a regression analysis was performed

Figure 2. Summary of the analyses and results from Experiment 1. The
level one (L1) regression analyses fit to the group average data estimated
the overall effect of T-N similarity while the same regression analyses fit
to each participants data estimated that participants sensitivity to T-N

similarity and the coefficient t-values were used as input to the level 2
regression analyses that fit these measures of sensitivity to the different
types of T-N similarity to measures of individual performance on the
gradCPT
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to simultaneously test for the influence of exemplar-pixel, ex-
emplar-GIST, and category-attribute T-N similarity (as well as a
linear trend) on the trial-to-trial group average RTs in response to
city stimuli. As reported in Fig. 3, the overall model was signif-
icant (R2 = 0.26, F(4, 262) = 22.78, p < .001) with the coeffi-
cients for the exemplar-pixel (β = 0.34, t(262) = 6.13, p < .001)
and exemplar-GIST (β = 0.21, t(262) = 3.45, p < .001) T-N
similarity measures explaining unique variance while the
attribute-based measure did not (β = 0.02, t(262) = 0.38, p
= .70). The significant linear trend (β = -0.31, t(262) = -5.86,
p < .001) indicated that participants sped up over time.

The influence of T-N similarity on mountain CEsWe addition-
ally ran an analogous regression analysis predicting the trial-
to-trial commission error rates for mountain trials (see Figs. 3
and 4). This model was quite successful explaining nearly 75
% of the variance in trial to trial error rates (R2 = 0.72, F(4,
27) = 17.48, p < .001). Like the model predicting RTs to city
stimuli, the exemplar-pixel measure of T-N similarity and the
linear trend predictors had significant coefficients while the
category-attribute predictor did not (exemplar-pixel: β = 0.69,
t(27) = 6.12, p < .001; linear trend: β = 0.57, t(27) = 5.22, p <
.001; category-attribute β = -0.05, t(27) = -0.36, p = .72).
Unlike the city RT model, the exemplar-GIST predictor was
not significant (β = 0.02, t(27) = 0.14, p = .89). Overall, the
exemplar-pixel and, to a lesser degree, the exemplar-GIST
measures of T-N similarity could explain some of the trial-
to-trial variance in performance such that more Bmountain-
like^ city stimuli and more Bcity-like^ mountain stimuli ac-
cording to these measures led to slower and more error-prone
responses, respectively, while the category-attribute was not
significant for either. The significant linear trends revealed
that, while accounting for T-N similarity, participants
responded more quickly and made more commission errors
as the experiment progressed.

Relating sensitivity to T-N similarity to individual differences
in gradCPT performance We ran a set of eight second-level
regression analyses in order to evaluate how individual differ-
ences in the sensitivity to each of the three measures T-N
similarity as well linear trend predicted gradCPT ability
(d prime and CV) and measures of strategy (criterion and
mean RT). Because the N was so large, even a model with a
small R2 was significant. We therefore followed Cohen’s
(1988) convention that states that R2 cutoffs for small, medi-
um, and large effects are R2 = 0.02, 0.13, and 0.26, respec-
tively. We found that sensitivity to similarity as measured by
the influence of T-N similarity on RTs to city stimuli could
predict both measures of gradCPT ability—specifically, dis-
crimination ability/accuracy (d prime) with a medium effect
(R2 = 0.16) and RT variability (CV) with a large effect (R2 =
0.27). Examination of the coefficients revealed that the suc-
cess of the models was largely driven by sensitivity to the

exemplar-pixel (d prime: β = 0.25; CV: β = -0.36) and
exemplar-GIST (d prime: β = 0.28; CV: β = -0.30) measures
of T-N similarity (see Figure 2). Importantly, the signs of these
coefficients revealed that individuals who were more sensitive
to the exemplar-based measures of T-N similarity were more
accurate (greater d prime) and had more consistent RTs (lower
RT variability). Neither sensitivity to the category-attribute
measure T-N similarity (d prime: β = -0.03; CV: β = -0.03)
nor linear trend (d prime: β = 0.01; CV: β = -0.09) substan-
tially contributed to either model. These measures did not
predict either measure of strategy beyond a small effect (cri-
terion: R2 = 0.04; RTmean: R2 = 0.03).3 Furthermore, none of
the models using sensitivity to T-N similarity derived from
accuracy to mountain stimuli predicted any of the four mea-
sures of gradCPT performance beyond a small effect.

Experiment 1 discussion

Experiment 1 provided, to our knowledge, the first analysis of
how visual image similarity impacts sustained attention and
how individual differences in sensitivity to visual similarity
are related to sustained attention ability. In particular, using a
sample size of more than 20,000 participants, we found com-
pelling evidence that increased T-N similarity was related to
performance on the gradCPT—both in terms of slowing RTs
for city trials and increasing the likelihood of commission
errors for mountain trials—and that individual differences in
sensitivity to certain measures of T-N similarity was associat-
ed with more optimal performance on the task.

First, we showed that, at the group level, the exemplar-
pixel measure of T-N similarity explained variance in both
the average RT time course for non-target city stimuli as well
as the error-rate time course for the target mountain stimuli
while the exemplar-GIST measure only explained variance in
the RT time course. The category-attribute measure, however,
did not significantly explain variance in either. As expected,
stimuli having greater T-N similarity showed slower RTs and
greater error rates. We posit that the cognitive processes un-
derlying the success of the exemplar-based T-N similarity
measures are computationally analogous to how the T-N sim-
ilarity measures were constructed—namely, that the slower

3 The overall mean RT from the online version of the gradCPT reported in
Experiment 1 was an average of ~80 ms slower than lab-based versions of the
gradCPT.We believe this difference was likely due to hardware issues intrinsic
to online data collection and therefore the overall mean RT would not be a
reliability indicator of the state of the stimulus when the response was made
(see Fortenbaugh et al., 2015 for a more extensive discussion).With this caveat
in mind, the correlation betweenmean RTand sensitivity to T-N similarity was
small, meaning participants with greater sensitivity to similarity were not faster
overall. The data showed that participants with greater sensitivity to T-N sim-
ilarity were instead more accurate and more stable with RTs which could mean
they were identifying the scenes at a faster rate but instead of responding more
quickly, allowing more evidence to accrue before responding. This could
explain how these participants had more accurate responses while keeping
up with the fast pace of the task.
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RTs were a consequence of interference from image features
from the most confusable mountain exemplar (nearest cross-
category neighbor) stored or potentiated in the attentional tem-
plate, sending a conflicting response signal (withhold in the
case of city stimuli and press in the case of mountain stimuli).
The success of the exemplar-based measures of T-N similarity
further suggests that participants executed the task, at least in
part, by adopting an exemplar-based matching procedure
whereby the perceptual decision (city vs. mountain) was ac-
complished by storing stimulus-specific image features from
each stimulus and leveraging all of these features when mak-
ing the perceptual decision. The failure of the attribute-based
category T-N similarity measure could mean that exemplar
features were used at the exclusion of the attribute-based T-
N similarity. However, this interpretation presupposes that the
attribute-based T-N similarity sufficiently approximates the
appropriate category-level features used to classify novel
scenes. Since this was not independently verified, any inter-
pretation of the null effect here is ambiguous.

Inclusion of the linear trend in the regression models re-
vealed a vigilance decrement by showing an increase in error
rate throughout the time course of the experiment as well as
RT speeding, which has been linked with more automated
(less vigilant) attentional states (deBettencourt, Norman, &
Turk-Browne, 2017). While not the focus of this study, Fig.
4 (plot on bottom right) illustrates that using T-N similarity
can help reveal performance variation due to intrinsic factors
like executive or cognitive control by controlling for trial-to-
trial variance due to stimulus driven factors.

We further found that both the pixel-based and the GIST-
based image features contributed unique variance to explaining

reaction times. This suggests that the exemplar representations
stored in memory were representing multiple types of image
properties and that similarity, as derived through pixel intensity
and the GIST descriptor features, approximated the similarity
structure at separate levels of representation involved in the
categorization of scene images. Alternatively, the pixel and
GIST measures could capture different facets of the similarity
structure at a single level of representation.

Finally, individuals who were more sensitive to T-N simi-
larity as indexed by both the pixel and GIST exemplar T-N
similarity measures to city RTs were better at the task overall,
with greater discrimination ability (higher d prime) and less
variable RTs (CV). This result is novel, even in the broader
context of visual similarity across the visual search and RSVP
literature. While other studies have found that individual dif-
ferences in the perceived similarity of target and non-target
stimuli could predict individual differences in sensitivity to
T-N similarity (Lee & Geng, 2017), sensitivity to T-N similar-
ity has not (to our knowledge) been used as an index to predict
overall performance on a given task.

One potential concern is that since sensitivity to T-N sim-
ilarity was based on city RTs, perhaps it was really an indirect
measure of RT variability and therefore the individual differ-
ence correlations between sensitivity to T-N similarity and CV
were statistically circular. However, the results were not con-
sistent with this interpretation. Increased sensitivity to T-N
similarity was measured from an increase of a particular form
of RT variability, namely slower responses to cities that have a
similar mountain exemplar. Therefore, if everything else was
equal, increased sensitivity to T-N similarity would lead to an
increase in RT variance. In fact, the opposite was true—

Table 1 The three predicted T-N similarity measures and themean RT inms (from Exp. 1) for the ten non-target (city) stimuli. Intervals reported below
the mean RTs are their 95% confidence intervals

City 

variables

C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 C. 7 C. 8 C. 9 C. 10

Pixel 0.24 0.21 0.21 0.30 0.14 0.56 0.51 0.42 0.40 0.41

GIST 0.31 0.49 0.35 0.34 0.42 0.50 0.33 0.32 0.33 0.27

Attribute 0.42 0.25 0.44 0.40 0.40 0.46 0.40 0.32 0.52 0.57

Mean RT
858 

±0.93

864

±0.99

858

±0.94

873

±0.99

861

±0.96

899

±0.97

884

±0.95

867

±0.95

883

±1

861

±0.91
C city, RT response time

Table 2 The three predicted T-N similarity measures and the commission error rate (from Exp. 1) for the ten target (mountain) stimuli

M. 1 M. 2 M. 3 M. 4 M. 5 M. 6 M. 7 M. 8 M. 9 M. 10

Mountain 

variables

Pixel 0.39 0.10 0.19 0.14 0.06 0.41 0.32 0.21 0.56 0.21

GIST 0.22 0.31 0.21 0.49 0.27 0.16 0.26 0.24 0.50 0.47

Attribute 0.59 0.61 0.58 0.43 0.45 0.51 0.44 0.48 0.41 0.59

Error rate 0.23 0.10 0.16 0.21 0.15 0.26 0.34 0.23 0.33 0.38
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greater sensitivity to T-N similarity was associated with lower
overall RT variability. This suggests that greater sensitivity to
T-N similarity was associated with a large enough reduction of
other causes of RT variability (e.g., ability to sustain attention)
to counteract the increased RT variability that was directly a
result of increased sensitivity to T-N similarity.

While sensitivity to T-N similarity was associated with
overall performance on the task, the nature of this association
was unclear. Specifically, because complex stimuli were used,
it was unclear whether the individual differences in both sen-
sitivity to T-N similarity and gradCPT performance were due
underlying differences in perceptual or attentional abilities. In
Experiment 2, in addition to replicating the findings of
Experiment 1 in a diverse, lab-based sample of Veterans, we
explored the underlying causes of the individual differences in
sensitivity to exemplar T-N similarity. In particular, we exam-
ined if the individual differences in T-N similarity were driven
by differences in perceptual processing ability such that the
perceptual decision component of the gradCPTwas easier for
some participants. Alternatively, such differences could have
been driven by differences in the ability to sustain attention
more generally. By testing participants on both the gradCPT
and the TOVA—a CPT that uses simple visual stimuli—we
assessed attentional ability on a perceptually simple task
where individual differences in perceptual processing ability
had a minimal effect and saw if it related to sensitivity to T-N
similarity as measured on the gradCPT. Any relationship
would probably not have been due to differences in perceptual
processing ability, leaving sustained attention ability as the
likely cause.

Experiment 2: Examining how gradCPT sensitivity
to similarity relates to performance
on a neuropsychological test of sustained attention

In Experiment 1 we demonstrated that the exemplar-based T-
N similarity influenced RTs for the city (non-target) trials and
the likelihood of a CE error for mountain (target) trials.
Critically, increased individual sensitivity to similarity, when
assessed by the influence of exemplar-based T-N similarity on
RTs, was associated with increased overall ability on the task.
The meaning of this association, however, is open to interpre-
tation. One possibility is that sensitivity to image similarity
solely reflects enhanced bottom-up perceptual processing or
visual memory independent of an individual’s ability to sus-
tain attention. Alternatively, sensitivity to similarity could re-
flect individual differences in the ability to maintain the task
set. In other words, those who are more capable at sustaining
attention more generally are consequently more capable at
selecting and maintaining task-relevant features and
responding appropriately. To choose between these possible
interpretations, we analyzed data from participants who per-
formed the gradCPT along with a battery of surveys and other
tests. One such test was the Test of Variables of Attention
(TOVA), a CPT that is widely used to help diagnose
attention-deficit hyperactivity disorder (Leark, Greenberg,
Kindschi, Dupuy, & Hughes, 2007). The TOVAwas the only
other CPT presented in the battery and was selected for this
experiment because it assessed sustained attention in a similar
manner to the gradCPT but without the same perceptual de-
mands. No other task in the battery was examined for the
purposes of this study. For the target/non-target category dis-
tinction, it employs a highly discriminable position location
(top vs. bottom) of a simple square. If increased sensitivity to
similarity arises from enhanced bottom-up perceptual process-
ing or visual memory capacity, the TOVA—using simple
stimuli with low perceptual discrimination demands—would
largely eliminate any advantage individuals with enhanced
perceptual processing would have. Therefore, we would pre-
dict no association between sensitivity to T-N similarity on the
gradCPT and attentional ability on the TOVA. If the latter
hypothesis is true, we would predict that individual differ-
ences in sensitivity to T-N similarity on the gradCPT should
predict performance on the TOVA as well because the atten-
tional demands across the two tasks are similar and the
sustained attention ability that determines the degree of sensi-
tivity to T-N similarity will be measured during the TOVA.

Methods

Participants The participant sample included 152 Veterans
(male: 141; age: 21–56 years) from Operation Enduring
Freedom/Operation Iraqi Freedom/Operation New Dawn
(OEF/OIF/OND) who were recruited from the Translational

Table 3 Correlation (Pearson) matrix of item-level (ten cities) variance
in predicted T-N similarity measures and mean RT for the non-target
(city) stimuli

City variables Pixel GIST Attribute Mean RT

Pixel - -0.08 0.33 0.80*

GIST - - -0.46 0.35

Attribute - - - 0.19

Mean RT - - - -

*Indicates significance at p < .05

RT response time

Table 4 Correlation (Pearson) matrix of item-level (ten mountains)
variance in predicted T-N similarity measures and the item level commis-
sion error rate for the target (mountain) stimuli

Mountain variables Pixel GIST Attribute Error rate

Pixel - 0.05 -0.23 0.61

GIST - - -0.31 0.40

Attribute - - - -0.28

Error rate - - - -
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Research Center for Traumatic Brain Injury and Stress
Disorders (TRACTS) at the Veterans Affairs Boston
Healthcare System. Details regarding the larger TRACTS co-
hort has been described in detail elsewhere (Lippa et al.,
2015). Participants in the present sample completed the current
tasks as part of a larger battery of tests that included clinical
interviews and neuropsychological testing that took place over
one or more sessions. This Veteran sample was used because it
had available data from participants who did both the gradCPT
and the TOVA. The Institutional Review Board of Human

Studies Research at the VA Boston Healthcare System ap-
proved all research procedures. All participants provided in-
formed consent and were reimbursed for their time and travel
expenses.

Initially 169 participants completed the gradCPT but some
participants (N = 17) were removed due to exclusion criteria
described below. Overall exclusion criteria for TRACTS in-
cludes: (a) history of neurological illness (other than traumatic
brain injury (TBI)); (b) history of seizures; (c) current diagno-
sis of schizophrenia spectrum or other psychotic disorders (not

Figure 4. Plots of the unique contribution between the group commission
error rate (CE rate) and each of the 4 predictors included in the regression
analysis (the three types of T-N similarity and a linear trend). In order to
visualize the unique contribution of a given predictor to the CE rate, that
predictor is fit against standardized CE residuals from a regression anal-
ysis with the other three predictors. The similarity time courses consist of
the similarity value assigned to the correspondingmountain image at each

trial. The similarity time courses were Z-normalized for visualization
purposes. Of particular interest is the graph depicting the CE residuals
fit to the linear trend (bottom-right). By controlling for the influence of T-
N similarity on the CE time-course, a strong linear trend is revealed.
Controlling for T-N similarity could reveal effects that otherwise may
have been missed

Figure 3. Bar graph depicting the standardized beta coefficients for the
regression models predicting city RTs and mountain CE rates. Error bars
represent the standard errors of the beta coefficients. Statistics for each

model are placed below the set of four bars associated with that model. *
indicates p < .05, ** indicates p < .005 and *** indicates p < .001
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related to PTSD); (d) current active suicidal and/or homicidal
ideation, intent, or plan requiring crisis intervention; or (e)
cognitive disorder due to general medical condition other than
TBI (exclusions based on these criteria: N = 2). For the present
study, veterans with a history of moderate or severe TBI or
participants who failed the Green’s Medical Symptom
Validity Test were excluded (N = 13). For gradCPT-specific
exclusion criteria, as in the previous experiments, we excluded
participants who showed significant periods (30 s or greater)
with no response (N = 2).

Participants completed both the gradCPT and the TOVA
along with a battery of additional tasks. A majority of par-
ticipants returned for an additional testing session (N = 94)
after an average of 762 days (range 363–1,743 days). For the
participants who did the gradCPT in both sessions (N = 10)
only the gradCPT results from the first session were ana-
lyzed. Additionally, of the 152 participants who did the
gradCPT, 136 performed the TOVA—133 participants have
data from the gradCPT and TOVA collected during the same
session and 90 participants have data collected from different
sessions.

Stimuli and procedure

GradCPT The stimuli and procedure were identical to
Experiment 1 with a few exceptions. First, the participants
performed that gradCPT during an fMRI scan; however, the
fMRI data are out of the scope of this paper and not discussed
further. The experimental task was projected onto a wall to the
rear of the scanner and participants viewed the task through a
mirror. Next, this version of the gradCPT was longer,
consisting of 600 trials (540 city non-targets and 60 mountain
targets) and lasting 8 min. Finally, unlike Experiment 1, in
which the trial order was fixed across participants, each par-
ticipant had a unique randomized trial order.

Tests of Variables of Attention (TOVA) The TOVA consisted of
a simple continuous performance task—widely used to diag-
nose ADHD—where participants were instructed to respond
to the target stimulus and ignore the non-target stimulus
(Leark et al., 2007). Both the target and non-target stimuli
were composed of a white square with a smaller black square
horizontally centered within the white square. For the target

Figure 5. Scatterplots between the sensitivity to the pixel-based T-N
similarity and measures of gradCPT performance. The color of each data
point tracks the surrounding data density with blue, indicating a data point
in a low-density region and yellow indicating a high-density region.
Sensitivity to the pixel-based T-N similarity was estimated using city
RTs. Pearson correlation r values are reported. Because the N is large,
correlations are assessed by Cohen’s ‘‘rule of thumb’’ with r > 0.1, 0.3

and 0.5 being the cutoffs for small, medium, and large correlation ef-
fect sizes. The top row shows the scatterplot between the sensitivity to
exemplar-pixel T-N similarity and measures of ability on the gradCPT
whereas the bottom row shows the relationship with measures of strategy.
The correlations are much stronger with the measures of ability than the
measures of strategy
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stimulus, the black square was positioned near the top of the
white squarewhile for the non-target stimulus the black square
was positioned near the bottom. Responses were made by
pressing a button on a switch box. A trial had a duration of
2,000 ms and consisted of a stimulus presented for 100 ms and
a 1,900-ms response period. In total, the TOVA consisted of
648 trials, with 50 % of trials being target trials. However, in
the first half of the TOVA target trials were infrequent (22.5 %
of first-half trials) while in the second half target trials were
more frequent (77.5% of second-half trials). Similar to the
gradCPT, we obtained each participant’s RT variability (in this
case RT standard deviation or RT SD), mean RT, d prime, and
criterion.

Data analysis and results

Replicating Experiment 1 First we set out to replicate the asso-
ciation between individual differences in sensitivity to T-N simi-
larity andvariables thatmeasure strategy (criterion andmeanRT)
and ability (d prime and CV) on the gradCPT reported in
Experiment 1. Using the same analytical methods described in
Experiment 1, we ran a regression model for each participant
fitting their RT time course to non-target city stimuli with exem-
plar-pixel, exemplar-GIST, and category-attributemeasures ofT-
N similarity aswell as a linear trend as predictors. The resulting t-
values derived from the four predictor coefficients (a set of four t-
values for each participant) quantified each participant’s sensitiv-
ity to the differentmeasures ofT-Nsimilarity and linear trend and
entered as predictors into four second-level regression analyses
predictingeachparticipant’sdprime,RTvariance(CV),criterion,
andRTmean on the gradCPT.Consistentwith Experiment 1, we
found that sensitivity to T-N similarity could predict discrimina-
tion ability/accuracy (d prime) with a medium effect (R2 = 0.20)
and RT variance (CV) with a medium effect (R2 = 0.24).
Moreover, examination of the coefficients revealed that the suc-
cess of the models was largely driven by sensitivity to the
exemplar-pixel (d prime: β = 0.18, t(147) = 2.53, p = .013; CV:
β= -0.22, t(147) = -3.22, p = .002) and exemplar-GIST (d prime:
β=0.25, t(147)=3.22,p= .002;CV:β=-0.28, t(147)=-3.76,p<
.001) measures of T-N similarity. The coefficients for sensitivity
to category-attributeT-N similaritywere not significant (d prime:
β= -0.09, t(147)= -1.04, p= .30;CV:β=0.12, t(147)=1.38, p=
.17). However, unlike Experiment 1, sensitivity to similarity also
predicted measures of strategy with medium effect sizes (criteri-
on:R2=0.11;RTmean:R2=0.18)suchthathigherT-Nsimilarity
was associatedwith amore liberal response strategy (greater bias
to respond) and faster RTs.

Sensitivity to similarity index and the TOVA Given that indi-
vidual differences in sensitivity to exemplar-based T-N simi-
larity predicted with measures of ability on the gradCPT, the
primary goal of this experiment was to see if sensitivity to
exemplar-based T-N similarity index could predict

performance on an attention task with minimal perceptual
processing demands as well. Much like the gradCPT, mea-
sures of task ability on the TOVA (d prime and RT SD) were
computed for each participant. First, for participants who
completed the gradCPTand the TOVA during the same testing
session (N = 138), two second-level regression analyses were
run with gradCPT-derived sensitivity to exemplar-pixel and
exemplar-GIST T-N similarity as regressors predicting either
TOVA derived d prime or RT variance (RT SD). Both of the
models were significant, albeit with small effect sizes (d
prime: R2 = 0.07, F(2, 135) = 5.39, p = .006; RT variance:
R2 = 0.07, F(2, 135) = 4.75, p = .01). In other words, individ-
uals who were more sensitive to exemplar-based similarity
were less variable in response times and more accurate overall
on the TOVA. To determine if this association was attributable
to a stable cognitive characteristic or a more temporary cog-
nitive state, we identified participants who had been given the
TOVA on a different day from the gradCPT. If the association
was the result of a more consistent trait, we would predict the
association should remain when the data were collected on
different days. For these participants (n = 90) the association
was nearly identical with medium effect sizes for the model
predicting d prime (R2 = 0.05, F(2, 88) = 2.49, p = .088) as
well as the model predicting RT variance (R2 = 0.09, F(2,
88) = 4.26, p = .017). Finally, to determine if the measures
of gradCPT ability related to the analogous measures in the
TOVA, each participant’s d prime and RT SD from the
gradCPT were correlated with the corresponding d’ and RT
variance measured from the TOVA. This revealed a strong
correlation between these analogous task measures (same ses-
sion d prime: r = 0.42, p < .001; cross-session d prime: r =
0.29, p < .005; same-session RT variance: r = 0.53, p < .001;
cross-session RT variance: r = 0.42, p < .001).

Experiment 2 discussion

In Experiment 4, the gradCPTwas given to participants as part
of a large battery of other tasks, including the TOVA—a
clinically-used CPT that uses simple visual stimuli. This ex-
periment furthered the exploration of the relationship between
sensitivity to T-N similarity and sustained attention by exam-
ining whether high sensitivity to exemplar-based similarity
reflected (1) enhanced, attention-independent, perceptual pro-
cessing ability that consequently reduced the attentional de-
mands of the gradCPT or (2) enhanced perceptual processing
and encoding that resulted from maintaining an optimal atten-
tional template for tasks with and without complex perceptual
demands. To this end, we fit sensitivity to T-N similarity de-
rived from the gradCPT with measures of sustained attention
performance observed from the same participants tested on a
perceptually simple continuous performance task (the TOVA)
and found that individuals who were more sensitive to
exemplar-based T-N similarity were better at both the
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gradCPT and the TOVA with larger d primes and lower RT
variability (CV for the gradCPT and RT SD for the TOVA).
Because the TOVA, unlike the gradCPT, used two simple
stimuli, the demands on perceptual processing and visual
working memory were minimal. Therefore, any attention-
independent perceptual processing advantage that a given par-
ticipant may have had on the gradCPT would be minimized
when the perceptual demands were trivial. Because bottom-up
perceptual processing ability was ruled out as the sole source
of the relationship between sensitivity to exemplar-based sim-
ilarity on the gradCPT and performance on the TOVA, the
underlying cognitive processes driving this relationship are
likely to be, at least in part, attentional in nature.

Additionally, we set out to replicate the previously ob-
served relationship between individual differences in sensitiv-
ity to T-N similarity and more standard measures of gradCPT
performance in this lab-based study4 with a substantial sample
size and cohort. Like Experiment 1, we found that participants
who were more sensitive to exemplar-based T-N similarity
were more accurate (higher d prime) and had less variable
RTs (lower CV). Replicating this association expands upon
Experiment 1 in two important ways. First, these participants
performed the gradCPT in the lab providing a replication of
the results in a more controlled setting. Next, because the
participants were selected from the veteran population, we
demonstrated that this effect generalizes to different popula-
tions. The association between sensitivity to similarity and
measures of gradCPT strategy, however, is novel and may
be related to sample-specific attributes (e.g., greater preva-
lence of PTSD or mild TBI).

Finally, the TOVA, while simple, has been assessed for
reliability and validity and has been shown to be strongly
predictive of attentional dysfunction (e.g., ADHD).
Therefore, the fact that variables on the gradCPT are predic-
tive of results on the TOVA further validates the link between
measures of gradCPT performance and the ability to sustain
attention more generally.

General discussion

In two experiments we explored the relationship between in-
dividual differences in sustained attention ability and the con-
struction and maintenance of an attentional template during a
sustained attention task. To do this, we used T-N similarity to
probe both the content and the strength of attentional tem-
plates by examining the effects of T-N similarity on reaction
times and accuracy on the gradCPT—a go/no-go task where
participants must decide whether a presented image is a city or
mountain. Specifically, we established (1) that at least some of
the trial-to-trial variance in RTs and errors could be attribut-
able to behavioral interference fromT-N similarity; (2) that the
exemplar-based measures of T-N similarity—based on pixel
intensity and to a lesser degree GIST descriptor features—
outperformed the measure of T-N similarity assuming more
abstract category-based attributes; (3) that individual differ-
ences in the sensitivity to the exemplar-based measures of T-
N similarity were associated with individual differences in
measures of attentional ability (d prime and RT variance) such
that those with greater sensitivity to T-N similarity displayed
greater attentional ability; and (4) that this relationship cannot
be entirely explained by individual differences in perceptual
processing ability.

The contents of the attentional template We distinguished
between three types of image features used to compute T-N
similarity—exemplar-pixel, exemplar-GIST, and category-at-
tribute. We hypothesized that the exemplar-based measures
were consistent with the attentional template containing
exemplar-specific image features that were rapidly learned
and stored in memory and participants classified incoming
images based on these features. The category-based measure
was consistent with an attentional template containing more
abstract previously-learned features used to classify any city
or mountain image upon first viewing. We found that the
exemplar-based similarity measures (using either pixel inten-
sities and to a lesser extent GIST descriptors) best predicted
the RTs to city stimuli suggesting that the recently learned
exemplar-specific features were influencing gradCPT
performance.

Importantly, participants who were more sensitive to these
exemplar-based T-N similarity measures had greater overall
ability at the task as measured by greater discrimination ability
(d prime) and lower RT variance. Participants who were more
sensitive to the category-based T-N similarity measure
showed no such relationship. Crucially, this suggests that the
exemplar-based feature matching procedure—given the par-
ticular task and stimulus sets examined here—was optimal
and associated with better task performance.

Given the clear distinction between how the exemplar and
category-based feature matching processes related to perfor-
mance, one may wonder what the source of individual

4 One notable difference between the TestMyBrain version of the gradCPT
used in Experiment 1 and the lab-based version of the gradCPT used in
Experiment 2 is the length—specifically, the lab-based version has roughly
twice as many trials as the TestMyBrain version. As a result, participants had
greater exposure to each exemplar in the lab-based experiment. To see if this
greater exposure influenced the strength or nature of T-N similarity we com-
puted the average sensitivity to T-N similarity from the first half of the exper-
iment (roughly matching the magnitude of exemplar exposure from the
TestMyBrain gradCPT) and compared it to the average computed from the
second half. We found that the sensitivity to T-N similarity for all three mea-
sures were remarkably consistent across halves with the averageβ coefficients
for each half for the exemplar-pixel measure being (1st half: β = 0.048; 2nd
half:β = 0.042), exemplar-GIST (1st half:β = 0.038; 2nd half:β = 0.047), and
category-attribute (1st half:β = -0.006; 2nd half:β = 0.004). This suggests that
individuals who develop attentional templates that leverage exemplar-specific
features do so with relatively few exposures. This is consistent with studies of
statistical learning for visual objects that show such learning can occur with
few exposures (Turk-Browne, Scholl, Chun, & Johnson, 2009).
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differences along these dimensions were. Why, for example,
would one rely on category-level features if exemplar-level
features were clearly superior? One possible source of such
variation may be due to some form of enhanced visual-
perceptual processing or visual memory that enables certain
participants to make better use of the exemplar-specific fea-
tures. Conflicting with this notion, however, was the finding
that participants who were the most capable at using
exemplar-based features on the gradCPT (as shown by in-
creased sensitivity to exemplar-based T-N similarity) also
displayed superior performance on the TOVA—a CPT involv-
ing two simple stimuli that left little room for a perceptual
advantage to make a difference. To resolve this apparent con-
flict, we posit that the stable characteristic was the ability to
sustain attention such that the participants who sustained an
optimal level of attention to the gradCPT were superior at
maintaining optimal attentional templates during each of these
tasks.

The notion that an optimal attentional template is associat-
ed with increased interference from exemplar-based T-N sim-
ilarity (i.e., sensitivity to T-N similarity) could be considered
counterintuitive as one might expect that greater interference
from T-N similarity would lead to poorer performance overall
for two reasons. First, on a narrow scale, increased sensitivity
to T-N similarity is observed in virtue of relative increases in
RT variance and errors. Second, there is compelling evidence
that elevated interference from T-N similarity is an indicator of
a sub-optimal attentional template and optimizing an atten-
tional template through training sharpens and separates the
target features from the non-target features (Geng et al.,
2017), effectively decreasing the degree of T-N similarity.
To reconcile our results with the issues outlined above, we
posit the following explanation. When performing a task that
requires identifying or categorizing stimuli (like the city/
mountain categorization in the gradCPT), it is beneficial to
maximize the number of category discriminating features
stored in an attentional template. In this version of the
gradCPT, there were multiple, but repeating, exemplars within
each category. Consequently, both category and exemplar fea-
tures could be leveraged to make the perceptual decision.
Since only sensitivity to exemplar-based measures of T-N
similarity were associated with task ability, we propose that
this sensitivity indexed the degree to which a given participant
was leveraging exemplar features towards making the city/
mountain decision. Participants who were more capable at
leveraging exemplar features were better at the perceptual dis-
crimination but also more susceptible to interference from
exemplar-based T-N similarity. As Experiment 2 demonstrat-
ed, sustained attention ability and not perceptual processing
ability was the primary determinant of the degree to which a
participant could leverage these exemplar features.

Finally, the influence of exemplar-based T-N similarity has
further implications for the capacity of visual memory for

photographs of scenes. Given that participants were sensitive
to similarity using pixel-based features of particular scene ex-
emplars, the scene images must be encoded in memory with
enough local detail so that these pixel-based features approx-
imate properties of the stored features used for matching and
identifying the incoming stimulus. Participants, therefore, had
to maintain local image details for 20 images (ten city and ten
mountain scenes) in working memory in order to use this
information during the task. While surprising, other studies
have shown that exemplar-specific visual information can be
encoded in visual memory with remarkable speed and accu-
racy (Konkle, Brady, Alvarez, & Oliva, 2010a, 2010b;
Standing, 1973). Further studies could take advantage of this
T-N similarity effect and use increasing numbers of scenes to
test the capacity and even time course of influence for each
scene photograph.

The content of scene representations Our results point to the
exemplar-based feature matching as being an important pro-
cess in meeting the task demands of the gradCPT. Because the
stimulus exemplars were stored (at least temporarily) in mem-
ory, how we characterized the image features in computing the
exemplar similarity measures served as a window into the fea-
tures that composed these newly learned, exemplar-level rep-
resentations. We found that both pixel-based and GIST
descriptor-based image features produced similarity values that
influenced performance. These results are consistent with two
possibilities. First, GIST and pixel similarity reflect image rep-
resentations from separate levels of scene processing and fea-
tures from both of these representations are used to classify
incoming stimuli. This is consistent with numerous accounts
of visual scene processing that posit that gist representations
are extracted early on in the processing stream and more local
scene details are processed later (Hochstein & Ahissar, 2002;
Oliva & Torralba, 2001; but see Goldzieher, Andrews, &
Harris, 2016). Alternatively, GIST and pixel similarity could
capture unique aspects of the same representation of scenes such
that the feature sets that compose exemplar-level scene repre-
sentations reflect some combination of image properties that
both pixel and GIST similarity partially capture. Further studies
could use fMRI to analyze patterns of activation in response to
scenes presented in the gradCPT to determine if pixel andGIST-
based representations share the same neural substrate.

Regardless of whether pixel and GISTsimilarity reflect one,
two, or more types of image representations, onewould need to
do further research to see whether or not pixel intensity values
or the GIST descriptor are the best characterizations of the
levels of representations in scene processing or whether they
merely capture components of the true underlying mental rep-
resentation. For example, one could explicitly test properties of
scene structure like layout, clutter, expanse, and navigability to
determine if the influence of either GIST or pixel-similarity
described in these experiments could be better characterized
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in terms of more interpretable dimensions of similarity (e.g.,
Choo&Walther, 2016; Harel, Kravitz, &Baker, 2013; Kravitz,
Peng, & Baker, 2011; Park, Brady, Greene, & Oliva, 2011;
Walther et al., 2009; Watson, Hartley, & Andrews, 2014).

Note that the relative importance of pixel-like, GIST-like,
or category-based features likely depends on the task at hand.
In the experiments presented in this paper, only 20 exemplars
were shown and each exemplar was presented multiple times.
This means that while exemplar-level information could be
exploited in order to complete this task, the importance of
exemplar-level information may not generalize to the under-
lying representations that are used to categorize novel scenes.
Indeed, we would predict that a version of the gradCPTwhere
stimuli do not repeat would greatly diminish the importance of
exemplar-level similarity and may boost the importance of
category-based features as those would be the features that
likely mediate the categorization of unseen scenes. Given this
caveat, T-N similarity would still provide a window into un-
derlying scene representations, but one would need to stipu-
late how context influences the underlying representation. For
example, the fact that the gradCPT has repeating exemplars
that gradually fade in and out may encourage the use of
exemplar-based pixel features because such features are avail-
able and reliable. If the scene is presented for a short duration
without any fading, GIST features—which have been shown
to be extracted rapidly and exploit information distributed
across the whole image (e.g., Greene & Oliva, 2009)—may
become more important. Overall, future studies could use this
method to probe the scene representations that enable catego-
rization under different conditions and at different levels of
specificity. This is one of the primary goals within the visual
scene recognition literature (for review see Malcolm, Groen,
& Baker, 2016).

Finally, it would be interesting to know whether the results
regarding pixel and GIST image features and exemplar-based
T-N similarity are domain specific to scene processing. Would
other categories of objects (e.g., faces) result in the similarity
structure of both pixel and GIST image features predicting
performance with a ratio similar to the scene stimuli or would
the relative contribution of each change as a function of object
domain? Furthermore, perhaps scene images are encoded in
memory in a way that is fundamentally different from other
domains of objects like letters or digits. While the goal of letter
and digit processing is identifying a particular stimulus despite
the many possible font changes that will alter the exemplar-
specific features, with scenes, often it is the exemplar fea-
tures—not the category (basic level) features—that will be use-
ful at any given moment. To illustrate, only exemplar-specific
information indicates whether you are looking at a city street in
New York City versus Boston or whether a given forest has a
navigable path or not. Therefore, while the visual processing
goal of certain domains of objects (e.g., letters and numbers)
may be to abstract away from the visual details in service of the

flexible processing of object identity, exemplar-specific visual
details of scenes provide critical landmark and navigability
information and therefore scene processing may default to
exemplar-level encoding even when it is not necessary.

Implications for tasks measuring sustained attention One
practical implication of these results is that fluctuations in
performance that were once assumed to be the result of
intrinsically-driven phenomena (e.g., sustained attention, vig-
ilance, inhibitory control) may instead be due, in part, to ex-
trinsically driven phenomenon like T-N similarity. This dem-
onstrates that when making inferences about the moment-to-
moment fluctuations in attentional states it is important to
factor in possible stimulus-driven factors that could make a
given trial more difficult than the next regardless of one’s
attentional state. One way to correct for such trial-to-trial in-
equalities in difficulty would be to derive, based on T-N sim-
ilarity and other task-driven phenomena like linear trend
(Esterman, Noonan, Rosenberg, & Degutis, 2013;
Rosenberg, Noonan, Degutis, & Esterman, 2013) or trial order
effects, a difficulty time course for each run of the gradCPT.
This difficulty time course would predict, based on stimulus or
trial order information alone, the relative difficulty of any
given trial. Including this measure in anymeasure that predicts
the trial-to-trial fluctuations in attention would allow the iso-
lation of performance fluctuations that are truly internally-
driven by the participants’ state of mind, likemind-wandering,
not externally driven by the inequality of stimulus-driven dif-
ficulty across trials. Furthermore, such a measure of task dif-
ficulty could be applied to studies that have tracked neural
activation fluctuations during different states of sustained at-
tention (Esterman et al., 2013; Esterman, Poole, Liu, &
DeGutis, 2016). Previously, such neural fluctuations have
been assumed to be driven by intrinsic attentional states, but
including this task-difficulty measure could identify the ex-
trinsic, stimulus-driven contribution to these activation
fluctuations.

Finally, it is worth highlighting the fact that these results
were only tested in go/no-go tasks where the stimuli gradually
fade from one to the next. As a result, information about the
identity of an upcoming, yet-to-be-classified image accrues
gradually instead of appearing all at once. How this interacts
with T-N similarity remains to be seen but it could be that the
gradual nature of the task facilitates the exemplar-based
matching process that appears to be happening in the present
experiments. While stimulus image similarity clearly makes
an important contribution to rapid sequentially presented stim-
uli in RSVP and priming paradigms (Kinoshita & Kaplan,
2008; Visser, Davis, & Ohan, 2009; Ward, Duncan, &
Shapiro, 1997), it would be important to compare the
findings from this study with results from an Babrupt^
onset CPT, like the SART (Robertson, Manly, Andrade,
Baddeley, & Yiend, 1997).
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Conclusion

The current study presented two experiments that described a
novel effect in which exemplar-based T-N similarity influ-
enced RTs and error rates in a sustained attention task (the
gradCPT) across thousands of participants. Individual differ-
ences in the sensitivity to this exemplar-based T-N similarity
were most strongly and consistently associated with measures
of discrimination ability and RT variance. This pattern sup-
ports a model of cognitive processing during the gradCPT
whereby participants store features of stimulus exemplars
and these exemplar representations play an important role in
facilitating the recognition of incoming stimuli. This suggests
that individuals who are more capable of representing,
leveraging, and maintaining exemplar-based features perform
better on the task. Further, these individuals are better at sus-
taining attention more generally since sensitivity to exemplar-
based similarity on the gradCPT correlated with performance
on the TOVA—a CPT with only trivial perceptual elements.
Sensitivity to category-based T-N similarity, however, was
unrelated to task performance.

This study also can serve as the foundation for a number of
future studies. Questions about the nature of visual represen-
tations stored in memory and how they interact with image
domains (e.g., faces vs. scenes) can be explored. Additionally,
T-N similarity can be used to dissociate internal and external
(stimulus driven) contributions to fluctuations in sustained
attention. Finally, the cognitive and neural mechanisms that
account for the individual differences in sensitivity to similar-
ity need to be further clarified and explored as they can be
potentially useful in characterizing intrinsic attentional or per-
ceptual ability as well as the precision of visual memory.
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