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Abstract

■ Attention is thought to facilitate both the representation of
task-relevant features and the communication of these repre-
sentations across large-scale brain networks. However, atten-
tion is not “all or none,” but rather it fluctuates between
stable/accurate (in-the-zone) and variable/error-prone (out-of-
the-zone) states. Here we ask how different attentional states
relate to the neural processing and transmission of task-relevant
information. Specifically, during in-the-zone periods: (1) Do
neural representations of task stimuli have greater fidelity?
(2) Is there increased communication of this stimulus infor-
mation across large-scale brain networks? Finally, (3) can the
influence of performance-contingent reward be differentiated
from zone-based fluctuations? To address these questions, we
used fMRI and representational similarity analysis during a
visual sustained attention task (the gradCPT). Participants
(n = 16) viewed a series of city or mountain scenes, respond-

ing to cities (90% of trials) and withholding to mountains (10%).
Representational similarity matrices, reflecting the similarity
structure of the city exemplars (n = 10), were computed from
visual, attentional, and default mode networks. Representa-
tional fidelity (RF) and representational connectivity (RC)
were quantified as the interparticipant reliability of represen-
tational similarity matrices within (RF) and across (RC) brain
networks. We found that being in the zone was characterized
by increased RF in visual networks and increasing RC between
visual and attentional networks. Conversely, reward only in-
creased the RC between the attentional and default mode net-
works. These results diverge with analogous analyses using
functional connectivity, suggesting that RC and functional
connectivity in tandem better characterize how different men-
tal states modulate the flow of information throughout the
brain. ■

INTRODUCTION

Maintaining attention to a single task for an extended
duration requires considerable cognitive effort. Conse-
quently, sustained attention is not a constant all-or-none
phenomenon but fluctuates, leading to varying degrees
of stable/accurate (in-the-zone) and variable/error-prone
(out-of-the-zone) performance. During experiments that
tax sustained attention, attentional fluctuations result in
missed targets, incorrect responses, irregular RTs, or
other task-dependent lapses. Outside the lab, these
lapses can have consequences that range from relatively
trivial (missing one’s exit while driving) to practical (spac-
ing out during a lecture), to profound (car accidents). To
mitigate errors resulting from lapses in attention, charac-
terizing how the peaks of these attentional fluctuations
differ from the troughs could provide clues to help opti-
mize one’s attentional state for a particular task. Given
the consequences of attentional lapses, an understanding
of the cognitive and neural mechanisms that support
optimal attentional states has considerable potential for

real-world benefit. Complicating this understanding,
however, is the fact that fluctuations in attention have
multiple causes. Some of these causes may result from
intrinsic factors like sleepiness/alertness, intrusions from
distracting thoughts, or oscillations in the effectiveness
of perceptual processing mechanisms (Buschman &
Kastner, 2015) to name a few. Conversely, external sources
of motivation—like performance contingent reward—can
substantially boost task performance and reduce these
fluctuations (e.g., Esterman, Poole, Liu, & DeGutis, 2017;
Esterman, Reagan, Liu, Turner, & Degutis, 2014).

In the current study, we sought to better understand
sustained attention by examining how attentional fluctu-
ations impact the processing of task-relevant information.
The effect of attention on stimulus processing has been
well studied in the transient attention and visual search
literature. Transient attention contrasts with sustained at-
tention largely in terms of the duration of the maintained
attentional state—where transient attention pertains to
the effects of attention on a trial-to-trial basis and sus-
tained attention is invoked to explain fluctuations in
attention over time. However, it is unknown whether
fluctuations in sustained attention correspond to stimu-
lus processing in the same way that transient attention
does. Broadly, transient attention is thought to enhance
stimulus processing in at least two ways: First, it is
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thought to boost the fidelity of task-specific information
processing through the construction of attentional
templates (Lee & Geng, 2017; Eimer, 2014; Desimone
& Duncan, 1995). Attentional templates facilitate the
selection of task-relevant features (e.g., colors, shapes,
locations) while inhibiting distracting or irrelevant fea-
tures (Reeder, Perini, & Peelen, 2015; Peelen & Kastner,
2014). In humans, one prominent source of evidence comes
from fMRI, which has been used to show that atten-
tion and task context leads to preparatory activation in
domain-relevant perceptual processing regions (Esterman
& Yantis, 2010). Similarly, attention increases classification
accuracy of preparatory or stimulus-evoked multivoxel
patterns across the task-relevant feature dimensions in visual
processing regions (Cohen & Tong, 2015; Harel, Kravitz, &
Baker, 2014; Peelen & Kastner, 2011) as well as frontal and
parietal regions associated with more flexible, domain-
general processing (Jackson, Rich, Williams, & Woolgar,
2017; Woolgar, Hampshire, Thompson, & Duncan, 2011).
Furthermore, attention warps the pattern-based representa-
tional similarity of a stimulus set to fit the context of a task
(Bracci, Daniels, & Op de Beeck, 2017; Nastase et al., 2017).

Second, transient attention is thought to boost perfor-
mance by facilitating the communication of stimulus
information throughout the large-scale neural networks
that enable flexible, domain-general processing at a
limited capacity (Buschman & Kastner, 2015; Peelen &
Kastner, 2014; Duncan, 2013; Dehaene & Changeux,
2011; Woolgar et al., 2011; Dehaene & Naccache, 2001).
Generally localized to regions in the frontal and parietal
cortices, these networks are critical for representing the
rules and goals of a given task (Chiu, Esterman, Han,
Rosen, & Yantis, 2011; Badre, 2008), and fMRI studies
have shown that the fidelity or classification accuracy of
such task-rule representations are modulated by task
context (Qiao, Zhang, Chen, & Egner, 2017) and reward
(Etzel, Cole, Zacks, Kay, & Braver, 2016; Wisniewski,
Reverberi, Momennejad, Kahnt, & Haynes, 2015). Access
to such networks from stimulus-processing regions is
thought to be critical for integrating and adapting in-
coming stimulus information to meet the demands of a
given task—likely at the expense of other cognitive pro-
cesses that would be competing for these computational
resources (Shenhav et al., 2017). Evidence for this largely
comes from primate physiology, showing that attention
boosts the synchrony of neural responses between vi-
sual cortices and the FEFs (Gregoriou, Gotts, Zhou, &
Desimone, 2009), as well as across frontal and parietal
cortices (Buschman & Miller, 2007). In humans, exami-
nation of the dynamic functional connectivity (FC) of
electrical signals measured by magnetoencephalography
across a wide array of brain regions show that FC in-
creases as task difficulty—and corresponding attentional
and memory load—increases, suggesting that attention
and effort result in the communication of task-relevant
information into this global workspace (Wen, Yao, Liu,
& Ding, 2012; Kitzbichler, Henson, Smith, Nathan, &

Bullmore, 2011; see Parks & Madden, 2013, for a review
of similar findings). However, although FC and other
measures of neural synchrony provide important clues
as to the nature of the information transmitted across
these connected regions, the representational content
encoded within these signals is often indirectly inferred
from the nature of the task and not directly observed
from the correlated neural signals.
The information processing framework described

above—emphasizing the role of attention as a process
that (1) boosts the fidelity of task-relevant representa-
tions and (2) mediates the communication of these rep-
resentations across large-scale brain networks—has
received less consideration in the sustained attention
literature. Instead, focus has been largely dedicated to
identifying brain regions associated with the fluctuations
in performance during sustained attention tasks (for
a comprehensive review, see Fortenbaugh, DeGutis, &
Esterman, 2017). Broadly, accurate responses are associ-
ated with increased activation in “task-positive” networks.
For example, in a task that requires the identification of
natural scenes, accurate responses would be preceded by
higher activation in task-dependent stimulus processing
regions like the parahippocampal place area (PPA). In
addition, increased activation is observed in the dorsal
attention network (DAN), which is a network composed
of bilateral FEFs and intraparietal sulci (IPS; Corbetta &
Shulman, 2002), that is active across many types of tasks.
Unlike the DAN, accurate performance is associated with
decreased activation in task-negative networks, such as
the default mode network (DMN), however, the relation-
ship between the DMN activation and performance is
complex (e.g., Kucyi, Hove, Esterman, Hutchison, &
Valera, 2017; Raichle, 2015). The DMN is widely believed
to be responsible for generating thoughts that distract
from the task at hand, increasing the likelihood of atten-
tional lapses. Indeed, increased activation in the DMN is
associated with self-reports of mind wandering, and FC
between the DMN and brain regions associated with a
global workspace is associated with poorer task perfor-
mance within (Kucyi et al., 2017; Kucyi, Esterman, Riley, &
Valera, 2016) andacross (Fortenbaugh, Rothlein,McGlinchey,
DeGutis, & Esterman, 2018) individuals. Therefore, a view
emerges where fluctuations in sustained attention arise,
in part,when task-related representations generated in
perceptual processing regions (e.g., PPA) compete with
task-unrelated representations generated in the DMN for
access to the flexible, but limited, computational resources
of a global workspace (e.g., DAN).
This study investigated three questions regarding the

relationship between fluctuations in sustained attention
and the processing of stimulus information. First, similar
to studies of transient attention, do fluctuations in sus-
tained attention modulate the fidelity of task-relevant
features? Second, do fluctuations in attention correspond
to changes in the communication of stimulus-specific infor-
mation between perceptual processing regions and the
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DAN while reducing the transmission of task-unrelated
information between the DAN and the DMN? Finally,
do extrinsic sources of motivation, such as performance-
contingent reward, modulate both the fidelity and com-
munication of stimulus information in a similar manner
to intrinsically driven fluctuations of attention (i.e., the
natural fluctuations between in- vs. out-of-the-zone pe-
riods) or does reward differentially influence this stream
of information processing? To examine these questions,
we used fMRI to measure neural activity during the gradual
onset continuous performance task (gradCPT)—a visual
sustained attention task that requires participants to re-
spond to pictures of city scenes (90% of trials) and with-
hold responses to rare pictures of mountain scenes (10%
of trails). The frequent responses (90% of trials) enabled
us to use RT variability to infer individual moment-to-
moment fluctuations of attention and split the trials by
whether they occurred during in-the-zone (low variability)
or out-of-the-zone (high variability) epochs. These zone
differences have been shown to reflect intrinsic attentional
fluctuations (Esterman, Rosenberg, & Noonan, 2014;
Esterman, Noonan, Rosenberg, & Degutis, 2013; Rosenberg,
Noonan, Degutis, & Esterman, 2013). To test the influence
of externally driven motivation or effort, half of the task
blocks included performance-contingent rewards.
Examining the influence–attentional fluctuations and

reward have on the flow of information processing re-
quired isolating and measuring the stimulus-specific in-
formation contained within neural signals. However,
stimulus-evoked neural signals are imprecise, reflecting
any number task-unrelated thoughts that just happened
to coincide with the presentation of a stimulus as well
nonneural events such as breathing or motion. The FC
between two regions is difficult to interpret for the same
reasons (Simony et al., 2016). To address these issues,
we adapted representational similarity analysis (RSA)
and more specifically representational connectivity analy-
sis (RCA; Kriegeskorte, Mur, & Bandettini, 2008) to com-
pute two measures: (1) representational fidelity (RF),
which quantified the cross-participant stability of the
similarity structures of the set of 10 city exemplars (rep-
resentational similarity matrices [RSMs]) within a particu-
lar ROI, and (2) representational connectivity (RC), which
provided an analogous measure across a pair of ROIs.
Specifically, RSA was used to convert the ROI- and
participant-specific stimulus-evoked multivoxel patterns
into the common format of similarity space (Kriegeskorte
& Kievit, 2013; Aguirre, 2007; Shepard & Chipman, 1970)
that can be compared directly across participants and
brain regions. Importantly, both RF and RC were assessed
as the interparticipant reliability of these RSMs (i.e., how
similar the RSMs were across participants), ensuring that
stimulus-unrelated mental and neural events, such as
mind wandering, as well as participant-specific strategies
or trial order effects would only act to increase the
idiosyncrasy of an RSM and consequently reduce the
overall RF or RC.

Using RF and connectivity analyses, we directly assessed
how intrinsic (zone-based) and extrinsic (reward-based)
attentional fluctuations influenced the patterns of infor-
mation processing by examining how these states altered
RF and RC within and across the lateral occipital (LO),
PPA, DAN, and DMN. Furthermore, to compare RC with
more standard measures of connectivity, we examined
how the FC for each pair of brain regions changed as a
function of reward or attentional zone as well. Specif-
ically, we had four predictions: (1) Being in the zone
(optimal attentional state), analogous to transient atten-
tion, should be associated with an overall increase in the
fidelity of stimulus representations. (2) Being in the zone
should increase overall RC across regions of the brain,
particularly between stimulus processing regions like
LO or PPA and networks that support more global and
flexible cognitive operations like the DAN. (3) Performance-
contingent rewards should boost performance by enhancing
attention and therefore should be indistinguishable from
intrinsic fluctuations in terms of how they related to the RF
and connectivity of stimulus information. (4) Suboptimal
attentional states (being out of the zone and unrewarded
blocks) should be associated with increasedmind-wandering
behavior and, consequently, should correspond to an in-
crease in the FC between the DAN and DMN. Critically, in-
creases of DAN–DMN FC during suboptimal attentional
states should not correspond to analogous increases of
themore specific measure of RC, as the information driving
these FC increases is thought to be unrelated to the task
and will therefore not increase the interparticipant stability
that RC measures.

METHODS

Participants

Sixteen participants (10 men; mean age = 22 years,
range = 19–29 years) performed the gradual onset
continuous performance task (gradCPT) during an fMRI
session. Fourteen participants were right-handed, and all
were considered healthy, had normal or corrected-to-
normal vision, and had no reported history of major ill-
ness, head trauma, or neurological/psychiatric disorders.
All were screened to confirm no metallic implants or
history of claustrophobia. Drug/medication use was not
explicitly assessed. The study protocol was approved by
the VA Boston Healthcare System institutional review
board, and all participants gave written informed con-
sent. The data used in this study and portions of the
methods have been published (Esterman et al., 2017),
but the current analyses and results reported have not
been published elsewhere.

Paradigm and Stimuli

The gradCPT consisted of 20 grayscale photographs of
city (10 exemplars) and mountain scenes (10 exemplars),
and participants were instructed to respond via button
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press to frequently occurring city scenes and withhold re-
sponses to rare mountain scenes. The stimulus images
were resized to a 256h × 256w pixel image and then
cropped to appear within a circular frame (radius
∼126 pixels) and projected to a screen placed at the back
of the scanner at a 800 × 600 screen resolution. In the
gradCPT, the scene images were presented in a unique
pseudorandom order for each participant with the fol-
lowing constraints: 10% of trials displayed mountain
scenes, the remaining 90% were city scenes, and the
same exemplar could not repeat on adjacent trials. Scene
images gradually transitioned from one to the next in a
linear pixel-by-pixel interpolation, with each transition
occurring over 800 msec. The new image increased in
clarity, whereas the old image decreased in clarity. The
task instructions emphasized response accuracy without
reference to speed. However, as a new image replaced
the previous image every 800 msec, there was an
implicit response deadline in the task.

Each 8-min task run was divided into alternating 1-min
rewarded and unrewarded blocks, which were differenti-
ated by a continuous color border (green for rewarded,
blue for unrewarded). To have the background colors be
more intuitive and avoid confusion, we chose “green” for
money-rewarded blocks in all participants rather than
counterbalancing green and blue colors. This yielded
4 min of each block type per run. During rewarded
blocks, participants earned $0.01 for correctly pressing
to city scenes and $0.10 for correctly withholding a re-
sponse to mountain scenes. However, if a participant
failed to press to a city scene, they would lose $0.01,
and if a participant incorrectly pressed to a mountain
scene, they would lose $0.10. During the unrewarded
blocks, no money could be gained or lost. As has been
shown, these reward contingencies produced reliable
improvements in accuracy and RT variability in studies
using the gradCPT (Esterman, Reagan, et al., 2014) and
the present data set (Esterman et al., 2017).

Procedure

A MacBook Pro with MATLAB (Mathworks, Inc.) deliv-
ered stimuli to a rear-facing projector. Participants
viewed the stimuli on a rear projector screen via a mirror
inside of the MRI bore. Responses were collected using a
fiber-optic button box. Before scanning, participants
were given a 1-min practice of the task. Inside of the
scanner, participants completed three to five runs of
the task (13 participants completed five runs, two com-
pleted four runs, and one completed three runs). Partic-
ipants were informed of their accrued reward after each
run (mean = $4.84, range = $2.93–6.63) and were told in
advance that two runs would randomly be selected for
bonus payment at the end of the experiment; however,
the two highest runs were actually selected as the
additional bonus payment. An anatomical scan (MPRAGE
sequence) and a resting-state scan (not used in this

study) were also acquired and interspersed to provide
breaks between task runs, such that no more than two
runs were done consecutively.

MRI Acquisition and Preprocessing

Scanning was performed on a 3T Siemens MAGNETOM
Trio system equipped with a 32-channel head coil at the
VA Boston Neuroimaging Research Center for Veterans.
Structural volumeswere acquired via anMPRAGE sequence
with the following parameters: echo time = 3.32 msec,
repetition time (TR) = 2530 msec, flip angle = 7°, acquisi-
tion matrix = 256 × 256, in-plane resolution = 1.0 mm2,
176 sagittal slices, slice thickness = 1.0 mm. All structural
images were processed using standard analysis of func-
tional imaging (AFNI) pipelines (Cox, 1996).
Each gradCPT functional run included 248 whole-brain

volumes acquired using an EPI sequence with the follow-
ing parameters: TR = 2000 msec, echo time = 30 msec,
flip angle = 90°, acquisition matrix = 64 × 64, in-plane
resolution = 3.0 × 3.0 mm2, 33 oblique slices aligned to
the anterior and posterior commissures, slice thickness =
3 mm with a 0.75-mm gap. Following acquisition, the
functional scans were processed using AFNI and custom
written routines in MATLAB (Mathworks, Inc.). Prepro-
cessing steps included slice-time correction, motion cor-
rection using a six-parameter, rigid body, least squares
alignment procedure, spatial smoothing with a 6-mm
full-width at half-maximum (FWHM) Gaussian kernel,
automated coregistration and normalization of anatomi-
cal and functional volumes to Talairach space, and scaling
of functional data set values to percent signal change.
During preprocessing, automated segmentation algo-
rithms generated three masks from the Talairached ana-
tomical volume. These included masks covering gray
matter, white matter, and cerebral spinal fluid (CSF). Aver-
age time series from the functional scan were extracted
from eroded white matter and CSF masks to use as nui-
sance regressors. Average global signal time series from
the functional scans were extracted to use as a nuisance
regressor for the FC analyses.
To control for unrelated sources of variance in the

task-evoked BOLD signal, residuals from initial whole-
brain general linear model (GLM) analyses (using AFNI’s
3dDeconvolve function) were extracted. For each GLM,
the preprocessed signal from each run of the gradCPT was
corrected using a set nuisance regressors—specifically,
white matter and CSF signal time courses; six head-motion
parameter time courses; linear, quadratic, and cubic trends
(-polart 3 in AFNI); and, for the FC analyses, a global signal
time course. Time points with a framewise displacement
greater than 0.5mm (along any dimension) were censored.

ROIs

Analyses were carried out across a set of ROIs selected
using the NeuroSynth platform (Yarkoni, Poldrack,
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Nichols, Van Essen, & Wager, 2011). NeuroSynth con-
structs keyword-specific activation likelihood maps from
coordinates published in a database of studies. To ac-
count for the visual processing of scene stimuli, bilateral
PPA and LO ROIs were selected from NeuroSynth maps1

generated using the keyword “scenes” and “lateral occip-
ital,” respectively. The PPA was included to account for
domain-specific scene processing (Epstein & Kanwisher,
1998), whereas the LO was included to account for more
domain-general object processing (Grill-Spector &
Malach, 2004). Attention and DMN ROIs consisted of
the maps generated by the keywords “attention” and
“DMN,” respectively. The attention network clusters
consisted of the regions surrounding bilateral IPS and
bilateral FEFs, and these clusters closely corresponded
to what is commonly referred to as the DAN, and we
will adopt this terminology. The DMN consisted of the
ventromedial prefrontal cortex (vmPFC), posterior cingu-
late cortex (PCC), and bilateral supramarginal gyri. All
NeuroSynth maps were converted from Montreal Neuro-
logical Institute to Talairach space using AFNI’s 3dWarp
function.

Categorizing Attentional State (In vs. Out of
the Zone)

Attentional state was categorized based on continuous
fluctuations in RT variability throughout a given task
run. RTs to each trial were determined using an iterative
algorithm that assigned button presses to individual tri-
als. RTs were calculated relative to the beginning of each
image onset. Thus, an RT of 800 msec would indicate that
the current image was 100% coherent, whereas shorter
RTs indicate that the current image was still in the pro-
cess of transitioning in from the previous image. Follow-
ing the analysis first outlined in Esterman et al. (2013),
this analysis inferred instantaneous attentional state by
using trial-by-trial variations in RT to calculate the vari-
ance time course (VTC). VTCs were computed for each
run using the correct responses to the nontarget city
scenes. First, RTs were z-transformed to normalize values
within participants, and the absolute value of the z-scores
was calculated so that higher values indicated greater de-
viations from the mean, including both very slow and
very fast RTs, whereas lower values indicated RTs closer
to the mean of the run. Values for trials without re-
sponses (omission errors and correct omissions to target
mountain scenes) were linearly interpolated from the
RTs of the two surrounding trials. A smoothed VTC was
then computed using a Gaussian kernel of 20 trials
(∼16 sec) FWHM integrating information from the sur-
rounding 20 trials with a weighted average. From the
smoothed VTC, a median split was used to divide perfor-
mance into low- and high-variability epochs. This median
split was done separately for the trials associated with
each city exemplar to ensure the number of repetitions
for each exemplar was matched across zone. Based on

previous work, these 4-min epochs were referred to as
being “in the zone” (low RT variability) and “out of the
zone” (high RT variability).

RF and RC Analyses

Carrying out the RSA-based RC analyses required (1)
estimating the set of ROI-specific activation patterns in
response to each city exemplar split by either in-the-zone
versus out-of-the-zone or rewarded versus unrewarded
trials, (2) computing RSMs from the city-evoked activa-
tion patterns in each ROI (split by zone or reward), (3)
constructing a set of nuisance RSMs (nRSMs) to remove
uninteresting sources of variability, and (4) computing
the RF and the RC for each ROI and ROI pair, respec-
tively, and examining how this fidelity and connectivity
changes as a function of zone/reward.

Estimating Exemplar Specific Activation Patterns

The residuals from the preprocessing GLMs were
concatenated across runs and served as input to two
GLMs that estimated the activation patterns for each of
the 10 city exemplars split across rewarded and unre-
warded blocks (GLMreward) or in-the-zone and out-of-
the-zone epochs (GLMzone). The GLMreward consisted of
22 regressors: one for each of the 10 city exemplars dur-
ing either rewarded and unrewarded blocks (20 condi-
tions), one for all of the omission errors (failures to
respond to city scenes), and one for all of the mountain
trials. The GLMzone had a similar set up with 22 regres-
sors, splitting each of the 10 city exemplars by zone in-
stead of reward. The experimental regressors for each
GLM were created by convolving a stick-based impulse
corresponding to the point of maximum stimulus clarity
(800 msec after trial onset) with a gamma hemodynamic
response function. For each GLM type, resulting beta-
maps were converted to t maps—one map for each
of the 20 experimental conditions (10 city exemplars ×
2 reward/zone conditions). Only the t maps from the
20 city exemplars were used in the RSA analyses. These
exemplar-specific t maps served as the activation values
for the MVPA-RSA. MVPA-RSA was carried out using in
house code run in MATLAB (Mathworks, Inc.). The AFNI
MATLAB library was used to integrate AFNI output with
MATLAB.

Observed RSMs

City-evoked activation patterns (from the exemplar-
specific t maps) were used to generate ROI-based RSMs
(Figure 1). The activation patterns derived from the
stimulus-specific t maps across the set of voxels con-
tained within an ROI were reshaped into a set of vectors
(one for each exemplar). An RSM was constructed by
computing pairwise (Pearson) correlations for each pos-
sible vector pairing and placing the correlation coefficient
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Figure 1. Constructing RSMs. (A) The four ROIs consisted of the bilateral LO cortex in cyan, the PPA in green, the DMN in magenta, and the
DAN in red. From an example participant, an RSM is constructed from the activation pattern within the PPA. The exemplar-specific activation patterns
are shown in B. Activation patterns (APs), composed of beta t value, were generated by modeling the BOLD response evoked for each of the 10 city
exemplars split by whether they occurred during in- versus out-of-the-zone epochs or rewarded versus unrewarded blocks—the latter is displayed
above. To construct an RSM as shown in C, each activation pattern was vectorized and an array of correlation coefficients was computed that
quantified the pairwise similarity of the set of 10 activation patterns. Example pairs of activation patterns are connected with colored lines in B, and
the corresponding r values are highlighted in the RSMs in C using boxes of the same color. Because the RSM is symmetric across the diagonal,
only the unique values (excluding the diagonal of the matrix) were included. (D) For each condition, a set of 16 RSMs (one per participant)
was computed from each ROI (shown: reward, no reward; not shown: full, in the zone, and out of the zone).
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in the corresponding cell within the RSM. Each RSM was
triangular (due to symmetry across the diagonal), and the
cells in the diagonal and lower triangle were excluded.
For each participant and ROI, four observed RSMs
(rewarded, unrewarded, in the zone, and out of the
zone) were computed.

Nuisance RSMs

Inherent to any fMRI analysis is the issue of differentiat-
ing the signal of interest from noise. Here we created two
types of nRSMs that quantified the expected conse-
quences of potentially confounding information directly
onto each participant’s RSMs. The nuisance similarity
structures were removed from the ROI-based RSMs by
running a linear regression analysis where the nRSMs
(along with a constant) served as regressors for a given
observed RSM and the residuals from this regression
served as the RSM that was used for the RF and connec-
tivity analyses.
The first nRSM modeled the expected impact of condi-

tion (city exemplar) differences in ROI-based mean acti-
vation levels on the RSM computed from the same ROI.
The concern is that multivoxel pattern similarity methods
may be encoding univariate effects within the similarity
structure. Therefore, seemingly multivariate and distrib-
uted information contained in RSMs may simply be re-
packaging univariate activation or, more specifically,
how univariate activation interacts with the variance
structure across voxels (Davis et al., 2014). To account
for this, we constructed a univariate activation nRSM that
assigned greater similarity to pairs of city conditions that
had similar mean activity levels across the set of voxels
within an ROI. Specifically, at the participant level within
an ROI, we calculated the mean activation for each of the
10 city exemplars. We then constructed an nRSM that in-
dexed, for each pair of city conditions, the absolute value
of the activation differences of the mean activation
between the two city conditions. Finally, to ensure that
larger values indicated more similarity, we multiplied
these nRSMs by −1 and linearly scaled the resulting
values to have a range of 0–1 where 1 indicated the
means were identical and 0 indicated the means were
maximally different within the set. By removing the pre-
dicted similarity structure due to differences in univariate
activation across conditions, the resulting residuals were
more likely to reflect multivariate and multidimensional
representations.
The second nRSM addressed the concern that the sim-

ilarity structure did not reflect representations of the city
exemplars but instead reflected information that was in-
cidental to, but correlated with, each city exemplar—
namely RT (Todd, Nystrom, & Cohen, 2013). Specifically,
because certain city exemplars elicited slower RTs on
average (Rothlein et al., 2018), the RSMs could reflect
these performance-based differences. Therefore, we con-
structed an RT-based nRSM that predicted that exemplars

that had similar RTs should have elicited similar activa-
tion patterns. Specifically, at the participant level, we
computed the mean RT for each city exemplar, and in
an identical manner to the activation-based nRSM, we
converted the set of 10 mean RTs to an RSM with a range
of 0–1, where 1 indicated the RTs were identical and 0
indicated that the RTs were maximally different within
the set of 10 means. By accounting for RT-based similar-
ity, the resulting residual RSMs were more likely to di-
rectly reflect representations of the city exemplars and
not reflect information that correlated with each exem-
plar (e.g., the motor consequences of the RT differences
or stimulus difficulty).

RF and RC

The procedures for computing RF and RC are shown in
Figure 2. RF was quantified as the interparticipant similar-
ity of the RSMs from a given ROI, and RC was quantified
as the correlation between the RSMs derived from differ-
ent ROIs (Kriegeskorte et al., 2008) where larger correla-
tions indicated greater RF/RC. To ensure our measures of
RF/RC uniquely measured task-related representations of
exemplar-specific properties and not task-unrelated
thoughts or other events that happened to coincide with
the different conditions, all measures of RF and RC were
quantified in a cross-validated manner. Specifically, for a
given ROI pair (ROI1 and ROI2), we used an interpartici-
pant reliability procedure that entailed the following: (1)
selecting RSMs from half of the participants (8 out 16)
from ROI1 (splitA) and selecting RSMs from the remaining
(nonoverlapping) participants (splitB) from ROI1 (for RF)
and ROI2 (for RC); (2) averaging together the set of eight
RSMs from each split and each ROI in the pair2; (3) cor-
relating (Pearson) the two group average RSMs (45 values
in each RSM). Specifically, RF was the correlation coeffi-
cient between the group average RSM from split1 and
split2 within ROI1, and RC was the correlation coefficient
between the group average RSM from split1 ROI1 and
split2 ROI2; (4) repeating this split-half correlation proce-
dure 1000 times and recording the correlation coeffi-
cients from each split. We quantified RF within ROI1
and RC between ROI1 and ROI2 as the average of these
split-half correlation coefficients. Importantly, we com-
puted RF and RC separately for RSMs derived from
rewarded blocks and unrewarded blocks (RFReward,
RFNoReward, RCReward, and RCNoReward) and quantified
the influence of reward (RFRewardDiff and RCRewardDiff) as
RFReward − RFNoReward and RCReward − RCNoReward, respec-
tively. We computed RFZoneDiff and RCZoneDiff in an anal-
ogous manner, subtracting RFOutZone and RCOutZone from
RFInZone and RCInZone, respectively. Significance for each
RF/RC value and the RF/RCDiff values were assessed using
a label-scramble permutation analysis where the above
split-half procedure was repeated (10000 repetitions) af-
ter scrambling the city exemplar labels (no replacement)
for each RSM.3 Null permutation distributions for RF and
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RC values from each of the four conditions, as well as
RFDiff and RCDiff values reflecting zone and reward differ-
ences, were formed from this procedure, and significance
was assessed by the rank of the real mean values relative
to their permutation distributions.

FC Analyses

The residuals from the preprocessing GLM (including the
global signal regressor) from each participant were
concatenated across task runs and used to compute the

functional time series for the FC analyses. Specifically, the
set of time series from each voxel within the ROI were
averaged together—removing the first six and the final
two TRs from each run. The removed TRs corresponded
to fixation periods (after adjusting for a BOLD signal
delay of two TRs or 4000 msec). These ROI-based time
series were then split into separate in-the-zone and out-
of-the-zone or rewarded and unrewarded time series (ad-
justing for a two-TR hemodynamic response delay). For
each participant, correlation matrices were computed
from the reward (FCReward) and no-reward (FCNoReward)

Figure 2. Computing RF and RC. Each step in this process is described in the figure and in the text. RF and RC are estimated by
repeating Steps 2–4 1000 times and averaging the resulting distribution of within (RF) and across (RC) ROI correlation coefficients
(1000 each).
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or in-the-zone (FCIn) and out-of-the-zone (FCOut) ROI-
based time series, and all resulting correlation coeffi-
cients underwent Fisher z transformations. The influence
of reward on FC for a given ROI pair was quantified as
FCReward − FCNoReward or FCDiff, and the analogous FCDiff

value was computed for zone. One-sample t tests (average
FCDiff ≠ 0) were used to evaluate the influence of reward
and zone on FC.

RESULTS

We sought to explore how the RF and RC of task-relevant
stimulus information was influenced by both intrinsic at-
tentional fluctuations as well as performance-contingent
rewards. We examined RF and RC within and across per-
ceptual processing regions (bilateral LO and PPA), the
DAN, and the DMN. Specifically, we predicted that being
in the zone would correspond to (1) an increase in over-
all RF across the task-positive regions (LO, PPA, and
DAN), (2) an increase in the RC from the LO and PPA
to the DAN, and (3) that task-contingent reward would
have a similar effect on RF and RC as being in the zone.
Although not discussed in detail here, both being in the
zone and reward were associated with increased accuracy
(fewer commission errors and greater d0), indicating the
validity of exploring information processing differences
across these states. Results pertaining to the behavioral
effects of zone and reward on this data set were reported
in detail in Esterman et al. (2017). To start, the overall RF
and RC without splitting by attentional zone or reward
were computed. All results reported as significant sur-
vived a family-wise Bonferroni correction for multiple
comparisons, unless otherwise noted.

Overall RF and RC

The full data set was examined for RF and RC before split-
ting by reward and zone (see Figure 3A). This revealed the
greatest fidelity in the LO (RF = 0.53, 95% CI [0.28, 0.79],
p < .001) with significant RF in the PPA as well (RF =
0.39, 95% CI [0.10, 0.66], p = .002) while no RF in the
DAN (RF = 0.07, 95% CI [−0.24, 0.35], p = .327) or
DMN (RF = 0.06, 95% CI [−0.22, 0.34], p = .338). As
Figure 3B shows, the right LO had greater RF than the
left LO (RF = 0.60 and RF = 0.48, respectively). Likewise,
the right PPA had greater RF than the left (RF = 0.43 and
RF = 0.28, respectively). In summary, without factoring
zone or reward, the representational similarity structures
computed from the LO and PPA (biased toward the right
in both) were reliable across participants. This suggests
that these regions represented stimulus information
about each city exemplar, that the features represented
were consistent across participants, and that the fidelity
of these representations was the greatest in LO but also
high in PPA. The presence of RF in regions known to pro-
cess visual information provides an important validation

on this method. Specifically, reliable stimulus information
was contained within the RSMs across participants de-
spite short trial ISIs, gradual stimulus transitions, and
the high degree of overall stimulus complexity and simi-
larity (all photographs of city scenes).

In addition to examining the degree of representa-
tional content within an ROI (RF), we also examined
the overall RC across ROIs. This revealed significant RC
between the LO and PPA (RC = 0.24, 95% CI [0.05,
0.43], p = .005), LO and DAN (RC = 0.27, 95% CI
[0.08, 0.46], p = .006), and PPA and DAN (RC = 0.19,
95% CI [−0.03, 0.39], p = .033); however, the latter RC
value did not survive correction for multiple comparisons.
Figure 3C and D shows the RC of all the clusters within
and across the three ROIs. Although the cluster-level re-
sults were intended to be interpreted more qualitatively
to show how distributed these effects were across each
cluster, we report which connections survived the family-
wise Bonferroni correction for multiple comparisons.

The Influence of Attentional Zone on RF

Based on the literature into the effects of transient atten-
tion on stimulus information processing, we predicted
that optimal (in the zone) attentional states should be as-
sociated with increased RF within perceptual processing
brain regions (LO, PPA, and DAN to a lesser extent). We
split the data from each run into in-the-zone and out-of-
the-zone trials where in-the-zone trials occurred when
the participant’s trial-to-trial RTs were most consistent
and out-of-the-zone trials occurred when the RTs were
most variable. We computed RF separately from in-the-
zone and out-of-the-zone epochs (Figures 4A and 5A).
Within the perceptual processing ROIs, we found a high
degree of RF while participants were in the zone (LO:
RFin-zone = 0.58, 95% CI [0.31, 0.87], p < .001; PPA:
RFin-zone = 0.35, 95% CI [0.08, 0.61], p = .003), whereas
none of the ROIs had significant RF while participants
were out of the zone. Directly testing the difference in
RF across zones, the LO had significantly greater RFin-zone
versus RFout-zone (RFzone-diff = 0.46, 95% CI [0.08, 0.86],
p = .012), whereas the PPA had a marginally significant
numerical trend (RFzone-diff = 0.27, 95% CI [−0.11, 0.63],
p = .079). We failed to find such zone differences in the
DAN (RFzone-diff = 0.18, 95% CI [−0.22, 0.56], p = .169)
and DMN (RFzone-diff = 0.06, 95% CI [−0.38, 0.32], p =
.522). These results fit with our predictions, suggesting
that attentional fluctuations influenced the fidelity of repre-
sentations in a similar manner to the influences of transient
attention. One notable exception, however, was the lack
of an effect of attentional zone on the RF in the DAN.

The Influence of Attentional Zone on RC

As shown above, attentional zone influenced the RF of
stimulus features within the LO and PPA. We also pre-
dicted that zone would have a substantial influence on
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RC between these perceptual processing regions and
more flexible, domain-general networks like the DAN.
Confirming our prediction (see Figures 4B and 5B), we
observed significant RCin-zone between the LO and DAN
(RCin-zone = 0.27, 95% CI [0.07, 0.47], p= .005), between
the PPA and DAN (RCin-zone = 0.31, 95% CI [0.13, 0.50],
p< .001), as well as between the LO and PPA (RCin-zone =
0.34, 95% CI [0.14, 0.52], p< .001). None of the RCout-zone

values, however, reached significance. Directly comparing
the differences (RCzone-diff = RCin-zone − RCout-zone)
revealed significant RCzone-diff between the PPA and DAN
(RCzone-diff = 0.38, 95% CI [0.11, 0.65], p = .004) and
the LO and PPA (RCzone-diff = 0.36, 95% CI [0.08, 0.63],
p = .002). The RCzone-diff between the LO and DAN
trended in the same direction (RCzone-diff = 0.27, 95%
CI [0, 0.53], p = .021) but failed to survive the correction
for multiple comparisons. It is worth noting, however, that
strong a priori predictions as well as analogous findings
between the PPA and DAN boost confidence in this result.

To briefly summarize, we observed that being in the
zone was associated with an increase in the fidelity of
stimulus representations within perceptual processing re-
gions (LO and marginally PPA) as well as an increase in
the RC between these two regions. Furthermore, the RC
between the DAN and both LO and PPA increased when
participants were in the zone, suggesting that sustaining
attention increases the communication of stimulus-
specific information between perceptual processing
regions and the more flexible and task-oriented pro-
cessing regions in the DAN.

The Influence of Reward on RF and Connectivity

Being in the zone was associated with increases in RF in
perceptual processing regions (LO and PPA) and in-
creases in RC between these regions and the DAN. Here
we predicted that reward influenced information pro-
cessing in a similar manner to the intrinsic fluctuations

Figure 3. RF and connectivity using full data set. Violin plots of the RF are shown by ROI network in A and by ROI cluster in B. The permutation-
based null distribution is depicted in gray with the top and bottom 2.5% of values in a darker shade of gray and the mean value of the null
distribution plotted as a black dot. The red-toned distribution depicts the variance from the 1000 split-half reliability values—the average of
which is plotted as an open circle and indicates that ROI’s RF value. The RF value is printed below the plot. Circular graphs of the RC are shown
by network in C and by cluster in D. Circular graphs made in MATLAB using circularGraph 2.0. *p < .05, **p < .01, ***p < .005.
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Figure 4. Network-level differences across zone and reward in RF, RC, and FC. (A) Violin plots depicting zone (left) and reward (right) differences
in RF from each network ROI. The permutation-based null distribution of RF differences is depicted in gray with the top and bottom 2.5% of
values in a darker shade of gray and the mean value of the null distribution plotted as a black dot. The red-toned distribution depicts the
variance from the 1000 split-half reliability values—the average of which is plotted as an open circle and indicates that ROI’s RF difference value.
The RF difference value is also printed below the plot. The green cross on the left side of each violin plot indicates the in-the-zone/reward RF
value, and the blue cross on the right indicates the out-of-the-zone/no-reward RF value. (B) A summary of the network-level results for RC and FC.
The violin plots depict the RC zone difference values for each network pair and the circular graph depicts the same results. The rightmost
circular plot depicts the zone difference values for FC. The same set of plots are depicted for reward differences in C. Circular graphs made in
MATLAB using circularGraph 2.0. *p < .05, **p < .01, ***p < .005.
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(zone). We split the data from each run into rewarded
and unrewarded blocks and computed RF and RC after
this split. As Figures 4A and 6A show, the LO and PPA
ROIs had significant RFreward (LO: RFreward = 0.38, 95%
CI [0.10, 0.66], p < .001; PPA: RFreward = 0.32, 95%
CI [0.06, 0.58], p = .004); however, these regions also
had significant RF during the unrewarded blocks (LO:
RFno-reward = 0.47, 95% CI [0.10, 0.66], p < .001; PPA:

RFno-reward = 0.31, 95% CI [0.06, 0.58], p= .004). Directly
testing the differences between RFreward and RFno-reward
revealed only nonsignificant numerical trends toward
greater RFreward in the DAN (RFreward-diff = 0.27, 95% CI
[−0.10, 0.65], p = .082).
Examining RF identified that reward failed to show the

same influence as zone on RF in the LO and PPA and
suggested a larger effect in the DAN. Surprisingly, as

Figure 5. Cluster-level differences in attentional zone for representational fidelity (A) and representational connectivity (B). Violin plots of the
RF zone differences (zone difference = in the zone − out of the zone) are shown by cluster in A. The permutation-based null distribution for
zone difference is depicted in gray with the top and bottom 2.5% of values in a darker shade of gray and the mean value of the null distribution
plotted as a black dot. The red-toned distribution depicts the variance from the 1000 split-half reliability values—the average of which is plotted as
an open circle and indicates that ROI’s RF zone difference value. The RF difference value is also printed below the plot. The green cross on the
left side of each violin plot indicates the in-the-zone RF value, and the blue cross on the right indicates the out-of-the-zone RF value. Circular graphs
(B) of the RC are shown by cluster from in-the-zone trials, out-of-the-zone trials, and the zone differences. Circular graphs made in MATLAB
using circularGraph 2.0. *p < .05.
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Figures 4C and 6B show, the effect of reward further
dissociated when examining RC. Unlike RCin-zone, we ob-
served RCreward between the PPA and DMN (RCreward =
0.17, 95% CI [−0.01, 0.36], p = .03) as well as the
DAN and DMN (RCreward = 0.17, 95% CI [−0.01, 0.36],
p = .03), although neither survived correction for multi-
ple comparisons. Critically, we found the RCreward-diff

between the DAN and DMN was robust (RCreward-diff =

0.39, 95% CI [0.15, 0.64], p < .001). In addition,
numerical trends revealed that reward increased RC be-
tween the LO and DMN (RCreward-diff = 0.25, 95% CI
[−0.03, 0.52], p = .036), as well as the PPA and DMN
(RCreward-diff = 0.19, 95% CI [−0.05, 0.45], p = .073).

To briefly summarize, reward was associated with
marginally significant increases in the fidelity of stimulus
representations within the DAN. Interestingly, RC

Figure 6. Cluster-level differences in reward for representational fidelity (A) and representational connectivity (B). Violin plots of the RF reward
differences (reward difference = reward − no reward) are shown by cluster in A. The permutation-based null distribution for reward difference is
depicted in gray with the top and bottom 2.5% of values in a darker shade of gray and the mean value of the null distribution plotted as a black dot.
The red-toned distribution depicts the variance from the 1000 split-half reliability values—the average of which is plotted as an open circle and
indicates that ROI’s RF reward difference value. The RF difference value is also printed below the plot. The green cross on the left side of each violin
plot indicates the rewarded RF value, and the blue cross on the right indicates the no-reward RF value. Circular graphs (B) of the RC are shown by
cluster from rewarded trials, no-reward trials, and the reward differences. Circular graphs made in MATLAB using circularGraph 2.0. *p < .05.
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between the all three ROIs and the DMN increased
during rewarded relative to unrewarded blocks—with
smaller effects between the perceptual processing re-
gions and the DMN but a robust effect between the
DAN and DMN. This provided a striking contrast to the
effects of attentional zone, which was characterized by
RC increases between perceptual processing regions
and from these regions to the DAN.

The Influence of Reward and Zone on FC

Examining RC across the LO, PPA, DAN, and DMN en-
abled us to quantify the degree of communication of
stimulus-specific information between these regions.
This revealed that reward and zone were associated with
distinct changes in RC. However, univariate measures like
FC (time series correlations) have traditionally been used
to infer the communication of information between
ROIs. Therefore, to compare our RC results with these
more traditional measures, we examined how the FC be-
tween these regions was modulated by reward and zone.
Because FC could reflect changes in the communication
of task unrelated information, we predicted that the
DMN—which is thought to be critical in generating task
unrelated thoughts—should be sensitive to changes in
the communication of this information in manner that
RC would not be. Specifically, being in the zone and re-
warded blocks should correspond to decreases in the
FC between the DMN and the other ROIs.

To analyze the influence of zone and reward, we exam-
ined how FC changed between the four ROIs while par-
ticipants were in versus out of the zone (Figure 4B) and
rewarded versus unrewarded (Figure 4C). First, being in
the zone and rewarded were characterized by increased
FC between perceptual processing regions and the DAN
with both zone and reward showing this effect for the FC
between the LO and DAN (zone: FCdiff = 0.06, 95% CI
[0.01, 0.10], t(15) = 2.82, p = .013; reward: FCdiff =
0.07, 95% CI [0.04, 0.10], t(15) = 4.46, p < .001) and
for reward (but not zone) this effect was between the
PPA and DAN as well (FCdiff = 0.06, 95% CI [0.01,
0.10], t(15) = 2.62, p = .019). Second, being in the zone
and rewarded were characterized by a general decrease
in connectivity between the DMN and the other three
ROIs with both zone and reward showing this effect be-
tween the DAN and DMN (zone: FCdiff = −0.07, 95% CI
[−0.11,−0.03], t(15) =−3.90, p< .001; reward: FCdiff =
−0.08, 95% CI [−0.12, −0.04], t(15) = −3.99, p < .001).
Furthermore, this effect was shown between the LO and
DMN (zone: FCdiff = −0.08, 95% CI [−0.14, −0.03],
t(15) = −3.41, p = .004; reward (marginal): FCdiff =
−0.05, 95% CI [−0.10, 0], t(15) = −1.96, p = .069).
Finally, reward (but not zone) showed this effect
between the PPA and DMN (FCdiff = −0.07, 95% CI
[−0.10, −0.03], t(15) = −3.56, p = .003). These results,
in conjunction with the RC results, suggested that the
increased FC between the perceptual processing

regions and the DAN likely reflected stimulus-specific in-
formation, whereas FC involving the DMNmostly reflected
the communication of distracting, stimulus-unrelated
information.

DISCUSSION

The goal of this study was to investigate how attentional
fluctuations—due to intrinsic (attentional zone) or extrin-
sic causes (reward)—relate to both the fidelity and con-
nectivity of exemplar-specific stimulus representations
(pictures of city scenes) within and across the LO, PPA,
DAN, and DMN. We had four predictions: (1) Being in
the zone (optimal attentional state), analogous to studies
of transient attention, should be associated with an
overall increase in the fidelity of stimulus representa-
tions. (2) Being in the zone should increase overall RC
across regions of the brain, particularly between visual
processing regions like LO or PPA and networks that sup-
port more global and flexible cognitive operations like
the DAN. (3) Performance-contingent rewards should
boost performance by enhancing attention and therefore
should be indistinguishable from intrinsic fluctuations
in terms of the fidelity and connectivity of stimulus infor-
mation. (4) The FC between the DAN and DMN should
increase when participants are not rewarded or out of the
zone, reflecting an increase in the communication of task-
unrelated information that would conversely decrease our
measures of RC or RF.
With regard to the first prediction, we found that being

in the zone was associated with increased RF in LO and,
to a lesser extent, PPA, supporting the notion that sus-
tained and transient attention enhance stimulus process-
ing in a similar manner—at least in visual processing
regions. Specifically, sustaining attention to a task criti-
cally depends on constructing and maintaining atten-
tional templates (Rothlein et al., 2018). Such templates
would identify task-relevant features and act to facilitate
the identification of such features—perhaps even distort-
ing or warping representations along select feature
dimensions to boost detection sensitivity or mitigate
interference from distracting visual information (Geng,
DiQuattro, & Helm, 2017; Nastase et al., 2017; Peelen
& Kastner, 2014).
Maintaining such templates boosts the fidelity of stim-

ulus representations as we and others have observed.
The content of such templates likely depends on the
nature of the task—selecting the set of features, regard-
less of the level of abstraction, that maximizes the effi-
ciency of the visual search or classification (Rothlein
et al., 2018; Hout & Goldinger, 2015; Schmidt & Zelinsky,
2009; Vickery, King, & Jiang, 2005). Previous research using
the same task and stimuli found that target–nontarget
similarity of exemplar-specific pixel intensity features best
explained stimulus-level differences in RT and accuracy,
outperforming more abstract category attribute-based
features (Rothlein et al., 2018). This could explain why
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LO, believed to represent complex visual features and
shapes that compose the content of a scene, had an overall
greater fidelity and larger fidelity difference across atten-
tional state than the PPA—which is believed to represent
the more global and structural attributes of visual scenes
that enable the categorization of novel scene exemplars
(Park, Brady, Greene, & Oliva, 2011). Further investigation
into the representational content contained within these
templates is certainly merited. However, because the RSMs
only included city exemplars, we can establish that the
granularity of the information contained within these re-
gions was specific enough to establish an exemplar-specific
representational geometry that was reliable across partici-
pants. As such, Boolean representations indicating stimu-
lus category (city vs. mountain) or response decision
(press vs. withhold) would be insufficient to explain either
the RF or RC results as they would be identical across the
city exemplars.4

We also found, consistent with our prediction, that be-
ing in the zone was associated with an increase in the RC
between perceptual processing regions (LO and PPA)
and from both of these regions to the DAN.5 In other
words, when participants were in the zone, the similarity
structure of the set of city stimuli were relatively synchro-
nized across these three regions—suggesting stimulus
information was being communicated between the LO,
PPA, and DAN. Although expected, this finding was
novel as, to our knowledge, no one has examined how
attention—transient or sustained—has influenced the
communication of stimulus-specific information. The
DAN has conventionally been implicated in the top–
down modulation of stimulus processing; however, the
DAN overlaps heavily with many neurotopographical
descriptions of a global workspace or multiple demand
networks (Fedorenko, Duncan, & Kanwisher, 2013;
Dehaene & Changeux, 2011), suggesting the DAN also
plays a critical role in actively processing and broadcast-
ing incoming stimulus information. Indeed, multivoxel
pattern analyses have shown that the IPS—the parietal
nodes within the DAN network—represents stimulus in-
formation maintained in working memory (Xu, 2017).
Our results support the view that the DAN, particularly
the right IPS, actively processes and communicates stim-
ulus information and that this processing is associated
with optimal attention. However, ambiguities regarding
the directionality of the RC results limit the ability to dif-
ferentiate top–down versus bottom–up processing con-
tributions of the DAN. Characterizing the role of the DAN
with respect to attention and working memory remains
an active area of research (e.g., Scimeca, Kiyonaga, &
D’Esposito, 2018; Gayet, Paffen, & Van der Stigchel,
2017; Xu, 2017; Gazzaley & Nobre, 2012).
When considering the influence of reward on RF and

RC, we predicted that reward would benefit performance
through top–down control over the maintenance of at-
tention (Thomson, Besner, & Smilek, 2015; Kurzban,
Duckworth, Kable, & Myers, 2013) or enhanced repre-

sentations of the task more generally (Etzel et al.,
2016). According to this prediction, increased effort
would not change where or how stimulus information
was processed other than showing information process-
ing patterns akin to those characterizing the in-the-zone
attentional state (greater LO/PPA RF and great LO/PPA-
DAN RC). In other words, fluctuations in attention would
directly influence how information is processed and effort
would directly modulate the mechanisms underlying
attention. To our surprise, reward influenced RC and, to
a lesser extent, RF in a manner that was distinct and nearly
complementary to the influence of intrinsic fluctuations
(i.e., zone). We characterized this shift in two ways: first,
reward shifted the locus of information processing from
the perceptual processing regions (LO and PPA) to the
domain-general, flexible processing networks in the DAN
and interestingly the DMN. To compare with the zone
contrasts, although being in the zone increased the RF and
the RC within and between the LO and PPA, reward—failing
to influence the LO or PPA—had an analogous effect on
the DAN and DMN. Second, reward shifted RC with the
perceptual ROIs from the DAN to the DMN. Specifically,
although intrinsic fluctuations modulated the degree to
which stimulus information was communicated between
the perceptual processing regions and DAN, reward shifted
this communication toward the DMN. As can be seen in
Figure 6, these effects were largely driven by the PCC.
The PCC, which is thought of as the core of the DMN, is
often implicated in spontaneous thought (Kucyi et al.,
2016); however, it overlaps with the retrosplenial cortex,
a component of the scene processing network implicated
in orienting and locating oneself in a scene (Marchette,
Vass, Ryan, & Epstein, 2014). Furthermore, the retro-
splenial cortex/PCC has been implicated in the retrieval
of autobiographical memories (Vann, Aggleton, &Maguire,
2009) as well as the comprehension of complex narrative
structures (Simony et al., 2016). Such studies provide
ample evidence that the DMN is capable of representing
and flexibly processing a wealth of information.

We speculate that reward boosts performance by shift-
ing task-related processes from a mode that is more
automatic and unconscious to a mode that is more delib-
erate and self-aware. This likely occurs at the expense of
task-unrelated thoughts (e.g., mind wandering) that are
thought be generated in the DMN. It may be that stimu-
lus information in the DMN is beneficial because it
“replaces” the processing that generates task-unrelated
thoughts and therefore inhibits the intrusion of such
thoughts into the global, task-positive networks. Alter-
natively, the DMN could share the load of task-directed
stimulus processing with the DAN—effectively boosting
the task-directed processing capacity. Comparing the
FC results with the RC results further supports this char-
acterization. When participants were in suboptimal
attentional states (either unrewarded or out of the zone),
the DMN acted as an FC hub with FC between the DMN
and the other ROIs (LO, PPA, and particularly DAN)
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increasing. Conversely, RC between these regions de-
creased when participants were not rewarded. Importantly,
although reward was associated with decreased FC
between the DAN and DMN, it was associated with in-
creased RC between these regions. Taken in tandem,
this suggests that reward decreased the overall level of
communication between the DAN and DMN. However,
the proportion of that the communication between the
DAN and DMN that specifically pertains to stimulus infor-
mation actually increased during rewarded blocks. The
fact that reward had the opposite effect on FC and RC high-
lights the challenges involved in interpreting FC as well
as the benefit of including information-based approaches
with interparticipant validation to more directly observe
cognitive processes from neural activity (e.g., Simony
et al., 2016).

Examining the RF and RC across attentional states pro-
vides novel evidence toward understanding how fluctua-
tions in sustained attention (as well as reward) reflect
changes in the constant flow of information coming
through the senses and how this information interacts
with internally generated thoughts. Although other mea-
sures like FC and synchronized oscillations have been
shown to be associated with acts of transient and sus-
tained attention, the underlying information contained
within these signals is ambiguous. Representational con-
nectivity analysis or RCA (Henriksson, Khaligh-Razavi,
Kay, & Kriegeskorte, 2015; Kriegeskorte et al., 2008) is
one of a growing number of measures of connectivity
that uses multivoxel patterns to measure information-
based correlations across brain regions (Ito et al., 2017;
Li, Richardson, & Ghuman, 2017; Anzellotti, Caramazza,
& Saxe, 2016; Coutanche & Thompson-Schill, 2013;
Walther, 2013; Chai, Walther, & Beck, 2009), and each of
these approaches provides complementary information
regarding the complex nature of neural communication
(Anzellotti & Coutanche, 2018). The biggest advantage of
this particular implementation of RCA was that it isolated
a single facet of the neural signals across two regions and
provided a relatively unambiguous measure of connectivity
(see Walther, 2013, for a similar approach). Specifically,
RC and RF were computed using the conservative
approach of interparticipant reliability, which ensured
that whatever was shared in the RSM must have been spe-
cific to the set of city exemplars used in this experiment.
Indeed, cross-region RSM correlations derived from
the same participant (intraparticipant RC) were much
greater, but the factors driving these correlations could
have included task-unrelated thoughts that coincided with
stimulus presentations, signal carryover from adjacent
trials, and global signal fluctuations from motion or
other noise-related causes (Hebart & Baker, 2017; Cai,
Schuck, Pillow, & Niv, 2016). Although some components
of within-participant correlations could be interesting, like
idiosyncratic components of the city representations (Lee
& Geng, 2017; Charest, Kievit, Schmitz, Deca, &
Kriegeskorte, 2014), for the purposes of this study, we

felt the inclusion of such components did not merit the
reduction of interpretability that would come with intra-
participant RC.
Consistent with our emphasis on maximizing the inter-

pretability of the results, we opted to narrow the scope of
the RCA analyses to a limited set of ROIs that had a
strong basis in the attention and perceptual processing
literature. However, recent research by Rosenberg et al.
(Rosenberg, Hsu, Scheinost, Constable, & Chun, 2018;
Rosenberg, Finn, Scheinost, Constable, & Chun, 2017;
Rosenberg et al., 2016) has demonstrated that FC across
a highly distributed set of nodes (i.e., individual connec-
tomes or neural fingerprints)—many of which do not
correspond to conventional attention areas—can predict
individual differences in attentional ability with surprising
success. This supports the contention that attention
should be thought of as a diverse set of interacting cog-
nitive processes that emerge from brain-wide neural dy-
namics as opposed to the sole function a few canonical
networks. Although this characterization is likely accu-
rate, our study focused on how attention relates to the
representation and transmission of stimulus-specific in-
formation, and this greatly constrained the scope of the
attention-related signals we examined. Therefore, many
attention-related neural signals that might be captured
by FC-based approaches—although critical for a full char-
acterization of attention—would have registered as noise
by this RC-based approach. In other words, because FC-
based approaches are potentially sensitive to a diverse ar-
ray of attention related phenomenon (including stimulus
processing), it makes it challenging to map specific cog-
nitive processes to specific connections. Because this RC-
based approach measured signal that was specific to
stimulus representations, we could more confidently
attribute our results to the cognitive processes that re-
lated to the fidelity and communication of stimulus infor-
mation (e.g., the construction and maintenance of
attentional templates or the broadcasting of stimulus rep-
resentations into a global workspace). Furthermore,
because this RCA methodology is relatively novel, we
limited our analyses to brain regions where we had a rea-
sonable expectation that stimulus information would be
both represented and modulated by attention. In addi-
tion to providing a solid connection to the vast literature
relating attention and reward to these networks, the fact
that our results largely conformed to the literature
provides important evidence in favor of the methodolog-
ical soundness of the RCA approach. A promising
direction for future research would be to examine more
extensive parcellations by computing both FC- and RC-
based connectomes to compare and contrast how
these measures predict intra- and interindividual dif-
ferences in attention. Such an approach could provide
a richer characterization of the functional roles of
the highly distributed network of attention-related re-
gions and connections (see Li et al., 2017, for a similar
suggestion).
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It is important to note that, despite the increase in
interpretability that these RCA analyses afford, the
results from this study are still susceptible to a number
of ambiguities. First, the way RC is computed does not
specify anything about the direction of communication
or even the causal relationship of the connectivity be-
tween two regions. For example, increased RC between
the LO and DAN could reflect information transfer that is
bottom–up (LO to DAN), top–down (DAN to LO), or some
combination of the two. Furthermore, there may be no
direct communication between these regions, but perhaps
the observed connectivity was mediated by communica-
tion to both of these regions from the PPA. Alternatively,
RC could result from two regions converging on a similar
representational geometry even if there was never any di-
rect or indirect communication between them. Resolving
these issues is not insurmountable and future studies could
integrate RCA analysis with statistical methods like effective
connectivity or mediation analyses to carefully parse out
questions of directionality and causality. An additional con-
cern is that the differences in RC and RF that we observed
across zone and rewardmay have been due to eye blinks or
saccades instead of directly corresponding to changes in
cognitive processing. Indeed, previous research has
shown that eye blinks increase in rate and duration as
vigilance decreases across the duration of a sustained atten-
tion task (McIntire, McKinley, Goodyear, &McIntire, 2014).
On this account, eye blinks or eye movements could result
in degraded early visual representations, reducing the fidel-
ity and downstream connectivity. Although consistent with
the differences in RF and RC due to attentional state (zone
differences), this account fails to explain the differences in
RC due to reward because both the reward and no-reward
conditions showed significant RF in visual processing re-
gions with little difference between the two conditions.
Therefore, the observed reward-related difference in RC
between DMN and DAN could not be readily explained
by degraded visual input due to blinking or saccades.
Nonetheless, future studies would benefit from collecting
simultaneous eye-tracking data to explicitly assess this
possibility.
In this study, we investigated fluctuations in sustained

attention—whether due to intrinsic (uncontrolled) or
extrinsic (reward-based) causes—from an information
processing framework. By using a novel implementation
of representational similarity and connectivity analyses
(Kriegeskorte et al., 2008), we showed that optimal atten-
tional states (being in the zone) were associated with an
increase in the RF within cortical regions associated with
visual processing (LO and PPA) as well as an increase in
the communication of stimulus-specific information be-
tween these regions and the DAN. Reward, on the other
hand, reflected increased RC between the higher-level
DAN and DMN networks, suggesting reward boosted per-
formance in a manner that was differentiable from natural
fluctuations in attention. This study also highlighted the
benefit of explicitly examining the underlying representa-

tions that could be driving the FC between brain regions.
Such investigations will continue to provide a richer under-
standing of the intricacies of information processing in the
human brain.
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Notes

1. All NeuroSynth maps have been corrected for family-wise
error by applying a false discovery rate correction with q <
0.01. All maps underwent an additional voxel-wise thresholds
Z > 1.96 and cluster size threshold of at least 100 voxels.
2. Averaging together RSMs helps distill any shared represen-
tational structure. As the number of RSMs averaged together
increases, so too does the accuracy with which the group
RSM approximates the real shared similarity structure if one ex-
ists (Nili et al., 2014). This assumes, however, that the distribu-
tion of the similarity values in each cell of the RSM stems from a
single population value (unimodal) and a symmetric noise dis-
tribution (e.g., Gaussian). In this context, the split-half interpar-
ticipant similarity procedure provides the best estimate of the
true RC effect sizes.
3. It is important to note that, when doing such a label-scramble
permutation on an RSM, the full symmetric RSM must be used
and the same permuted label reassignment must be applied to
the columns and rows of the RSM.
4. Scene category or response decision representations could
have been continuous instead of Boolean—namely, a given
stimulus could have had a continuous city-ness and mountain-
ness value where the largest value established the category
assignment and response decision. In such a case, each city stim-
ulus could fall within a unique position along these feature di-
mensions, and therefore, a reliable representational geometry
could be established that does not specifically identify a city ex-
emplar but places it relative to the two category assignments.
Indeed, in a previous study, we have shown that exemplar-level
differences in RT indicated howmountain-like each city stimulus
is (Rothlein et al., 2018). However, our inclusion of the RT-based
nRSM—which predicted that exemplars that had similar RTs
would also have similar activation patterns—would account for
much of this variance, making it an unlikely explanation for the
observed RF or RC results.
5. It is worth noting that, when comparing the RF and RC re-
sults across in/out of the zone periods, some incongruity
emerges wherein the DAN does not appear to have reliable
RSMs as made evident by its low overall RF and minimal influ-
ence from zone. However, it does appear to contain reliable
stimulus information in its correlation to the RSMs from the
LO or PPA as shown from RC between the DAN and these re-
gions, particularly when the participants were in the zone
(greater RC between LO/PPA and DAN). One possible explana-
tion is that—due to the large size and likely inclusion of irrele-
vant voxels—RSMs constructed from the DAN were quite noisy.
In support of this, the cluster-based analysis revealed overall fi-
delity in the right IPS but none of the other DAN clusters. In
addition, the LO and PPA were quite reliable across participants.
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Therefore, instead of correlating two noisy DAN-derived RSMs
as was the case when computing RF, RC entailed correlating the
noisy DAN RSM with a cleaner LO or PPA RSM. This noise
reduction could explain why RC revealed stimulus processing
in the DAN while RF did not.
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