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Abstract

Pattern classification techniques have been widely used to differentiate neural activity asso-

ciated with different perceptual, attentional, or other cognitive states, often using fMRI, but

more recently with EEG as well. Although these methods have identified EEG patterns (i.e.,

scalp topographies of EEG signals occurring at certain latencies) that decode perceptual

and attentional states on a trial-by-trial basis, they have yet to be applied to the spatial

scope of attention toward global or local features of the display. Here, we initially used pat-

tern classification to replicate and extend the findings that perceptual states could be reliably

decoded from EEG. We found that visual perceptual states, including stimulus location and

object category, could be decoded with high accuracy peaking between 125–250 ms, and

that the discriminative spatiotemporal patterns mirrored and extended our (and other well-

established) ERP results. Next, we used pattern classification to investigate whether spatio-

temporal EEG signals could reliably predict attentional states, and particularly, the scope of

attention. The EEG data were reliably differentiated for local versus global attention on a

trial-by-trial basis, emerging as a specific spatiotemporal activation pattern over posterior

electrode sites during the 250–750 ms interval after stimulus onset. In sum, we demonstrate

that multivariate pattern analysis of EEG, which reveals unique spatiotemporal patterns of

neural activity distinguishing between behavioral states, is a sensitive tool for characterizing

the neural correlates of perception and attention.

Introduction

Over the last decade, multivariate pattern-classification analyses of fMRI BOLD signals have

emerged as a fruitful approach for using neural activity to decode various behavioral states

including perceiving, attending to, and imagining features, objects, and scenes (for reviews,

see [1–4]). Recently, pattern-classification analyses have also been applied to electroencepha-

lography (EEG) signals (e.g., [5–16]). This application to EEG has extended the standard

event-related potential (ERP) analyses in which a critical electrode (or a cluster of electrodes)
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is selected within a specific scalp region (based on data inspection and/or prior results), and

the trial-averaged stimulus-evoked EEG signals (i.e., ERPs) from the selected electrode(s) are

compared between conditions. Instead, as applied here, multivariate classification techniques

can reveal, in an agnostic data-driven manner, topographic weightings of EEG signals that

maximally distinguish specific perceptual, attentional, or behavioral states within a given time

interval. Thus, pattern-classification analyses offer greater sensitivity than standard ERP analy-

ses by simultaneously integrating information across electrodes. Because pattern-classification

analyses identify EEG correlates with high sensitivity, they are typically evaluated by how well

they predict the corresponding perceptual, attentional, or behavioral states on a trial-by-trial

basis (rather than how well trial-averaged signals from selected electrodes differentiate experi-

mental conditions, as in standard ERP analyses). Cross-validated predictive measures, like the

ones we use here, are also less susceptible to false positives than analyses traditionally applied

to ERPs, because inaccurate models will not generalize to the held-out data.

The first aim of the current study is to replicate and extend prior EEG applications of pat-

tern-classification analyses toward decoding perceptual states. Although prior studies have

applied similar analyses toward classifying object category (e.g., faces versus cars), they have

done so in the context of challenging stimulus discriminations (using stimulus degradation or

distraction [5–7, 10–13]). These previous studies were aimed at decoding individual differ-

ences in perception and decision-making, and used a variety of algorithms and feature-selec-

tion for classification. In contrast, in our first experiment, we examined passive viewing of

clearly discernable stimuli using classification methods common in the fMRI literature (e.g.,

[17–19]), in order to determine the spatiotemporal profile underlying successful pattern-classi-

fication of relatively “simple” visual perception. This experiment further serves as a benchmark

of our particular classification methods, and as a model system for comparing perceptual states

in which known ERP markers exist.

Thus, in Experiment 1, we first examined EEG correlates for distinguishing object category

(i.e., faces and non-face Gabors), as well as two extensions, face orientation (i.e., upright and

inverted faces) and spatial position (i.e., left and right stimulus locations), for which prior stud-

ies using standard ERP analyses have shown robust differences over specific electrode sites

(i.e., ERP components). Specifically, the N170 ERP distinguishes between seeing faces versus

non-face objects [20–22] or seeing upright versus inverted faces (e.g., [23]). Similarly, both

perceiving and attending to stimuli in the left versus right visual field can be distinguished on

the basis of the contralateral posterior ERP components, such as the P1, N1, N2Pc and CDA/

SPCN (e.g., [24–30]). Thus, a broad goal of the first experiment was to demonstrate the sensi-

tivity of the pattern-classification technique in distinguishing perceptual features from single-

trial EEG data that have well-established ERP markers, in the absence of stimulus degradation,

distraction or challenging behavioral demands.

Despite the advances in using pattern-classification analyses to identify EEG correlates that

are associated with stimulus categories, task difficulty, performance level, and attentional read-

iness (e.g., [5–7, 12–13]), less work has been done to explore the ability of pattern classification

to decode subjective states of covert visuo-spatial attention. To our knowledge, few studies

have conducted pattern-classification analyses of EEG for identifying distinct attentional states

(e.g., [10, 14, 15, 31]; note that various others have focused on other EEG-derived signals, e.g.,

steady-state evoked potentials: [16]). Thiery and colleagues [14] were successful in decoding

the locus of covert visual attention using ERP data from a priori defined temporal windows

and spatial locations (i.e., electrodes). As previously stated, we instead wanted to apply pat-

tern-classification analysis without such a priori assumptions on single-trial EEG data. Kasper

and colleagues’ [10] and Treder and colleagues’ [15] classification procedures most closely

approach ours in that respect. Kasper et al. [10] successfully isolated attentional successes
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versus failures in an attentional blink study: From EEG averaged over 20-ms time bins, they

decoded the ability of perceivers to identify the (second) target that is susceptible to the atten-

tional blink. Treder and colleagues [15] differentiated attended versus unattended auditory
pattern deviants from EEG voltage data averaged over data-defined time windows, consistent

with a P3 timecourse (the P3b ERP differentiates task-relevant deviant from repeated stimuli

[32]). Like us, they also identified electrodes whose signals were most strongly differentiated

between conditions, and they showed critical spatial topographies akin to those found for the

P3 ERP. Treder et al.’s [15] findings are powerful in demonstrating the ability to use pattern

classification to identify spatial topographies of covert auditory attention, for which a robust

single-trial ERP is detectable. In Experiment 2, we complement and extend their results by

examining single-trial EEG pattern classification for the scale of visual attention, for which,

importantly, no consistent ERP differences are reported, and thus provides a viable alternative

to standard ERP analyses.

Thus, the second aim of the current study is to apply pattern-classification analyses to iden-

tify EEG correlates of the scope of visuo-spatial attention. Prior studies examining EEG corre-

lates of local and global attention using standard analyses have not reported consistent ERP

components that distinguished between locally- and globally-focused attention states (e.g.,

[33–38]). Although the variation in reported findings might be attributable to differences in

specific tasks or stimulus properties, there are the additional possibilities that the critical neural

correlates manifest as complex topographic patterns of EEG signals and/or considerable indi-

vidual differences in those patterns mask any robust group-level effects. Either of these scenar-

ios would reduce the sensitivity of typical ERP analyses, in which group-averaged data and a

subset of electrodes are considered, whereas pattern-classification analysis would overcome

these challenges as long as each individual’s neural correlate of attentional scope were reflected

in a specific and consistent topography of EEG signals.

Experiment 1: EEG correlates discriminating perceptual states

Using pattern-classification analyses, Experiment 1 allowed us to determine how EEG signals

distinguished a variety of visual perceptual states. Based on the extensive previous EEG litera-

ture, we focus on three comparisons: left versus right stimulus location, face versus (non-face)

Gabor stimuli and upright versus inverted faces (e.g., [20–23, 39]). All but the face versus non-

face stimulus comparison are novel applications of pattern classification to EEG data, though

unlike others, who presented cars as the non-face images, we presented Gabor stimuli.

To anticipate, in addition to replicating typical group-level ERP differences at established

electrode sites, our pattern-classification analysis reliably differentiated left versus right stimu-

lus locations, face versus Gabor stimuli, and upright versus inverted faces on a trial-by-trial

basis. Specifically, the EEG pattern distinguishing stimuli presented in the left and right loca-

tions (irrespective of stimulus type) validated our particular implementation of pattern-classi-

fication analysis, by successfully identifying a simple scalp topography emphasizing posterior

electrode sites with opposing weights for stimulus locations. Pattern classification also reliably

decoded the perception of face versus Gabor stimuli and upright versus inverted faces on the

basis of single-trial EEG.

Methods

Participants. Eight individuals (5 women, age range = 21–34, M = 27 years) provided

written informed consent to participate in the experiment (Northwestern University IRB

approved the study; STU00013229). Seven individuals were naïve to the purposes of the experi-

ment (paid $10/hr for their participation) and one was a trained observer (author AL; training
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produced no reliable difference or interactions on classification accuracy). All had normal or

corrected-to-normal vision and were right-handed.

Apparatus. Stimulus presentation and manual response recording were controlled by

Presentation software (www.neurobs.com; Version 12.199). A 20” Sony CRT monitor (60 Hz

refresh rate and 1028 × 768 resolution) was used for visual stimulus presentation, at a viewing

distance of 150 cm. Participants used a computer mouse to respond. EEG recording was car-

ried out with a 68-channel (64 scalp and 4 facial electrodes, including a nose reference) active

electrode Biosemi system (www.cortechsolutions.com), referenced to the nose, at a sampling

rate of 1024 Hz.

Stimuli. All stimuli were presented on a gray background (luminance = 11 cd/m2). Four

different stimuli (4.5˚ by 4.5˚) were presented individually, centered at 2.4˚ eccentricity to the

left or right of a black (luminance = 0.5 cd/m2) central fixation dot (diameter = 0.2˚). Two of

the four stimuli were Gabor stimuli (0.97 Michelson contrast at peak contrast) with spatial fre-

quencies of 7.9 cycles/degree (higher spatial frequency) and 1.3 cycles/degree (lower spatial

frequency; Fig 1A, left). Note that these spatial frequencies are higher and lower (in log units)

relative to the peak of the human contrast sensitivity function, and are approximately equiva-

lently visible based on the published contrast-sensitivity functions (e.g., see the 1 Hz condition

in [40]; see the relevant mesopic-photopic conditions in [41]; [42]).

The Gabor stimuli were oriented either vertically or horizontally. Thus, for the Gabor sti-

muli, the factorial stimulus design was Location (Left, Right) x Spatial frequency (High, Low) x

Orientation (Vertical, Horizontal). The two remaining stimuli were faces (one female, one

male) selected from the Extended Yale Face Database B (faces 17 and 32 from [43]). The face

stimuli were presented upright or inverted (180˚ rotated in the picture plane). A Gaussian

envelope was applied to the face stimuli to reduce image boundary edges (Fig 1A, right). Thus,

for face stimuli, the factorial stimulus design was Location (Left, Right) x Identity/Gender

(Female, Male) x Orientation (Upright, Inverted).

Design. EEG data were analyzed to determine the neural correlates of the following com-

parisons: left versus right location, face versus Gabor stimuli, and upright versus inverted

faces. All conditions were collapsed over the other stimulus factors.

Behavioral procedure. Participants were instructed to fixate the central dot, and refrain

from blinking or moving their eyes during passive viewing of the stimuli. The fixation dot

appeared for 250 ms, followed by one of sixteen visual stimulus conditions (described above;

Fig 1A) for 500 ms. Trials were separated by a 200–300 ms jittered inter-trial interval (duration

was randomly selected from a uniform distribution in ~16 ms increments, due to monitor

refresh rate), showing only the fixation. A 5-s break was presented every eight trials. Each

block of 160 trials was composed of ten groups of 16 trials in which all 16 stimuli were pre-

sented in a randomized order. Six blocks of trials were run for a total of 960 trials. Participants

took breaks between blocks as needed, and pressed the mouse button to initiate each block.

EEG signal processing. All channels were referenced to the nose. The raw EEG was band-

passed (0.1–30 Hz), and segmented into 1-s epochs (spanning 250 ms before to 750 ms after

stimulus onset). A few channels (M = 2.25 channels per participant, SD = 2.25) were excluded

from analysis due to poor scalp contact. Manual artifact rejection was conducted on the EEG

signals from the remaining channels to remove epochs with blinks, eye movements and muscle

activity. A mean total of 833 (SD = 111.4) stimulus epochs (or trials) per participant remained

after artifact rejection, with a minimum of 69 trials/condition. Signal processing was carried

out using Matlab (www.mathworks.com) and the EEGLAB toolbox [44].

Standard ERPs. Grand averaged ERPs (EEG averaged across trials for each condition for

each participant and then across participants) are shown for each of the perceptual compari-

sons in Fig 2, Fig 3 and Fig 4. For the left versus right stimulus location comparison, data from
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electrodes PO7 and PO8 are shown in Fig 2 to illustrate lateralization of processing. For the

face versus Gabor comparison and the upright versus inverted face comparison, data from

electrode PO8 are plotted (Fig 3 and Fig 4, respectively). Additionally, the grand averaged

ERPs at all 64 scalp electrode sites are shown for each perceptual comparison in the supple-

mental materials (S1 Fig, S2 Fig and S3 Fig).

Fig 1. Stimuli. A) In Experiment 1, stimuli were presented individually either in the right or left visual field during passive viewing. SF = spatial frequency. B) In

Experiment 2, stimuli were presented centrally and participants determined if the letter H or S was present, regardless of whether it appeared at the global or

local level. Irrelevant distracter letters (E or A) were presented at the other level.

https://doi.org/10.1371/journal.pone.0176349.g001
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Pattern-classification analysis. For each participant, trial numbers were equated across

conditions for each perceptual comparison via random subsampling from the condition with

more trials. For example, if a participant had 410 face trials and 440 Gabor trials after artifact

rejection, only 410 randomly-subsampled Gabor trials were submitted to classification analysis

with all 410 face trials. A linear support vector classifier (http://www.csie.ntu.edu.tw/~cjlin/

libsvm/) was then applied to single-trial EEG signals (μV) at each timepoint (~1 ms resolution)

using, on average, 62 (SD = 2.25) electrodes as features. Continuing the example above, using

all 820 trials, the first of 1024 timepoints (at -250 ms) μV value for each electrode would be

submitted to a 10-fold cross-validation procedure. This cross-validation procedure iteratively

divides the trials into 10 groups (in this example, 82 trials/group), trains the classifier to dis-

criminate conditions based on 9 of the 10 trial groups (in this example, 738 trials), and tests

the accuracy of the obtained EEG correlate for predicting conditions on the remaining trials

(in this example, 82 trials). This cross-validation procedure yields a percent accurate classifica-

tion for each of the 10 tests (% of individual trials accurately decoded), which are then averaged

to produce the overall prediction accuracy. Thus, accuracy of 70% would represent 574/820 tri-

als correctly classified. The whole process is repeated at each timepoint, separately for each

participant, resulting in prediction accuracy for each participant, at each timepoint, from 250

ms pre-stimulus to 750 ms post-stimulus onset. Critically, the EEG data were not averaged

Fig 2. Grand average ERPs for right versus left stimulus location. Grand average ERPs are shown for electrodes PO7 (left) and PO8 (right), for the left

(blue) and right (red) stimulus locations (top). The difference wave (black) with the within-subjects standard error (gray shading) are plotted (bottom). The

black bars on the horizontal axes reflect stimulus duration.

https://doi.org/10.1371/journal.pone.0176349.g002
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over trials (single trials always served as instances), time or participant prior to classification,

meaning that the prediction accuracy is derived at the single-trial, single-timepoint (~1 ms)

level.

For each participant, we separately derived the electrode weights from the evenly-sampled

dataset, revealing the relative importance of each electrode in discriminating between condi-

tions. From these weights, we produced “importance maps,” or topographic maps of electrode

weights at each timepoint for each participant. Each resultant importance map (for each par-

ticipant at each timepoint) was normalized by dividing the individual electrodes’ weights by

the standard deviation across channels.

To capture the general time course of informativeness of EEG correlates, we averaged the

accuracy data across time and conducted group-level analyses. In doing so, we created a distri-

bution for conducting inferential statistics and, although at the cost of temporal resolution,

reduced type I error (for which 1024 timepoints is excessive). Specifically, for each perceptual

comparison, we analyzed the average accuracy over successive 125-ms time bins (1000 ms

divides evenly into eight 125-ms bins), which lies within the broad range of others’ analysis

bins spanning tens to hundreds of ms (e.g., 10, 14, 15, 31). The 125-ms (i.e., 8 Hz) bin size is

reasonable because it is commensurate with reported sampling rates of visual attention in the

Fig 3. Grand average ERPs for faces versus Gabors. Grand average ERPs are shown for electrode PO8

for face (blue) and Gabor (red) stimuli (top). The difference wave (black) with the within-subjects standard

error (gray shading) are plotted (bottom). The black bars on the horizontal axes reflect stimulus duration.

https://doi.org/10.1371/journal.pone.0176349.g003
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theta (4–8 Hz) and alpha (8–13 Hz) ranges (e.g., [45–52]). We evaluated the statistical reliabil-

ity of pattern classification in the following way. We conducted a one-way repeated-measures

ANOVA with temporal bin as the factor and participants as the random effect. If a significant

main effect emerged, then we conducted Bonferroni-corrected t-tests against 50% (i.e., the α-

level was adjusted to .00625) to identify the time bins in which pattern-classification analysis

successfully identified an EEG correlate that distinguished the experimental conditions. In the

figures, we present the accuracy averaged over individuals at the original ~1 ms resolution,

overlaid with the time-averaged group accuracy mean and standard error. We also present the

peak group-identified EEG correlate as a topography of averaged linear weights (i.e., the indi-

vidual, ~1 ms resolution importance maps averaged over both the peak 125-ms period and

individuals).

Results

Left versus right stimulus location. Pattern-classification analysis successfully distin-

guished left and right stimulus presentation locations, F(7,49) = 55.144, p< .001, Z2
p = 0.887,

Fig 4. Grand average ERPs for inverted versus upright faces. Grand average ERPs are shown for

electrode PO8 for inverted (blue) and upright (red) face stimuli (top). The difference wave (black) with the

within-subjects standard error (gray shading) are plotted (bottom). The black bars on the horizontal axes

reflect stimulus duration.

https://doi.org/10.1371/journal.pone.0176349.g004
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with accuracy significantly above chance for all of the post-stimulus time bins, ts(7)> 4.50,

ps< .00625, ds> 1.5 (Fig 5). Importantly, prediction accuracy was at chance for both pre-

stimulus baseline bins, |t|s< 1, ps> .77, ds< 0.11. The prediction accuracy peaked over the

125–250 ms latency, with the associated topography of linear weights indicating that the EEG

correlate of left versus right stimulus position discrimination emerges primarily from posterior

electrode sites. Notably, the topography corresponding to the second peak of accuracy, occur-

ring at the 625–750 ms latency, shows the opposite (left-right reversed) weight pattern. Because

the stimulus disappeared 500 ms after stimulus onset, this may indicate location-specific neu-

ral adaptation, or the return of attention to the central fixation point (rightward return follow-

ing a left stimulus and leftward return following a right stimulus). Additional research is

Fig 5. Group classification accuracy for right versus left stimulus location. The gray line shows the group-

averaged accuracy at each time point. The black line shows the time-averaged accuracy for each 125-ms time bin (areas

between vertical bars), on which inferential statistics were carried out (with within-subject standard errors). For the peak

accuracy time bin, the heatmap shows the group-averaged electrode weights across the scalp, also averaged over

125-ms. Chance accuracy is 50% (black horizontal line), and the black horizontal bar on the lower axis reflects stimulus

duration. * p < .00625 (Bonferroni-corrected α-level).

https://doi.org/10.1371/journal.pone.0176349.g005
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necessary to understand the accompanying topographic change over time. However, at a mini-

mum, the results indicate that EEG signals can distinguish between stimuli presented in left

and right locations at ~70% accuracy on a trial-by-trial basis.

Faces versus Gabors. Pattern-classification analysis robustly distinguished face and

Gabor stimuli, F(7,49) = 26.963, p< .001, Z2
p = 0.794, with accuracy significantly above chance

for all time bins 125 ms and later, ts(7)> 3.9, ps< .00625, ds> 1.4 (Fig 6). Again, prediction

accuracy was at chance for both pre-stimulus baseline bins, |t|s< 1, ps> .35, ds< 0.4, and

failed to meet significance for the 0–125 ms time bin, t(7) = 2.255, p = .059, d = 0.797. The

accuracy peaked over the 125–250 ms latency, consistent with the timeframe in which the

N170 face-sensitive ERP component is typically reported. The associated topography of linear

Fig 6. Group classification accuracy for face versus Gabor stimuli. The gray line shows the group-averaged

accuracy at each time point. The black line shows the time-averaged accuracy for each 125-ms time bin, on which

inferential statistics were carried out (with within-subject standard errors). For the peak accuracy time bin, the heatmap

shows the group-averaged electrode weights across the scalp, also averaged over 125 ms. Chance accuracy is 50%

(black horizontal line), and the black horizontal bar on the lower axis reflects stimulus duration. * p < .00625 (Bonferroni-

corrected α-level).

https://doi.org/10.1371/journal.pone.0176349.g006
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weights is complex, but the left posterior sites emerged as especially informative (or, at least,

consistently informative across participants).

Upright versus inverted faces. Pattern-classification analysis successfully distinguished

upright and inverted faces, F(7,49) = 9.072, p< .001, Z2
p = 0.564, with accuracy significantly

above chance for the 125 to 375 ms time bins, ts(7)> 4.0, ps< .00625, ds> 1.4, and failing to

meet correction levels for the following time bin, t(7) = 2.761, p< .05, d = 0.976 (Fig 7). Again,

prediction accuracy was at chance for both pre-stimulus baseline bins, |t|s< 1, ps> .71, ds<

0.2, and was unreliable for the last two time bins, ts(7)� 1.8, ps� .12, ds� 0.63. The accuracy

peaked over the 125–250 ms latency, which is coarsely consistent with the timeframe in which

the N170 face inversion-sensitive ERP component is typically reported. The associated

Fig 7. Group classification accuracy for upright versus inverted face stimuli. The gray line shows the group-

averaged accuracy at each time point. The black line shows the time-averaged accuracy for each 125-ms time bin, on

which inferential statistics were carried out (with within-subject standard errors). For the peak accuracy time bin, the

heatmap shows the group-averaged electrode weights across the scalp, also averaged over 125 ms. Chance accuracy

is 50% (black horizontal line), and the black horizontal bar on the lower axis reflects stimulus duration. * p < .00625

(Bonferroni-corrected α-level).

https://doi.org/10.1371/journal.pone.0176349.g007

Classification of perceptual and attentional states

PLOS ONE | https://doi.org/10.1371/journal.pone.0176349 April 26, 2017 11 / 23

https://doi.org/10.1371/journal.pone.0176349.g007
https://doi.org/10.1371/journal.pone.0176349


topography of linear weights is complex, but posterior sites emerged as especially informative

across participants.

Discussion

Pattern-classification analyses identified linear topographies of EEG signals that successfully

distinguish, on a trial-by-trial basis, visual stimuli presented in left versus right locations, face

versus Gabor stimuli, and upright versus inverted faces. Notably, the classification of face per-

ception was consistent with the established timing and posterior topography of the N170 ERP

findings. Furthermore, the results replicate and extend other researchers’ successes in decod-

ing the perception of face versus non-face stimuli based on trial-by-trial analyses of EEG (e.g.,

[5–7, 12–13]). Having established that our particular pattern-classification procedure is a via-

ble approach to decoding EEG patterns for different perceptual states, we turned to the novel

question of whether the analyses could decode the local or global scope of visual attention.

Experiment 2: EEG correlates discriminating local versus global

attentional states

In Experiment 2, we examined EEG correlates for the scope of visual spatial attention. In par-

ticular, we used pattern-classification analyses to determine whether a linear topography of

EEG signals was able to distinguish locally- from globally-focused attentional states on a trial-

by-trial basis. To do so, participants were assigned two target letters (H and S), and were asked

to identify which of the two letters was present in a hierarchical stimulus, and to respond with

the assigned finger. Only one target was present in any single stimulus, and the target was

equally likely to be presented at the local or global level of the hierarchical stimulus (Fig 1B).

Using this design, participants must attend either locally, to accurately identify a small

repeated target letter, or globally, to accurately identify a large single target letter.

Methods

Only methods differing from those described in Experiment 1 are detailed below.

Participants. Fifteen individuals (7 women, age range 18–44, M = 27 years) provided

written informed consent to participate. All were naïve to the purposes of the experiment,

except three unpaid trained observers (authors AL and AS; and a colleague; training produced

no reliable difference or interactions on classification accuracy). All participants had normal

or corrected-to-normal vision and 12 were right-handed. Two of the participants (AL and one

other) also participated in Experiment 1 (see S4 Fig, S5 Fig, S6 Fig, S9 Fig and S10 Fig).

Apparatus. Participants used a number pad for responses.

Stimuli. Participants viewed white (37.5 cd/m2) hierarchical stimuli presented against a

black background (0.5 cd/m2) at a viewing distance of 135 cm. Within each hierarchical stimu-

lus the global letter subtended 1.1˚ x 1.7˚, and each local letter subtended 0.2˚ x 0.3˚. There

were eight hierarchical stimuli from the factorial combination of the target letter, H or S,

appearing at the local or global level, and the irrelevant letter, A or E, appearing at the other

level (Fig 1B). A central fixation dot was presented in either red or white (see Behavioral proce-

dure below).

Design. EEG data were analyzed for left- versus right-finger responses, and local versus

global attention.

Behavioral procedure. Participants were instructed to identify which of two target letters

(H or S) were presented, regardless of the level (global or local). Participants were assigned one

button for each target letter, with response hand counter-balanced across participants (seven

participants responded “S” with their left-hand and “H” with their right-hand, and the other
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eight did the reverse). A red fixation dot appeared for 2048 ms, followed by one of eight hierar-

chical stimuli for 100 ms. Trials were separated by a 1152–1252 ms randomly jittered inter-

trial interval (durations were randomly selected from a uniform distribution in ~16 ms incre-

ments, due to monitor refresh rate), showing only the white fixation dot. Participants were

instructed to fixate the dot at the center of the monitor, and refrain from blinking or moving

their eyes during presentation of the red fixation and hierarchical stimulus. A 5-s break was

given every four trials. Each block of 96 trials was composed of 12 groups of 8 trials in which

all 8 stimuli were presented in a randomized order. Five blocks of trials were run for a total of

480 trials. Participants took breaks between blocks as needed, and made a button press to initi-

ate each block.

EEG signal processing. On average, three (SD = 2.4) noisy channels were excluded from

EEG analyses. After excluding artifacts and inaccurate trials, an average of 404 (SD = 62) total

trials remained for each participant, with a minimum of 136 trials per condition. Again, EEG

traces were time-locked to the stimulus onset.

Standard ERPs. Grand averaged ERPs (averaged across trials and then across partici-

pants) for the left and right finger responses (from C3 and C4 to illustrate lateralization of pro-

cessing), and local and global attention (from PO7 and PO8) are shown in Fig 8 and Fig 9,

respectively, and for all scalp electrode sites in the supplemental materials (S4 Fig and S5 Fig).

Fig 8. Grand average ERPs for right versus left responses. Grand average ERPs are shown for electrodes C3 (left) and C4 (right), for the left (blue)

and right (red) responses (top). The difference wave (black) with the within-subjects standard error (gray shading) are plotted (bottom). The black bars

on the horizontal axes reflect stimulus duration.

https://doi.org/10.1371/journal.pone.0176349.g008
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Results

As a methodological validation, we examined the current dataset for a linear topography of

EEG signals distinguishing left from right button presses, a manipulation that has a well-estab-

lished and robust contralateral central superior ERP signature (Fig 8; the lateral readiness poten-

tial, LRP; e.g., [53]). Pattern-classification analysis successfully distinguished left- and right-finger

responses, F(7,98) = 28.619, p< .001, Z2
p = 0.672, with the accuracy significantly above chance for

all time bins after 125 ms, ts(14)> 4.45, ps� .001, ds> 1.1, and failing to meet correction levels

for the 0–125 ms post-stimulus time bin, t(14) = 2.845, p< .05, d = 0.734 (Fig 10). Prediction

accuracy was at chance for both pre-stimulus baseline bins, |t|s< 1, ps> .51, ds< 0.2. The left-

right response classification accuracy peaked over 500–625 ms, and the associated topography of

linear weights clearly indicates that central electrode sites just lateral to midline primarily contrib-

ute to the EEG correlate of left- versus right-finger responses.

Pattern-classification analysis also successfully distinguished locally- from globally-focused

attentional states, F(7,98) = 9.619, p< .001, Z2
p = 0.407, with the accuracy significantly above

chance for all bins after 250 ms, ts(14)> 3.8, ps� .002, ds> 0.98 (Fig 11). Prediction accuracy

was at chance for both pre-stimulus baseline bins, |t|s< 1, ps> .70, ds< 0.10, from 0–125 ms

Fig 9. Grand average ERPs for local versus global attention. Grand average ERPs are shown for electrodes PO7 (left) and PO8 (right), for local

(blue) and global (red) attention (top). The difference wave (black) with the within-subjects standard error (gray shading) are plotted (bottom). The black

bars on the horizontal axes reflect stimulus duration.

https://doi.org/10.1371/journal.pone.0176349.g009
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post-stimulus, t(14) = 1.14, p = .27, d = 0.294, and failed to meet the corrected threshold for

125–250 ms, t(14) = 2.339, p< .05, d = 0.604. Accuracy peaked over 500–625 ms. The associ-

ated group topography of linear weights is complex, perhaps indicative of variability between

individuals (Fig 12), although at the group level posterior regions emerge as relatively more

informative than anterior regions.

Discussion

In Experiment 2, pattern-classification analyses identified linear topographies of EEG signals

that successfully distinguish, on a trial-by-trial basis, left versus right responses as well as

Fig 10. Group classification accuracy for left versus right response. The gray line shows the group-averaged

accuracy at each time point. The black line shows the time-averaged accuracy for each 125-ms time bin, on which

inferential statistics were carried out (with within-subject standard errors). For the peak accuracy time bin, the heatmap

shows the group-averaged electrode weights across the scalp, also averaged over 125 ms. Chance accuracy is 50%

(black horizontal line), and the black horizontal bar on the lower axis reflects stimulus duration. * p < .00625 (Bonferroni-

corrected α-level).

https://doi.org/10.1371/journal.pone.0176349.g010
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locally-focused versus globally-focused attention. The decoded topography for left versus right

responses was consistent with well-established ERP results showing a lateralized and opposing

central superior signature. Notably, pattern classification reliably distinguished between

locally-focused versus globally-focused attention, though the scalp topography suggests a com-

plex relationship across electrodes at the group level, which may be the result of individual var-

iability in decoded linear topographies of EEG (Fig 12). Critically, to our knowledge, this is the

first report to show the decoding of the scope of attention using pattern-classification analyses

of EEG signal.

Fig 11. Group classification accuracy for global versus local attention. The gray line shows the group-averaged

accuracy at each time point. The black line shows the time-averaged accuracy for each 125-ms time bin, on which

inferential statistics were carried out (with within-subject standard errors). For the peak accuracy time bin, the heatmap

shows the group-averaged electrode weights across the scalp, also averaged over 125 ms. Chance accuracy is 50%

(black horizontal line), and the black horizontal bar on the lower axis reflects stimulus duration. * p < .00625 (Bonferroni-

corrected α-level).

https://doi.org/10.1371/journal.pone.0176349.g011

Classification of perceptual and attentional states

PLOS ONE | https://doi.org/10.1371/journal.pone.0176349 April 26, 2017 16 / 23

https://doi.org/10.1371/journal.pone.0176349.g011
https://doi.org/10.1371/journal.pone.0176349


General discussion

Pattern-classification analyses have recently been applied to multi-channel EEG signals to

increase the sensitivity for identifying EEG correlates of perceptual, attentional, and behavioral

states (e.g., [5–7, 10, 12–13, 54]). Instead of having to rely on data inspection and/or prior

research to select a specific cluster of electrodes for which ERPs are compared between experi-

mental conditions, linear pattern-classification analysis algorithmically identifies a multivari-

ate topography of EEG signals that most effectively distinguishes experimental conditions on a

trial-by-trial basis. Thus, pattern-classification analysis lends itself to differentiating cognitive

processes which are represented by more complex spatiotemporal patterns of activity, com-

pared with more modular systems and analyses which depend entirely on group effects. Here,

we extend prior EEG applications of pattern-classification analyses toward decoding percep-

tual states, namely spatial and face perception, to confirm the correspondence between our

particular application of pattern classification and well-established ERPs. Secondly, we

Fig 12. Individual participants’ importance maps for global versus local attention. The importance maps show each participant’s average weights over

the 500–625 ms time bin (the 125-ms time bin showing peak group classification). For each individual, the color scale maximum and minimum are set to the

positive and negative absolute maximum weight value, to be symmetric about 0. The most informative electrodes are reflected in intense blue or red, with

white as least informative.

https://doi.org/10.1371/journal.pone.0176349.g012
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examined whether these pattern-classification methods could identify EEG correlates of the

scope of visual attention (i.e., locally- versus globally-focused attention), that do not a have a

well-defined differentiating ERP correlate.

In Experiment 1, the perceptual state classifiers decoded visual stimulus hemifield, faces

versus Gabors, and upright versus inverted faces. The importance maps from these classifiers

were generally consistent with well-established ERP correlates of spatial perception and face

perception. Presentation of stimuli in the left versus right visual location produced the stron-

gest weights over posterior electrodes (Fig 5), and the classifier was most successful over time

windows that similarly showed divergence in the ERPs (Fig 2, Fig 3 and Fig 4). The EEG corre-

lates that distinguish between the perceptual states of seeing faces versus Gabors or upright

versus inverted faces show complex linear topographies (Fig 4 and Fig 5), but posterior scalp

sites emerge as the most informative in both cases, as is commonplace for visual ERPs (S2 Fig

and S3 Fig). Furthermore, face perception classification results peak over a similar time course

as the differences in the N170 ERP component (Fig 2, Fig 4 and Fig 5). Thus, these results sup-

port the effectiveness of our technique for identifying EEG correlates that predict perceptual

states varying on a trial-by-trial basis. It is interesting to note that for all successful perceptual

pattern classifiers (left versus right locations, faces versus non-face Gabors, or upright versus

inverted faces), classification accuracy—the amount of relevant information present in the lin-

ear topography of EEG signals—peaked in the post-stimulus interval of 125–250 ms. This con-

sistent latency may suggest that, for distinguishing perceptual states, linear topography of EEG

signals might be suitable for revealing neural correlates that include the initial volley of feed-

back signals from higher-level visual areas (e.g., [55–57]).

Our pattern-classification analysis also succeeded in identifying a distributed EEG signature

of the scope of attention. EEG patterns distinguished locally- and globally-focused states of

attention beginning 125–250 ms after stimulus onset, when perceptual classification peaked in

Experiment 1, and were maximally discriminable 500–625 ms post-onset. Thus, using EEG

data, the scope of attention initially becomes predictable over a similar timecourse as percep-

tion, but is most distinguishable hundreds of ms after the stimulus onset. The average response

time was 604 ms, which suggests that the scope of attention appropriate for each trial continues

to develop through the time of making an overt manual response. The identified topography

of linear weights is complex, apparently dominated by four posterior scalp sites, including a

pair of contiguous sites (red, Fig 11) near the midline and a pair of lateral sites (blue, Fig 11)

that make opposing contributions during the 500–625 ms time window. No single contiguous

cluster of electrode sites distinguishes local from global attention across the group, possibly

explaining why prior ERP markers have not converged onto a consistent ERP component that

discriminates between the two attention states. Importantly, unlike ERP results that describe

group- and trial-averaged neural responses, the present approach does allow us to predict the

scope of attention for individual subjects on a trial-by-trial basis.

Classifiers trained to predict an individual’s perceptual and/or attentional state on a single-

trial basis, either without an overt behavioral response (as in Experiment 1) or well before the

response (as in Experiment 2), could be adopted for interventions via HCI (human-computer

interfacing). Here, we established a simple classification analysis routine with minimal EEG

data reduction and processing, and to explore, in Experiment 2, an EEG signal that has stub-

bornly eluded ERP and group-level analysis—the electrophysiological markers differentiating

local and global attention. The latter point, that single-subject, single-trial pattern-classifica-

tion analysis successfully differentiated the scope of attention, is novel and important because

it establishes that classifiers may differentiate EEG signals successfully even where ERP analy-

ses have failed. In future exploratory studies, it may be possible to even further increase
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prediction accuracy with additional data processing (by, e.g., refining temporal windows, aver-

aging signal over those time windows, applying Bayesian statistics as Treder [46] did).

In summary, we have shown that topographic patterns of EEG signals predict perceptual

and attentional states on a trial-by-trial basis. The obtained topographies of linear weights

were relatively straightforward for distinguishing left and right visual presentations (marked

by the lateralized and opposing contributions of posterior electrode sites), for distinguishing

left and right finger responses (marked by the lateralized and opposing contributions of central

electrode sites), and for distinguishing faces and Gabors (marked by the left posterior electrode

sites), but were more complex for distinguishing locally- and globally-focused attention states

and upright versus inverted faces. It is possible that further data processing and/or appropriate

non-linear weighting of electrode sites would reveal EEG correlates that predict perceptual

and attentional states with even greater accuracy (see, e.g., [46, 58]). It is also possible that

non-linear transformations of electrode sites using relatively assumption free methods such as

current-source-density transformation (e.g., [54, 59–60]) or second-order blind-source-sepa-

ration transformation (e.g., [61]), which more accurately reflect the underlying neural genera-

tors of EEG signals, may enable pattern-classification analyses to identify EEG correlates of

perceptual and attentional states with even greater sensitivity. Multivariate approaches applied

to EEG have the exciting potential to reveal the spatial and temporal properties of neural sys-

tems that underlie complex cognitive states that may otherwise be obscured in traditional uni-

variate approaches.

Supporting information

S1 Fig. Grand average ERPs for stimuli presented in the right versus left visual stimulus

location in Experiment 1.

(TIFF)

S2 Fig. Grand average ERPs for face versus Gabor stimuli in Experiment 1.

(TIFF)

S3 Fig. Grand average ERPs for upright versus inverted face stimuli in Experiment 1.

(TIFF)

S4 Fig. Individual classification accuracy for right versus left visual stimulus location in

Experiment 1. Note that participant 1 was a trained observer. Participant 1 and 4 also partici-

pated in Experiment 2.

(TIF)

S5 Fig. Individual classification accuracy for face versus Gabor stimuli in Experiment 1.

Note that participant 1 was a trained observer. Participant 1 and 4 also participated in Experi-

ment 2.

(TIF)

S6 Fig. Individual classification accuracy for upright versus inverted face stimuli in Experi-

ment 1. Note that participant 1 was a trained observer. Participant 1 and 4 so participated in

Experiment 2.

(TIF)

S7 Fig. Grand average ERPs for right versus left response in Experiment 2.

(TIFF)

S8 Fig. Grand average ERPs for global versus local attention in Experiment 2.

(TIFF)
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S9 Fig. Individual classification accuracy for right versus left response in Experiment 2.

Note that participants 1, 2 and 14 were trained observers. Participant 1 and 11 also participated

in Experiment 1 (Participants 1 and 4, respectively, in Experiment 1).

(ZIP)

S10 Fig. Individual classification accuracy for global versus local attention in Experiment

2. Note that participants 1, 2 and 14 were trained observers. Participant 1 and 11 also partici-

pated in Experiment 1 (Participants 1 and 4, respectively, in Experiment 1).

(ZIP)
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