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Visual attention selects task-relevant information from scenes to help achieve behavioral goals. Attention can be deployed within
multiple domains to select specific spatial locations, features, or objects. Recent evidence has shown that voluntary shifts of attention in
multiple domains are consistently associated with transient increases in cortical activity in medial superior parietal lobule, suggesting
that this may be the source of a domain-independent control signal that initiates the reconfiguration of attention. To investigate this
hypothesis, we used fMRI to measure changes in cortical activation while human subjects shifted attention between spatial locations or
between colors at a location. Univariate multiple regression analysis revealed a common, domain-independent transient signal [in
posterior parietal cortex (PPC) and prefrontal cortex] time-locked to shifts of attention in both domains. However, multivariate pattern
classification conducted on the cortical surface revealed that the spatiotemporal pattern of activity within PPC differed reliably for spatial
and feature-based attention shifts. These results suggest that the posterior parietal cortex is a common hub for the control of attention
shifts but contains subpopulations of neurons with domain-specific tuning for cognitive control.

Introduction
Natural scenes contain a multitude of objects competing for per-
ceptual representation in cortex. Cortical neurons tuned for
visual attributes (location, color, object category, etc.) often con-
tain multiple objects within their receptive fields. The competi-
tion for representation among items is resolved by selecting
objects that are behaviorally relevant and filtering out those that are
irrelevant through deliberate acts of selective attention (Desimone
and Duncan, 1995).

A network of prefrontal and parietal cortical regions is
thought to be the source of control signals that resolve the visual
competition through voluntary deployments of attention (Kastner
and Ungerleider, 2000; Corbetta and Shulman, 2002). Sustained
intervals of focused spatial attention evoke sustained cortical ac-
tivity in topographically organized regions of the intraparietal
sulcus (IPS) (Sereno et al., 2001; Bisley and Goldberg, 2003; Silver
et al., 2005; Serences and Yantis, 2007; Saygin and Sereno, 2008)
and prefrontal cortex (PFC) (Sereno et al., 2001; Serences and
Yantis, 2007; Saygin and Sereno, 2008). These regions are
thought to comprise attentional priority maps that specify
the highest priority location(s) in the scene from moment to
moment.

Shifts of attention evoke transient activation in medial supe-
rior parietal lobule (mSPL) that is time-locked to the initiation of

shifts between spatial locations (Vandenberghe et al., 2001; Yantis et
al., 2002; Kelley et al., 2008; Shulman et al., 2009), spatially su-
perimposed objects (Serences et al., 2004), sensory modalities
(Shomstein and Yantis, 2004), and visual features (Liu et al.,
2003). The consistency of this pattern suggests that mSPL may be
the source of a domain-independent control signal that initiates
the reconfiguration of attention.

Other studies, however, have suggested that different domains of
attention may rely on domain-specific cortical sources (Shulman et
al., 2002; Giesbrecht et al., 2003; Slagter et al., 2007). Rushworth
et al. (2001) reported that distinct subregions within posterior
parietal cortex (PPC) were associated with shifts of visual atten-
tion versus shifts of response preparation. Based on a meta-
analysis, Wager et al. (2004) concluded that, although certain
gross regions of the brain are consistently associated with atten-
tion shifts (e.g., PFC, PPC), there remain subregions of cortex
specific to shifting within each possible domain.

Each of the cited studies that provide evidence for a domain-
independent attention shift signal was conducted with different
tasks and different groups of subjects, which limits the generality
of any conclusion concerning the degree to which acts of atten-
tional control are mediated by common mechanisms. To deter-
mine whether shifts of visual attention in different perceptual
domains are associated with a domain-independent reconfigura-
tion signal, we devised a single task that permitted us to directly
compare cortical activation [using blood oxygenation level-
dependent (BOLD) fMRI] associated with attention shifts in two
different domains: spatial location and color. We used conven-
tional univariate statistical procedures to determine whether at-
tention shifts in these two domains evoked activity in the same
cortical regions. Furthermore, we used multivariate pattern clas-
sification (MVPC) (Norman et al., 2006; Esterman et al., 2009)
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within these activated regions to determine whether distinct
spatiotemporal activation patterns were associated with acts of
attentional control in the two domains.

Materials and Methods
Subjects. Eight neurologically healthy adult volunteers (19 – 45 years of
age; mean age, 26; five females) with normal or corrected-to-normal
visual acuity were recruited from the Johns Hopkins University commu-
nity to participate in the experiment. Each participant provided written
informed consent approved by the Johns Hopkins Medicine Institutional
Review Board and passed an MRI safety medical screening approved by
the Kennedy Krieger Institute, F.M. Kirby Research Center for Func-
tional Brain Imaging (where MRI scanning was performed). Subjects
were trained on the task in a separate session before scanning and per-
formed the task during two fMRI sessions of 2 h each.

Stimuli. Stimuli were back-projected (Epson PowerLite 7600p, Epson
America; with custom zoom lens, Navitar) onto a screen (Da-plex sub-
strate with Video Vision optical coating; Da-Lite) mounted to the top of
the magnet bore behind the subject’s head. All visual stimuli described
below were generated and displayed via MATLAB scripts (MathWorks)
created with Psychophysics Toolbox extensions (Brainard, 1997; Pelli,
1997). Subjects viewed the screen (via a mirror mounted to the head coil)
at an optical distance of 68 cm. The subjects responded via a pair of
custom-built, MR-compatible, fiber-optic push button response boxes
(MRA).

The visual display in the experimental task consisted of two circular
apertures (2.6° in diameter) containing coherently moving dot fields
centered 4.5° to the left or right of a white central fixation disk (0.36°
diameter) superimposed on a black background (Fig. 1). Individual dots
subtended 0.09° of visual angle. In each of the two apertures, half of the
dots were rendered in red and the other half in green (30 dots/color),
forming two sets of dot fields in each aperture. At any moment through-
out the experiment, one set of dots in each aperture was moving at a rate
of 3 deg/s and the other set of dots was stationary. Dots moved in one of
eight directions (up, down, left, right, upper-left, upper-right, lower-left,
and lower-right) at 100% coherence and each dot had a limited lifetime
of random duration (mean, �1200 ms) to discourage subjects from
attending to a single dot (or small set of dots) throughout the experiment.
The moving dots changed direction (or stopped moving) exactly once
per second and all changes to stimulus motion occurred simultaneously
in both the left and right apertures. When the moving dot field in one of
the apertures stopped moving, the previously stationary dots of the other
color would begin to move.

Procedure. Subjects were instructed to begin each run of the experi-
ment by attending to the green dot field on the left side of the display.
Subjects monitored the attended dot field for four specified directions of
motion that provided cues to either switch or maintain attention. Up-
ward motion indicated shift location (but hold color) and downward
motion indicated shift color (but hold location). These instructions were

reversed for half of the subjects. Leftward and
rightward motion always indicated that sub-
jects should hold attention on the current dot
field (same color and location). For example, if
the currently attended green dots on the left
side of the display began to drift downward,
subjects were to shift attention to the red dots
on the left. However, if the attended green dots
began to drift upward, subjects were to shift
attention to the green dots on the opposite
(right) side of the display. Subjects were in-
structed to press two buttons (one in each
hand) each time one of the four cues appeared.
The four oblique directions of motion served
as “filler” motion between cues and could be
ignored. In rare instances, subjects would fail
to detect the presence of a cue. In this case,
subjects were instructed to simply maintain at-
tention on the current location/color dot field
until a new cue appeared. The task was de-

signed such that cues cycled back to the same dot field at intervals no
longer than 30 s.

Cues occurred every 3, 6, or 9 s, jittered with respect to the MRI
acquisition time (2000 ms) to allow for better detection of event-related
impulse response functions (Birn et al., 2002). Cues appeared only in the
currently attended dot field; all other motion was in the oblique direc-
tions. This encouraged subjects to adopt a highly concentrated focus of
spatial and feature-based attention in which the three unattended dot
fields were ignored. Subjects completed approximately four practice runs
(8 min each) outside of the scanner before fMRI data collection. In the
scanner, each run began with a fixation-only display (triggered by the
onset of the first image volume acquisition). The dot fields appeared and
began moving 8 s later (triggered by the onset of the fifth image volume
acquisition). The four cue directions were apportioned approximately
equally throughout each run (one-half of all trials for hold, one-quarter
for shift color, and one-quarter for shift location). Each subject per-
formed 10 runs of the experiment.

MRI data acquisition. Imaging data were acquired with a 3T Philips
Gyroscan MRI scanner (Philips Medical Imaging Systems) using an
eight-channel transmit/receive sensitivity-encoding (SENSE) head coil
(Invivo) at the F.M. Kirby Research Center for Functional Brain Imaging
in the Kennedy Krieger Institute, Baltimore, Maryland. Each subject was
scanned in two 2 h sessions on different days. Whole-brain anatomical
image volumes were acquired using a 1 mm isotropic T1-weighted
magnetization-prepared rapid gradient echo pulse sequence [repetition
time (TR) � 8.23 ms; echo time (TE) � 3.9 ms; flip angle � 8°; acquisi-
tion matrix � 256 � 256; 200 slices; SENSE factor � 2]. Whole-brain
functional image volumes (3 mm isotropic resolution) were acquired
using a T2*-weighted echoplanar imaging (EPI) pulse sequence (TR �
2000 ms; TE � 30 ms; flip angle � 70°; acquisition matrix � 64 � 64; 38
transverse slices; SENSE factor � 2). Main experimental runs were ac-
quired with 244 volumes and lasted 8.13 min each. The initial four vol-
umes (8 s) were discarded from each EPI run to allow magnetization to
reach steady-state. One-half of the EPI data were acquired during each of
the two scanning sessions. The anatomical data were collected in the first
scanning session and an additional fast (higher SENSE factor) T1 volume
was acquired on the second day of scanning for intersession alignment.
During all scans, each subject wore foam earplugs to reduce effects of
scanner noise and used a custom dental bite-bar (Stevenson Industries)
that was attached to the head coil to reduce head motion.

fMRI data analysis: general linear model analysis. All fMRI data analyses
were conducted with the AFNI/SUMA software package (Cox, 1996;
Saad et al., 2004), except where noted, along with custom MATLAB
scripts. Before any statistical testing, all EPI runs from individual subjects
were slice-time corrected, realigned to the average EPI image volume
from the run acquired nearest in time to the anatomical dataset, and
converted to percentage signal change values normalized to the mean of
each run. Individual anatomical data from the two scanning sessions
were then coregistered with each session’s functional volumes, aligned

Figure 1. Static examples of moving displays. Each of the two apertures of dot fields measured 2.6° in diameter and was
centered 4.5° to the left and right of fixation. In each aperture, one dot field color was moving in one of eight directions while the
other was stationary. Once per second, the direction of the moving dots changed, or they became stationary (and the stationary
dots began moving). During each run, subjects covertly attended to one location and one color (e.g., green dots on the left side) as
they monitored for cues defined by the direction of motion of the currently attended dot field. Subjects responded by button press
to three different types of cues: shift color cues directed subjects to shift attention from one color value to the other on the currently
attended side of space; shift location cues directed subjects to shift attention from the currently attended location to the same color
dots on the other side of fixation; and hold cues directed subjects to continue attending to the currently attended color and location.
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with each other, and, finally, transformed into Talairach coordinates
(Talairach and Tournoux, 1988). This alignment and transformation
was then applied to all functional volumes across both sessions.

The EPI volumes from each run were then concatenated in time and
mapped to a cortical surface representation using a method similar to
that outlined in Jo et al. (2007). Specifically, EPI time series data were
mapped from voxels to nodes on the smoothed gray/white matter
boundary surface of the Talairached N27 anatomical dataset obtained
from the Montreal Neurological Institute. For each node on the gray/
white boundary surface, a related node was identified on the pial (gray
matter/CSF boundary) surface. For each node pair, a connecting line
segment between the nodes was computed. The voxels through which
this line segment passed were used to compute an average time series that
was then assigned to the given node on the gray/white boundary surface.
Once completed for each node on the two surfaces (both left and right
hemispheres), the data were then spatially smoothed with a heat kernel
(Chung et al., 2005), as implemented in AFNI program SurfSmooth
(Saad, 2005b). Smoothing was performed iteratively such that the final
full-width at half-maximum of the smoothed data was 4 mm. All further
data analyses were performed entirely on these surface-mapped data.

A canonical hemodynamic response function (Cohen, 1997) was con-
volved with a model of the timing of the stimulation epochs during the
experiment, yielding six regressors corresponding to the three types of
cues (shift location, shift color, hold) for the left and right apertures.
Additional regressors accounting for variance due to linear, quadratic,
and cubic drifting as well as constant offset (separately for each run) were
included in the general linear model analysis (GLM) as nuisance regressors.
Together, these were submitted to a multiple regression, GLM (Friston et al.,
1995). The following contrasts between the resulting beta-weights
yielded statistical maps that are described in Results, below: shift left to
right � hold left; shift color on the left side � hold left; shift right to left �
hold right; shift color on the right side � hold right. The intersection
of nodes reaching threshold (after individual subject multiple-
comparisons correction, as detailed below) for these four contrasts
formed a conjunction map that identified regions activated by both kinds
of shift cues. Nodes were classified into three categories: (1) those that
were significantly active for both types of spatial shifts (colored red),
(2) those that were significantly active for both types of color shifts (col-
ored green), and (3) those that were significantly active for at least one
color shift and at least one spatial shift (colored yellow). In a second
GLM, we modeled blocks of time when subjects were attending to the
right aperture and left aperture separately. Using the same method
described above, functional maps yielding regions responsive to the
contralateral maintenance of attention were generated by contrasting
attend-right and attend-left regressors. Finally, in a third GLM, we
modeled blocks of time when subjects were attending to green dot
fields and red dots fields separately. Again, using the same method,
functional maps were generated by contrasting these two regressors.
In each case, we also performed a mixed effects group analysis across
all subjects by submitting individual subject beta-weight estimates for
each condition (fixed effects) to an ANOVA and generating contrasts
across the individuals (random effect).

All statistical maps were corrected for multiple comparisons on the
surface by using a novel permutation method we developed to arrive at
appropriate cluster correction values in the application of Gausian ran-
dom field theory (Nichols and Hayasaka, 2003). Although more complex
and computationally demanding than standard methods, this procedure
was necessary because no tools currently exist for conducting Monte
Carlo simulations on surfaces. For eight (of 16) hemispheres (four left
and four right), 500 alternative versions of the two color shift regressors
were generated by randomly shuffling the labels that marked the onset of
the events. Each shuffled pair was then submitted to a GLM (identical to
the one described above, save these two regressors) and a contrast be-
tween the beta-weights associated with the two shuffled regressors was
generated. For each of these 500 contrasts, we measured the surface area
of the largest cluster obtained (rounded to the nearest integer value) at
several nominal p values. The 500 cluster size values were then rank-
ordered from 0 to the largest area measured to construct a table of alpha
probabilities from which a cluster correction value could be obtained for

a desired corrected p value. These cluster thresholds were then averaged
across the eight hemispheres to provide a set of cluster correction values
for the group maps. Clustering was then performed for each functional
map on the surface via AFNI program SurfClust (Saad, 2005a).

Each of the functional maps described above served as the basis for a
set of regions of interest (ROIs) from which time courses were extracted
and displayed. For each statistical map, all contiguous values within a
given brain region that were above threshold were used to examine
event-related averages. Select time courses are presented as illustrations
of the underlying neural changes corresponding to the regions surviving
threshold in the various statistical maps. Because these time series data
were normalized in preprocessing (see above), the event-related time
courses are in units of percentage signal change.

fMRI data analysis: multivariate pattern classification. To examine the
patterns of activity within certain ROIs that resulted from the GLM
analyses described above, we conducted a multivariate pattern classifica-
tion analysis on individual subject surfaces (exactly analogous to mul-
tivoxel pattern classification, but performed on data mapped to surface
nodes) (Norman et al., 2006; Esterman et al., 2009). For each ROI to be
tested, we selected features (surface nodes to be included in the classifi-
cation) by using a “leave-one-run-out” (LORO) approach to maximize
the use of our data while ensuring that the measures were derived inde-
pendently. Specifically, for each subject we ran 10 GLM analyses with the
six regressors of interest (as described above). For each GLM, one of the
10 runs was left out of the analysis such that, in each case, functional maps
of the conjunction described above were generated from nine runs of
data. Each functional map was then used to create a set of frontoparietal
ROIs that defined the features (nodes) from which time courses were
extracted. For each of the 20 maps (10 per hemisphere), time courses
were extracted from all 10 runs. However, data from the nine runs used to
generate each map were labeled as training data whereas data from the
run left out were sequestered as testing data. This ensured that the ROI
selection was independent of the test data. Following this feature selec-
tion process, we extracted 15 time points (from �2 to �12 s, at a reso-
lution of 1 s) around the time that each cue to shift attention was
presented. This procedure was conducted for both hemispheres for each
of our eight subjects. When completed, we had 10 sets (one for each
LORO GLM) of nine training runs and an associated testing run for
each hemisphere per subject. The training data were submitted to a sup-
port vector machine (SVM) learning algorithm (Vapnik, 1995) that was
implemented in MATLAB (LIBSVM) (Chang and Lin, 2001). It is im-
portant to note that we preserved the temporal information from each
trial. The SVM was trained on the matrix of nodes, time point-by-time
point; thus, our testing results provide information about how effective
the classification of shift type (color or location) was over time.

We used a linear SVM and performed a grid search to find the optimal
values of cost (C). The results generalized to a wide range of C values. The
classifier evaluated the data for each hemisphere a total of 10 times, once
for each set of data independently generated by the LORO GLM proce-
dure described above. In each SVM run, the classifier was trained on the
nine training runs and tested on the single run-left-out for that GLM. In
each instance, once the classifier training was completed, the SVM was
tested on our testing data and we recorded the classifier’s accuracy in
determining whether each time point was from a shift color trial or a shift
location trial. Classifier accuracy across all 10 testing runs was pooled to
create a classification rate across the entire experiment while maintaining
independence between training and test data. We also ran a permutation
test in which the testing labels were shuffled 1000 times to determine the
95% confidence interval around classifier chance performance. This en-
tire process was repeated for each region (in each of 16 hemispheres) that
was significantly active (after cluster correction) in our conjunction anal-
ysis of shift color and shift location cues (greater than hold cues) on at
least seven of the 10 LORO GLMs per hemisphere. Finally, the event-
related classification time courses were averaged within lobe (frontal or
parietal) and hemisphere and t tests were used to assess significance of
our group classification results for each time point. Because two of our
subjects (four hemispheres) did not yield at least one frontal and one
parietal ROI in the LORO analysis, these two individuals were excluded
from the group data (leaving 12 hemispheres tested).
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To our knowledge, this is the first report of event-related multivariate
pattern classification conducted entirely on the surface. We believe this
approach provides marked advantages over classification in the volume
with respect to spatial smoothing (superior preservation of signal-to-
noise ratio and localization of activation) and statistical power (Jo et al.,
2007; Anticevic et al., 2008). It has become commonplace in fMRI data
analysis to apply a spatial Gaussian smoothing kernel to acquired data to
increase the inherently low signal-to-noise ratio of BOLD fMRI data,
increase activation detectability via the matched filter theorem, and sat-
isfy the requirement of Gaussian random field theory (for multiple-
comparisons corrections) that smoothness of the data are large
compared with the sampling resolution. However, when performed in a
standard three-dimensional (3D) volume, spatial smoothing can cause
nearby (in Euclidean distance) voxels to contribute to voxels that are
actually quite far (in Geodesic distance); this comes about because of the
highly folded structure of cortex.

This issue can be ameliorated if smoothing is applied to a surface
representation of cortex to which the volume data are mapped. Mapping
data from volume to surface (as implemented in this study) is a form of
smoothing, though if done carefully, one is simply smoothing in the
direction normal to the surface (not across gyri/sulci). Furthermore,
once data are mapped to the surface and analyzed to produce areas of
activation, defining ROIs is much simpler and more properly restricted
to gray matter compared with defining 3D ROIs in the volume. Finally,
the requirements of spatial smoothing noted above may seem to be at
odds with the approach taken in this study; that is, the use of multivariate
pattern classification to exploit underlying biases in the neuronal popu-
lations underlying specific data samples. However, it has recently been
demonstrated (Op de Beeck, 2010) and further noted (Kamitani and
Sawahata, 2010; Kriegeskorte et al., 2010) that spatial smoothing does not
necessarily degrade the information leveraged during multivariate pat-
tern classification procedures.

We performed two additional analyses to address two methodological
issues. First, the surface-based SVM method we used could yield a differ-
ent outcome than conventional volume-based SVM because the map-
ping of volume data to surface nodes might have artificially increased
statistical power for univariate analyses by pooling information across
neighboring voxels while not necessarily preserving the spatial patterns
for pattern classification. To quantify the difference between pattern
classification of volume-based versus surface-based data, we performed
an SVM analysis in the volume for the surface ROIs discussed above. We
first projected the independently defined (via LORO procedure) surface-
based ROIs into the volume using the reverse of the mapping procedure
explained above, and then performed the SVM on the volume data. This
provides a direct comparison between ROIs on the surface and in the
volume. The results are shown in supplemental Figure S1 (available at
www.jneurosci.org as supplemental material), created to parallel Figure
5. Comparing these figures shows that the volume-based pattern classi-
fication performed similarly to the surface-based classification. Specifi-
cally, the pattern shows group mean classification above chance in
parietal ROIs between 6 –10 s and 7–12 s postcue for left and right,
respectively. The frontal ROIs exhibited chance performance throughout
the time course. As expected, the quantitative values have changed be-
tween the surface-based and volume-based analysis, however the quali-
tative results are the same. These results provide evidence that the
surface-based classification performance was not artificially inflated by
the mapping method we used and provide additional confidence that the
activation pattern differences detected by SVM on the surface reflect a
true underlying multivariate signal present in the data.

Second, it is possible that mean differences between conditions within
an ROI (that may not be differentiable via GLM contrast) might provide
a basis for above-chance classification accuracy. We therefore performed
a mean-centering procedure, modeled after the work of Kamitani and
Tong (2005) and Esterman et al. (2009), on the same set of volume-based
ROIs used in generating supplemental Figure S1 (available at www.
jneurosci.org as supplemental material). For each of these ROIs, we per-
formed the SVM classification after subtracting condition-mean activity
within the ROI from each feature (voxel) for that condition. The results
for each individual subject and the group mean are shown in supplemen-

tal Figure S2 (available at www.jneurosci.org as supplemental material)
and provide an important check of our data and analyses: comparing the
classification rate time courses in supplemental Figure S2 (classification
rate after mean-centering) with the plots in supplemental Figure S1 (raw
classification rate) yields only minor quantitative differences in classifi-
cation in each of the four sets of averaged ROIs. Specifically, as in sup-
plemental Figure S1, classification was reliably above chance in the
parietal ROIs during a similar (or slightly expanded, for left parietal)
range of time points to that of supplemental Figure S1 when data were
not mean-centered. Furthermore, both left and right frontal ROIs
yielded chance classification performance throughout the time course.
These findings suggest that mean differences were not responsible for
classification results and provide additional evidence that specifically
tuned subpopulations of neurons may be differentially active between
the two attention shifts.

Because group data can sometimes conceal irregular patterns in indi-
vidual subjects, in supplemental Figure S3 (available at www.jneurosci.
org as supplemental material), we plot comparisons both with and
without mean-centering in two ROIs [frontal eye fields (FEF) and mSPL]
from each of the two hemispheres of one representative subject using
ROIs in both surface nodes and volumetric voxels. These detailed results
show a remarkable consistency before and after mean-centering, again
suggesting (as in supplemental Fig. S2, available at www.jneurosci.org as
supplemental material) that mean differences within each ROI for each
attention shift condition played little role in driving classification perfor-
mance in either frontal ROIs (where classification was near chance) or
parietal ROIs (where classification was consistently above chance several
seconds postshift cue). In addition, comparing across coordinate systems
(volume- vs surface-based ROIs) also yielded a high degree of similarity
in classification rate time course, further validating our approach to pat-
tern classification on the surface.

To directly test whether mean differences within each ROI provided
any information to the SVM about attention shift condition, we also
performed a direct SVM classification on the mean time course per con-
dition in each surface-based ROI. As in previous analyses, we used the
LORO procedure to sequester training trials from test trials. For each
subject, the mean of all voxels in each ROI used in the surface-based
analyses discussed above was calculated separately for shift location and
shift color trials and submitted to the linear classifier. The results for each
individual subject and the group mean are shown in supplemental Figure
S4 (available at www.jneurosci.org as supplemental material). The clas-
sification rate did not exceed chance at any time from just before to long
after cue onset. This indicates that the mean time course in each ROI
provided no information to the classifier about the type of attention shift
performed. Note that the classification accuracy is near chance (50%) at
all time points for the group mean; however, individual subject classifi-
cation is centered at values slightly away from theoretical chance. This is
due to the slight imbalance between trial types for individuals leading to
chance performance that is not exactly 50%. Nevertheless, each individ-
ual has near flat classification performance in each ROI throughout all
time points. Independent, one-sample t tests for the group confirmed
that no time points in any of the ROIs were significantly different from
chance performance (all t values �� 1). Together, the results of these
control analyses (mean-centering and ROI mean classification) show
that MVPC does not rely on differences in mean activity across condi-
tions for successful classification.

Finally, we also performed a full-brain searchlight pattern classifica-
tion analysis (Kriegeskorte et al., 2007) in the Talairach-transformed
volume for each of our subjects included in previous SVM analyses. We
used a cubic searchlight of 27 voxels centered on each voxel in the brain,
in succession. To simplify the computation, we performed the classifica-
tion on a single value: the mean of 6, 7, and 8 s after each attention shift
cue. As in previous analyses throughout the paper, the classifier was asked
to discriminate between shift color and shift location trials, using the
LORO procedure to sequester training versus test trials. This yielded a
value for classification accuracy at each voxel in each subject of our
group. We then compiled the group data by performing an independent,
one-sample t test versus chance performance, which yielded a group
functional map of significant classifier performance (corrected for mul-
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tiple comparisons using Gaussian random field theory cluster correction
to yield a corrected p � 0.05). Representative slices from this map are
shown in supplemental Figure S5 (available at www.jneurosci.org as sup-
plemental material), and supplemental Table S1 (available at www.
jneurosci.org as supplemental material) lists the locations of voxel
clusters in which the classifier performed significantly above chance. We
note the similarity between this result and the result of our full-brain
univariate conjunction analysis. Specifically, the only regions in the
searchlight map that do not appear in our group univariate map are right
insula and right extrastriate cortex; both of which appear in a subset of
our individual subject conjunction maps. With respect to our primary
hypothesis, the results of our searchlight analysis complement our find-
ing that portions of posterior parietal cortex (particularly mSPL) are
domain-specific in nature. In addition, the left FEF, left middle frontal
gyrus (MFG)/inferior frontal gyrus (IFG), and bilateral supplementary
eye fields (SEF) also showed smaller clusters of voxels with significant
above-chance classification accuracy. This suggests that some por-
tions of the frontal ROIs we submitted to ROI-based MVPC may
contain reliable spatiotemporal information about the domain of at-
tention shift performed.

Eye position monitoring. Subjects were instructed to attend covertly to
the left and right dot apertures while continuously maintaining fixation
at the central fixation cross. To ensure continuous fixation, we moni-
tored the right eye position of a subset (n � 3) of the participants while
they performed the main experimental task in the scanner using a
custom-made MR-compatible video camera system (MRA). Camera
output was recorded by a computer in the scanner control room using
ViewPoint eye-tracking software (Arrington Research) and analyzed
later with custom MATLAB scripts. Our analysis showed that subjects
held fixation throughout the experiment on �95% of cue trials (defined
by �1° of horizontal eye movement in the 500 ms following each cue).
These data, together with the highly consistent contralateral attentional
modulations observed in extrastriate cortex, show that subjects success-
fully used covert attention to complete this task, as instructed.

Results
Behavioral results
Subjects were asked to press buttons held in both hands each time
they saw one of the four cues (shifts and holds); speed was not
stressed. In the imaging analyses, we excluded data from trials in
which cues were not detected. Subjects’ behavioral data are
shown in Table 1; mean (�SEM) overall detection accuracy was
0.84 � 0.06. There was no significant difference in detection
accuracy for shift cues versus hold cues (paired t(7) � 0.78; p �
0.46). A two-way repeated-measures ANOVA was conducted
with cue location (left and right) and shift domain (color and
location) included as within-subject factors. This yielded no sig-
nificant main effect of either cue location (F(1,7) � 2.14; p � 0.19)
or domain (F(1,7) � 0.62; p � 0.46). The interaction was also not
significant (F(1,7) � 0.07; p � 0.80).

Effects of sustained attention
The expected contralateral visual field effects of sustained spatial
attention are shown in Figure 2 for our group of eight subjects.
This map is the result of a contrast between epochs of time during
which the subject was attending to the left aperture versus the
right aperture. As detailed in Table 2, cortical activity was greater
contralateral to the attended visual field in the occipital and pos-
terior temporal lobes, including extrastriate visual cortex and the

ventral visual processing stream. This pattern was evident in all
subjects. The event-related BOLD time courses in Figure 2, B–E,
demonstrate the effects of attention in extrastriate cortex. These
regions were selected on the criteria that attended left periods

Table 1. Mean accuracy of cue detection

Shift color
on left

Shift color
on right

Shift location
from left

Shift location
from right Hold

Mean percentage
correct (SEM)

83.6 (5.6) 84.7 (6.2) 84.4 (5.8) 85.9 (5.2) 84.0 (6.4)

Figure 2. Effects of attention in extrastriate visual cortex: group data. A, Functional map showing
mixed effects group analysis resulting from a contrast between epochs of attention to the left stimulus
apertureversusattentiontotherightaperture.B–E,Event-relatedaveragetimecourseplotsof left(B,
C) and right (D, E) extrastriate cortex. Time courses locked to the onset of the shift/hold cue are the
average percentage change (across trials) relative to mean BOLD signal in each run. In each plot,
activation contralateral to hold cues is sustained at a high level and activation ipsilateral to hold cues is
sustained at a low level. Activation contralateral to location shift cues begins high and ends low as the
subject shifts attention from the contralateral, preferred visual field to the ipsilateral, nonpreferred
visual field, and vice versa for activity ipsilateral to location shift cues. Color shift cues evoked small
transient increases (above sustained hold cue levels) both ipsilateral and contralateral to extrastriate
cortex regions. Time courses are generated from a nonindependent analysis and are therefore merely
illustrative. Shaded error regions represent �1 SEM across subjects.
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evoked greater activity than attended right, and vice versa; there-
fore, the time courses for hold-left and hold-right must necessar-
ily be different (tonically low and high levels of activity for
ipsilateral and contralateral cues, respectively, persist throughout
the entire period shown, beginning before cue onset and continu-
ing through the cued period and beyond). This reflects the sus-
tained state of spatial attention to a single location before, during,
and after the hold cues. Furthermore, signals evoked by shift
location cues exhibited the previously documented crossover
pattern in which extrastriate cortical activity is modulated via
shifts to and from the preferred visual hemifield (Yantis et al.,
2002; Kelley et al., 2008). Shift-to-contralateral cues in Figure 2, B
and D, evoked signals that began at the low level of the hold-
ipsilateral activity and rose to the high level of the hold-
contralateral activity. In contrast, shift-to-ipsilateral signals
began at the high level of the hold-contralateral activity and
fell to the low hold-ipsilateral level.

Unlike the effects of attending to spatial locations, we are
aware of no reports that attention to one of two spatially superim-
posed colors modulates cortical activity measured with fMRI. Ac-
cordingly, contrasts between epochs of attention to red and attention
to green yielded no statistically significant activations. Shift-color
cues evoked a small, transient increase in extrastriate cortical activity
relative to the more sustained activity evoked by hold cues when
attention was directed to either the contralateral or ipsilateral visual
fields (Fig. 2C,E), possibly due to arousal from target detection.

A subset of attentional control regions (listed in Table 2) in the
parietal lobe also exhibited sustained increases in activation dur-
ing epochs of spatial attention maintenance. Figure 2A shows
significant sustained activity in the superior and inferior parietal
lobules (SPL/IPL). Individual subjects also exhibited activity in
precentral gyrus (probably the FEF) (Paus, 1996) and paracentral

gyrus on the medial wall (probably the SEF) (Grosbras et al.,
1999). As in the occipitotemporal regions, these loci were active
during epochs of sustained attention to the contralateral visual
hemifield (data not shown).

Attention-shift related activity
To test for a domain-independent control network, we generated
a statistical parametric conjunction map of location shift and
color shift activity. As outlined in the methods section, the fol-
lowing four contrasts were examined: shift left-to-right � hold

left, shift right-to-left � hold right, shift
color on left � hold left, and shift color on
right � hold right. Figure 3 shows the re-
sulting group functional map. Nodes that
were significantly active for both types of
shift-location cues versus hold cues are
colored red and nodes that were signifi-
cantly active for both shift-color cues ver-
sus hold cues are colored green. The
yellow nodes represent the conjunction,
the voxels significantly activated by shift-
color and shift-location cues versus hold
cues. This common shift activation (Table
3) was present in bilateral medial SPL/pre-
cuneus, left ventral PPC, left middle/infe-
rior frontal gyri, and portions of bilateral
medial/superior frontal gyri.

To better illustrate the domain-
independent role of these regions, we gen-
erated group-averaged event-related time
courses from ROIs defined by the LORO

statistical maps produced as part of the multivariate pattern clas-
sification analysis described below. Figure 4A shows example
ROIs in left and right medial SPL/precuneus, left and right me-
dial/superior frontal gyri, and left middle/inferior frontal gyri.
These ROIs delineated the general regions over which time
courses were averaged in Figure 4, B–F (the specific nodes for
each ROI varied slightly for each LORO GLM). In each plot, the
response to hold cues remained low throughout the trial, how-
ever, the response to both the shift-color and shift-location cues
were elevated and reached nearly identical levels of activation.
Because these time courses were extracted from an analysis (our
LORO procedure) that was independent of the GLM used to
generate the group functional maps in Figure 3, the time courses
need not exhibit such a pattern.

These results, which corroborate previous findings, suggest
that mSPL, FEF/SEF, and MFG/IFG comprise a network of re-
gions that exhibit transient increases in activity that is time-
locked to shifts of attention between locations and between
colors. One interpretation of this outcome is that these regions
perform a truly domain-independent function, perhaps provid-
ing a generic go-signal to initiate a shift of attention that is spec-
ified by domain-specific cortical activity elsewhere in the brain.

An alternative possibility is that there exists distinct but spa-
tially intermixed populations of neurons that are recruited selec-
tively for shifts of attention between locations and colors. A
conventional univariate GLM analysis (as outlined above) cannot
discriminate between these possibilities. We therefore used a
multivariate approach to further investigate this possibility.

Multivariate pattern classification
We trained a linear SVM, using a subset of our data (see Materials
and Methods for details), to classify patterns of activity associated

Figure 3. Sources of attentional control in frontoparietal cortex: group data. This functional map is the result of a conjunction of
four specific contrasts (see text for full description) that depict common regions (colored yellow) activated by both color shifts and
location shifts relative to hold cues. Regions specific to color shift activity are shown in green and regions specific to location shift
activity are in red. L, Left; R, right.

Table 2. Centroid of brain regions active during sustained spatial attention

Region Hemisphere

Talairach coords of
central node (mm)

Area
(mm 2)

Number of
surface nodesx y z

Middle occipital gyrus L �33 �74 9 1297 2975
R 26 �79 17 1263 2852

Lateral SPL/IPL L �27 �55 53 580 1285
R 24 �59 45 309 651

Lingual/fusiform gyri L �19 �69 �7 1202 2632

L, Left; R, right.
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with shifts of attention between locations and colors in frontopa-
rietal cortical ROIs. We then tested this classifier on a limited
portion of independent data (using a leave-one-run-out cross-
validation approach) to determine whether classification was re-
liable. We executed the training and testing on each individual
time point during each trial (yielding an event-related classifica-
tion rate) so that we could observe the temporal profile of the
classifier performance.

Figure 5 shows the event-related classification time courses.
Panels show the mean classification performance at each time

point relative to the onset of a switch cue (thick black line) and
the individual subject classification time courses (thin colored
lines) for frontal and parietal ROIs. Classifier performance did
not exceed chance for the frontal ROIs but successfully classified
the test data significantly better than chance in the parietal re-
gions (indicated by the gray shaded portion of the plots; p �
0.01). This pattern was consistent across subjects, as can be seen
in the individual classification time courses [this was also true for
a parallel analysis performed in the volume and was partially
confirmed in a whole-brain searchlight MVPC analysis (supple-
mental Fig. S1 and S5, available at www.jneurosci.org as supple-
mental material)]. Classification accuracy in the parietal ROIs
was significantly greater than chance at time points 4 through 8 s
(left parietal) and 3 through 8 s (right parietal) after shift cue
onset. Notably, the classifier did not perform above chance in the
parietal ROIs early or late in the time course; the peak classifier
performance occured at approximately the same time as the peak
event-related BOLD activity evoked by shift cues (Fig. 4, cf. event-
related average plots). However, the shape of the event-related
classification rate is markedly different from that of the event-
related averages; whereas the event-related averages are fairly
symmetrical, the event-related classification rates have a quick
rise-time and gradually fall back to chance performance by �9 s
postcue. We also note that the profile of event-related classifica-
tion time courses, as performed in the volume (supplemental Fig.
S1, available at www.jneurosci.org as supplemental material), is
markedly different from those resulting from surface-based clas-
sification. Specifically, the volume-based classification rates are
less transient than those of the surface-based classification (com-
pare Fig. 4 and supplemental Fig. S1, available at www.jneurosci.
org as supplemental material).

Table 3. Centroid of brain regions active during transient shifts of attention
between colors and locations (conjunction)

Region Hemisphere

Talairach coords of
central node (mm)

Area
(mm 2)

Number of
surface nodesx y z

Precuneus/mSPL L �19 �16 45 2843 6453
R 12 �60 51 2307 5086

Medial frontal gyrus L �17 3 55 75 169
R 25 �8 52 640 1556

Middle frontal gyrus L �39 22 31 817 1801
Middle occipital gyrus L �33 �78 18 937 2153

L, Left; R, right.

Figure 4. Transient cue-evoked activity in attentional control regions. A, Frontal and parietal
regions selected from the conjunction maps in the individual subject leave-one-run-out GLM
procedure (see text for details) were used to extract time courses locked to the onset of the three
cue types: shift-location, shift-color, and hold. B–F, Mean event-related averages of all trials
across subjects. In each region that reached significance in the conjunction, the activation for
both types of shift cues is significantly larger than that of hold cues. The two types of shift cues
evoked similar activation profiles throughout the frontoparietal attention network. Shaded
error regions represent �1 SEM across subjects. L, Left; R, right.

Figure 5. Pattern classification results from our group of subjects. A leave-one-run-out pro-
cedure (see text for details) was used to generate ROIs (independent of the extracted data) that
were, in turn, used to define the features (surface nodes) that were submitted to the SVM
classifier. A–D, Event-related classification accuracy (time 0 marks cue onset) for the group
(thick black line) and each individual (thin colored lines). The linear classifier performed at
chance levels (dotted line) on shift cue discrimination at all time points tested in frontal regions
(A, B). However, the classifier reached accuracy levels significantly ( p � 0.01) above chance for
several time points (indicated by gray shading) in the parietal ROIs (C, D).
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Discussion
We used fMRI to measure the time course of cortical activity
following shifts of visual attention within two domains: location
and color. Both the sensory stimulus and the motor response
demands were constant throughout the experiment. This allowed
for a direct comparison of shift-related cortical activity in the two
domains. Visual sensory regions in extrastriate cortex reflected
attentional modulations consistent with sustained deployments
of spatial attention. For spatial attention shifts, the observed
crossover pattern of neural activity replicates previous reports
(Motter, 1994; Yantis et al., 2002; Kelley et al., 2008). For atten-
tional shifts between colors, we observed low-amplitude, tran-
sient modulations of contralateral extrastriate cortex (relative to
hold cue-evoked activity) similar to those seen in frontoparietal
attentional control regions (compare Fig. 2C,E with Fig. 4B–F).
This echoes a finding reported by Serences et al. (2004) in which
a similar modulation of extrastriate cortex followed shifts of object-
based attention. Those authors suggested that task-specific segmen-
tation processes (in their case, segmenting two objects; in our case,
segmenting two colors) may briefly accompany the attention shift
signal and cause heightened activity in sensory areas. We postulate
that this modulation is not the same reflection of top-down control
seen in frontoparietal regions, but instead the result of low-level
perceptual processing.

As noted in the Introduction, several previous studies have
reported that a region in the mSPL exhibits transient activation
following a cue to shift attention. Here, we examined the neural
correlates of attentional shifts between values within two differ-
ent perceptual domains in the same experiment to test the hy-
pothesis that dorsal regions of PPC and prefrontal cortex produce
a domain-independent signal that serves to reconfigure the cur-
rent state of attentional selection. A conjunction analysis of spa-
tial and color shift activity yielded significant activation of
bilateral mSPL as well as bilateral FEF/SEF and left MFG. In each
of these regions, mean event-related BOLD time courses for both
color and spatial shifts of attention exhibited a transient increase
in activity with a peak at �4 –5 s after cue onset. Importantly, the
activity for both types of shifts was nearly identical and did not
vary for the two values tested in each domain.

A group analysis of sustained spatial attention revealed a re-
gion of activation from ventrotemporal through extrastriate vi-
sual cortex along with an area of PPC during periods in which
subjects maintained attention to the contralateral hemifield.
These parietal regions of activation partially overlapped with the
domain-independent shift-related activity shown in the conjunction
analysis. However, the significant sustained attention activity spread
more laterally into the IPL, whereas common shift-related activ-
ity was localized more medially in precuneus/SPL. This result
is consistent with the recent finding of differential contribu-
tions of SPL and IPS following changes of attentional priority
(Molenberghs et al., 2007). Both that study and the current
one report evidence of mSPL involvement in shifts of spatial
attention while IPS/IPL subserves endogenous maintenance of
attention. However, Molenberghs et al. (2007) argue that SPL
is more closely involved in spatial, not feature-based, shifts of
attention. They suggest that previous studies reporting non-
spatial attention shift signatures in SPL (Liu et al., 2003; Ser-
ences et al., 2004; Shomstein and Yantis, 2006) used tasks that
may have allowed subjects to use a spatial strategy. In the
current study, however, such a spatial strategy (e.g., tracking
an individual dot as it moved, and shifting spatial attention
from the currently attended dot to a dot in the to-be-attended

color) would give rise to transient signals throughout the en-
tire experiment (not solely at the moment of a color shift).
Because individual dot lifetime was limited, such a strategy
would require frequent shifts from a dot in the attended color
to another dot in the attended color when the currently
tracked dot disappeared. This would have evoked multiple
instances of spatial attention shifts (and corresponding tran-
sient control signals) during sustained periods of attention.
Our data do not support this possibility. Thus, our results
suggest that mSPL plays a role in both spatial and nonspatial
shifts of attention.

Multivariate pattern classification analysis of our data revealed
that in parietal ROIs, which exhibited nearly identical mean BOLD
time courses for color and location shifts, domain-specific informa-
tion is expressed in the spatiotemporal patterns of nodewise activa-
tion within mSPL. Furthermore, mean-centering procedures had
little effect on classification accuracy and mean time course classifi-
cation yielded chance classifier performance (supplemental Figs.,
available at www.jneurosci.org as supplemental material), lending
further support to separability of function at the sub-ROI level.
Our findings suggest that PPC contains distinct subpopula-
tions of neurons distributed throughout this region, each with
domain-specific tuning functions for cognitive control. This
finding also provides evidence against the hypothesis sug-
gested by Molenberghs et al. (2007) that shifts of attention
between features are instances of spatial attention shifts.

Recent evidence for interleaved subpopulations of neurons
tuned for different domains of control was recently reported by
Schenkluhn and colleagues (2008). They applied transcranial
magnetic stimulation (TMS) to PPC while subjects performed a
visual search task. In this paradigm, subjects were cued to either
the color or location of a target item in a subsequent visual search
array. They applied TMS after the cue and observed impairment
in both color and spatial trials when TMS was applied to anterior
IPS (stimulation of a more lateral site in PPC disrupted only
spatial cue trials). The disruption of preparatory shifts of atten-
tion to a specific color and a specific location is consistent with
our finding that spatially distributed and intermixed populations
of neurons exhibit differential tuning to these two domains of
attentional control.

Recent studies have implicated the PPC in not only shifts of
attention within perceptual domains, but also nonperceptual
shifting of categorization rules held in memory (Chiu and Yantis,
2009). Multivoxel pattern classification revealed distinct spatio-
temporal patterns of activity within PPC for spatial shifts of at-
tention versus rule shifts (Esterman et al., 2009). Esterman and
colleagues (2009) suggested that the patterns of activity in mSPL
associated with spatial attention shifts and rule switches could be
accounted for by postulating dimensions of perceptual versus
nonperceptual or spatial versus nonspatial acts of cognitive con-
trol. The current study demonstrates that spatial shifts of atten-
tion elicit distinct patterns of activity from (nonspatial) color
shifts, both shifts of perceptual selection. Additional studies that
explore two different nonspatial domains of cognitive control
will further clarify the organizational structure of mSPL.

The current study did not examine shifts between distinct
perceptual domains. Shifts of spatial attention were always be-
tween dot fields of the same color, and color shifts were always
between dot fields at the same spatial location. Two previous
studies, however, have shown that cross-domain shifts of atten-
tion between color and motion (Liu et al., 2003) and between
vision and audition (Shomstein and Yantis, 2004) also evoke
transient increases in mSPL. Based on the current findings, we
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would predict that pattern classification of those data would re-
veal distinct spatiotemporal patterns of activity for shifts in one
direction versus the other.

The notion that there exists a generalized frontoparietal atten-
tion control network that works together with specialized subre-
gions of this network to execute a shift of attention has been
raised previously (Shulman et al., 2002; Slagter et al., 2007). The
present data support both this global hypothesis as well as speci-
fications that propose separate roles for the frontal and parietal
portions of this network. Shulman and colleagues (2002), for
example, suggest that preparatory signals for specifying task-relevant
information emanate from frontal portions of this network; the sig-
nals are then propagated to posterior parietal attention regions that
reflect both preparatory and task-execution processes. They ob-
served that preparatory signals (frontal and parietal) were domain-
independent whereas task execution signals (parietal only)
contained both domain-independent and task-specific com-
ponents. The current data are in accord with these findings in
that pattern classification was successful in distinguishing be-
tween the two shift conditions in PPC but not in the frontal
ROIs, suggesting domain-generality in the frontal regions and
domain-specificity in parietal regions.

Furthermore, Slagter et al. (2007) suggest that subregions of
this frontoparietal network are specialized for either content in-
formation (e.g., a specific location in space) or type of process
(e.g., a shift of attention). The present data echo this idea, sug-
gesting that domain-independent frontal regions reflect process
type whereas parietal regions may reflect content information.
However, we include the caveat that portions of several frontal
regions we submitted to ROI-based MVPC may contain reliable
spatiotemporal information about the domain of attention shift
performed, as evidenced by our searchlight pattern classifica-
tion results (see Material and Methods for discussion and supple-
mental figures, available at www.jneurosci.org as supplemental
material).

The present results contribute to a growing body of evidence
that medial SPL serves as a cortical hub for the initiation of atten-
tion and task shifts in multiple domains. Distinct spatiotemporal
patterns of neural activity are associated with acts of cognitive
control in different domains. These patterns of activity may par-
ticipate in the specification of the new state of attention and/or
the disengagement from the current state of attention— or both.
A remaining challenge is to discover the mechanism by which
these attentional specifications target domain-specific activity in
sensory cortex.
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