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Concerns regarding certain fMRI data analysis practices have recently evoked lively debate. The principal
concern regards the issue of non-independence, in which an initial statistical test is followed by further non-
independent statistical tests. In this report, we propose a simple, practical solution to reduce bias in
secondary tests due to non-independence using a leave-one-subject-out (LOSO) approach. We provide
examples of this method, show how it reduces effect size inflation, and suggest that it can serve as a
functional localizer when within-subject methods are impractical.

© 2009 Elsevier Inc. All rights reserved.
Two recent commentaries have suggested that certain widely used
functional MRI data analysis practices may have led to exaggerated or
even baseless claims (Vul et al., 2009; Vul and Kanwisher, in press).
The principal concern regards the issue of statistical non-indepen-
dence, inwhichdata selected on the basis of an initial statistical test are
subjected to one ormore further (non-independent) statistical test(s).
One claimed consequence is that reported effect sizes1 can be
misleadingly inflated, perhaps to “impossibly high” levels. While Vul
et al. (2009) dealt specificallywith individual-differences correlations,
Vul and Kanwisher (in press) and Nichols and Poline (2009) make
clear that these issues apply equally to other measures of effect size,
which often depend upon beta weights from a general linear model
(GLM) used in many fMRI analyses. Responses to Vul et al. (2009)
range from the assertion that inmost cases, a second non-independent
statistical test was not actually performed but that an effect size was
reported from brain regions identified by the initial statistical analysis
(e.g. Lieberman et al., 2009), to the assertion that the non-
independence error leads to so much confusion that a multistep
framework should be reconsidered entirely and perhaps discarded
(Lindquist and Gelman, 2009). Another recent article (Kriegeskorte et
al., 2009) addressed the problem of non-independence in a broader
range of neuroimaging analyses and suggested a step-by-step
procedure for assessing and avoiding these kinds of errors.

In this report, we propose a simple and practical solution to the
problem of non-independence that addresses the potential inflation
of effect size and reduces the degree to which any secondary statistics
are dependent on the initial statistical test. Our approach pertains to
situations in which (1) group brain imaging data reveal one or more
regions of interest associated with an experimental manipulation or a
ail.com(M. Esterman).
Vul and colleagues (2009, in
.g., η2). Instead, they are the
eta weight) and thus are not
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correlation with behavior, questionnaire data, or genotype, and (2)
subsequent investigation of the discovered region(s) is carried out
(e.g., effect size evaluation or multivariate pattern analysis). These are
standard fMRI data analysis techniques and are performed in most or
all of the work critiqued by Vul and colleagues. Our method is
especially useful when a within-subject independent functional
localizer is desired, but impractical.

The method employs a leave-one-subject-out (LOSO) cross-valida-
tion procedure inwhich a single subject is iteratively left out of thefirst-
stage group analysis (here, a GLM with subject as random factor). The
group GLM defines region(s) of interest which are applied to the data
collected from the subject left out. Subsequent analysis is then carried
out using the left-out subject's data (e.g., beta weights, raw signals, etc.)
that are extracted from these region(s), and the procedure is then
repeated for each subject. The GLM from the remaining subjects thus
serves as an independent localizer for the subject left out (e.g. Esterman
et al., 2009). The idea of cross-validation is not novel; in fact, several of
the commentaries cited earlier suggest similar ideas (e.g., Kriegeskorte
et al., 2009). However, others propose a more labor intensive within-
subject leave-one-run-out cross-validation (where independence is
arguably less assured, since data are selectedusing a region definedwith
data taken from the very same subject), or a potentially less-sensitive,
between-subjects split-half cross-validation in which half of the data
from each subject are used for region definition, and secondary analysis
is carried out using data extracted from the other half. In the following
sections, we illustrate the LOSO technique and show how it greatly
reduces the effects of the non-independence error.

Methods

The LOSO technique is demonstrated with two data sets, one a
block design, and the other a slow event-related design. Both data sets
came from a study of top–down effects in category-specific visual
processing; the results of that study and further methodological
details are reported elsewhere (Esterman and Yantis, 2009).
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Fig. 1. Full group and LOSO effect sizes, as well as the inflation of effect sizes (full group
minus LOSO; in red). Error bars represent 95% confidence intervals on the effect size
across subjects (gray bars) and on the within-subject inflation (red bars). (A) The four
regions identified in data set 1 (block design). (B) Right OFA in data set 2 (event-related
design) replicates the finding from the block design in data set 1.
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Participants

A group of nine graduate and undergraduate students participated
in a single fMRI session in which both data sets were collected. All
participants provided informed consent as approved by the Johns
Hopkins Medicine Institutional Review Board.

fMRI acquisition

MRI scanning was carried out with a Philips Intera 3T scanner in
the F. M. Kirby Research Center for Functional Brain Imaging at the
Kennedy Krieger Institute, Baltimore, MD. Anatomical images were
acquired using an MP-RAGE T1-weighted sequence that yielded
images with 1 mm isotropic voxels (TR=8.1 ms, TE=3.7 ms, flip
angle=8°, time between inversions=3 s, inversion time=738 ms).
Whole-brain echo-planar functional images (EPI) were acquired with
an 8-channel SENSE (MRI Devices, Inc., Waukesha, Wisconsin)
parallel-imaging head coil in 40 transverse slices (TR=2000 ms,
TE=35 ms, flip angle=90°, matrix=64×64, FOV=192 mm, slice
thickness=3 mm, no gap). Neuroimaging data were analyzed using
BrainVoyager QX (Brain Innovation, Maastricht, The Netherlands).
Functional data were slice acquisition time and motion corrected and
then temporally high-pass filtered to remove frequency components
in the time course of a run for each voxel, with a frequency of 3 cycles
per run or fewer. This removed gradual drift in signal not associated
with the critical task events (which occurred at roughly 12–24 cycles
per run). Each subject's EPI volumes were all coregistered to that
subject's anatomical scan. Spatial smoothing was applied (4-mm
FWHM Gaussian kernel). Anatomical and functional images were
Talairach-transformed and resampled into 3-mm isotropic voxels.

Data Set 1: blocked face or house 1-back matching task

Paradigm
In the block-design task, 12 faces and 12 houses were presented,

either unscrambled or with randomly scrambled phases, for 15-s
blocks at a rate of 1 image per second. Participants performed a 1-back
matching task with four conditions: faces, houses, scrambled faces,
and scrambled houses; each block was presented 4 times per run.
Participants completed 3 or 4 runs of the block-design task (one
participant only performed a single run).

General linear models
Face-selective activation maps were defined by the contrast

between the face block and all other blocks (houses, scrambled
faces, and scrambled houses). Face, house, scrambled face, and
scrambled house block regressors were defined as a canonical
hemodynamic response function (Boynton et al., 1996) convolved
with a boxcar function of the block duration. A group GLM was
performed with subjects as a random effect. In this full group GLM
(n=9), a minimum cluster size of 8 contiguous voxels was adopted to
correct for multiple comparisons, yielding a whole-brain corrected
statistical threshold of αb0.01 (t=3.355, nominal pb0.01) deter-
mined by a cluster threshold estimator plug-in implemented in
BrainVoyager. Effect sizes for a given subject derived from this group
GLMwere non-independent, as all subjects were included in the GLM,
and thus potentially inflated. In contrast, the independent analysis
was accomplished by performing nine separate LOSO GLMs, one with
each subject left out. For each of the nine LOSO GLMs (n=8 subjects
per GLM), two thresholds were used. First, we preserved the original
nominal p value (0.01), thereby increasing the critical t value (3.499)
because of the reduction in the degrees of freedom. Second, we used a
more liberal threshold – the original t value – reducing the nominal p
value (p=0.01267). We call these the “conservative independent”
and “liberal independent” tests, respectively. We chose to maintain
the cluster threshold for the LOSO GLMs.
Regions of interest
Four regions were defined in the full group GLM to test the LOSO

method (see Fig. 1A). These were two face-selective regions in the
middle fusiform gyrus, consistent with the left and right fusiform face
area (FFA; Sergent et al., 1992; Allison et al., 1994; Puce et al., 1995;
Kanwisher et al., 1997) and another face-selective region in the right
superior temporal sulcus (STS; Puce et al., 1998; Haxby et al., 1999).
Finally, there was a fourth face-selective region in the right inferior
occipital cortex (OFA; Gauthier et al., 2000; Rossion et al., 2003).

In each LOSO GLM, for each significant cluster of voxels, we
identified the region or anatomical neighborhood of the cluster using
a standard Talairach atlas as well as previous work describing face-
selective cortex. This process is akin to defining ROIs using within-
subject independent localizers. Importantly, these neighborhoods
were not constrained by the voxels identified in the full group
analysis. We then examined all LOSO ROIs to determine whether
activity in a given anatomical neighborhood (i.e., right fusiform gyrus
or right superior temporal sulcus) was consistent across all LOSO
GLMs. This method could theoretically lead to LOSO ROIs that do not
overlap, though in practice, it tends to lead to LOSO ROIs that overlap
partially, as illustrated in Fig. 2 for the rFFA. Further, any fold of LOSO
could discover multiple clusters within a broader region. If, for
instance, two clusters were identified, the experimenter could
consider signal from voxels in both subregions together, or if there
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were some a priori rationale, could choose one of the two based on
some consistent criteria (e.g., the most anterior cluster).

In data set 1, there were on average 6.4 clusters per LOSO GLM.
Four were consistent across all LOSO GLMs: right superior temporal
sulcus (STS), right middle fusiform gyrus (rFFA), right inferior
occipital gyrus (rOFA), and left middle fusiform gyrus (lFFA). (These
same four clusters were also present in the full group GLM.)

Effect size
Beta weights for each condition were extracted in each ROI for the

full group GLM. The effect size was defined as the magnitude of the
difference in beta weights that defined the ROIs:

Δβ = βface − βhouse + βscramb−face + βscramb−house½ �= 3:

This represented the potentially inflated estimate of face selectivity in
these ROIs. Next, for each LOSO GLM, the beta weights for each
condition were extracted from only the subject left out of the GLM
that defined the ROI for that subject. Done iteratively, this yielded new
beta weights for each subject, without bias due to non-independence.
The effect size was then computed for the data extracted from the
LOSO GLMs. Paired t-tests were conducted to compare the group/
dependent effect size to the liberal independent and conservative
independent estimates of effect size.

Data Set 2: event-related face/house discrimination task

Paradigm
In the event-related task, on each trial, an image of a house or a

face was presented, starting from a random level of phase coherence
and gradually cohering at a rate of 1% per 100ms. The sequence ended
at 74% coherence, because at this point all objects were clearly
Fig. 2. The overlap of LOSO ROIs in an example region (right FFA). Voxels shaded yellow p
discriminable. Participants made either a gender discrimination
(male/female) or house-size discrimination (one-story/two-story);
they were instructed to respond as quickly as possible while
minimizing errors. Using the right hand, button 1 was pressed for
“Male” or “One-story”, and button 2 was pressed for “Female” or
“Two-story.”

General linear models
Face-selective activation maps were defined by the contrast

between face discriminations and house discriminations. Face and
house regressors were defined as a canonical hemodynamic response
function convolved with a stick function at the mean discrimination
reaction time (68% phase coherence). A group random-effects GLM
and nine LOSOGLMswere performed as described above for data set 1.

Regions of interest
One example regionwas defined in the group GLM to test the LOSO

method in an event-related paradigm (Fig. 1B). This was a face-
selective region in the right inferior occipital cortex. We chose this
region in order to replicate the LOSO technique with the same
functional region, while using a different data set and paradigm (data
set 2 is event-related while data set 1 is a block design).

In each LOSO GLM, several clusters beyond the right OFA were
identified. Again, for each of these clusters, we identified the
anatomical neighborhood of these clusters. We then examined all
LOSO ROIs to determine whether activity in a given anatomical
neighborhood (e.g., gyrus or sulcus)was consistent across all GLMs.On
average, 11.8 clusters were present per LOSOGLM. Sixwere consistent
across all LOSO GLMs, including right OFA, right temporal pole, left
temporal pole, precuneus, medial lingual/striate visual cortex, and
anterior cingulate. (In the full groupGLM,five of these six regionswere
present, with only the precuneus failing to survive cluster-correction.)
assed threshold in 1–3 of 9 LOSO GLMs; orange, 4–6 LOSO GLMs; red 7–9 LOSO GLMs.
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Effect size
Beta values for each condition were extracted in the ROI for the

group GLM. The effect size was defined as the magnitude of the
difference in beta weights that defined the ROI: βface–βhouse. LOSO
GLM effect sizes were calculated in the same way, but using the data
from the left-out subject, as for data set 1. Paired t-tests were again
conducted to compare the group/dependent effect size to the liberal
independent and conservative independent estimates of effect size.

Results

In Fig. 2, we illustrate the LOSO ROIs, and the degree to which they
overlap, within the right FFA. A significant number of voxels in the
rFFA only survive a subset of the LOSO folds. However, some voxels in
the right FFA survive in each LOSO fold.

Effect size measured in the group GLM-defined ROIs was signifi-
cantly inflated relative to the corresponding conservative independent
LOSO-defined ROI in 4 of 5 cases (Fig. 1A: rSTS, t-test pb0.05, 7/9
subjects inflated, sign test pb0.09; rFFA, t-test pb0.001, 9/9 subjects
inflated, sign test pb0.01; lFFA, t-test pb0.07, 7/9 subjects inflated,
sign test pb0.09; rOFA, t-test pb0.01, 8/9 subject inflated, sign test
pb0.05. Fig. 1B: rOFA, t-test pb0.01, 8/9 subjects inflated, sign test
pb0.05). Because the LOSO GLMs have less power (fewer degrees of
freedom), we also defined the LOSO ROIswith amore liberal threshold
(see Methods). The group GLM was also significantly inflated relative
to these liberal LOSO-defined ROIs (p valuesb0.05 except lFFA
[pb0.07], not shown). The conservative and liberal LOSO-defined
ROI effect sizes differed in the rFFA (0.315 vs. 0.377, pb0.05),
indicating that in this case, the more liberal threshold for the
independent estimation of ROI led to a larger observed effect size
(albeit smaller than in the group GLM). Otherwise, no significant
differences were found between the conservative versus liberal LOSO
threshold.

Discussion

The LOSO analyses presented here confirm that estimated effect
sizes can be significantly inflated when using a (non-independent)
whole-brain group analysis relative to an independent test after a
leave-one-subject-out cross-validation procedure. The LOSO proce-
dure reduces this inflation by defining ROIs with an independent data
set.

It is worth pointing out that an inflated average effect size in a
region is not necessarily problematic. For example, if an investigator
wishes only to identify regions exhibiting significant activation for a
given contrast, the LOSO technique is unnecessary because the
magnitude of the effect size is not relevant to the investigator's
claim. However, if an estimate of the effect size is desired, an
independent test, such as the LOSO procedure, is necessary and
altogether straightforward to carry out. It is true that statements of
effect size within whole-brain-defined ROIs are “redundant” and
“statistically guaranteed” (Vul and Kanwisher, in press), but they may
be useful nonetheless in order to provide a more intuitive account of
one's findings. Nevertheless, it is always necessary for readers and
authors to be aware of the potential inflation that will be inherent in
any reported effect when it is derived from an ROI that is based on a
non-independent group whole-brain GLM analysis.

In addition to estimating effect sizes that are free of the non-
independence error, LOSO cross-validation can be used to identify
independent ROIs for further statistical inferences, such as time course
extraction and analysis or further contrasts that are not orthogonal to
the original contrast used to define the ROIs (e.g., A+B vs. C+D,
followed by A vs. C).

One could also use LOSO to independently estimate correlations.
One simple procedure is as follows: For each LOSO GLM, find a LOSO
ROI with activity that is significantly correlated with a behavioral/
personality measure across subjects. Activity (or beta weights) in
these voxels is then computed for the subject left out. This is repeated
for every LOSO GLM, so that each subject will have contributed an
independent-ROI activity (or beta) value and a behavioral/person-
ality measure. Behavioral measures and brain activity can subse-
quently be used to estimate the correlation, minimizing bias due to
the non-independence error. Although this procedure will radically
reduce inflation of effect size, simulations suggest that there remains
the possibility of some residual inflation (Ed Vul, 2009, personal
communication), especially when considering a small number of
voxels.

An important application of LOSO is to identify ROIs for the left-out
subject as an alternative to a separate, independent, functional
localizer. This could be useful in a number of situations. Independent
localizers often consist of a simple task (e.g., a 1- or 2-back working
memory task) to define a functional region or regions for subsequent
analysis in a critical task that is tailored to the specific hypothesis at
issue in the study. To the degree that different brain areas are
recruited under different cognitive demands, a localizer may fail to
identify the voxels of greatest interest. A LOSO “localizer” consisting of
the critical task itself maintains identical cognitive demands and
independence (e.g. Esterman et al., 2009). In other cases, a separate
independent localizer is simply not available. Finally, in many
situations, the regions identified in the whole-brain analysis were
not predicted a priori, and thus an independent localizer was not
conducted in the original experiment.

In our examples, we included only neighborhoods that appeared
in all LOSO GLMs. One could also explore regions that survive some
subset of LOSO GLMs (e.g., 8 of 9, where this number could be based
on a non-parametric sign test: 8/9, pb0.02). Regions can be examined
if they survive any number of LOSO folds; however, if a region fails to
survive the threshold in a LOSO fold, the subject-left-out should be
eliminated from the analysis, incurring a loss of power. Another
alternative is to use a more liberal threshold for the LOSO GLMs, if
necessary, due to the decrease in degrees of freedom for each LOSO
analysis (number of subjects-1). This is analogous to the case in
which independent (within-subject) localizers are analyzed at very
liberal statistical thresholds; this is appropriate because the localizer
data are independent of the subsequent analysis, and thus any noise
in a localizer is independent of the experimental manipulation in the
main experiment. The use of a liberal threshold at intermediate stages
of analysis (e.g., using a functional localizer to select voxels for use in
a secondary analysis) in combination with an appropriately conser-
vative threshold at the secondary/final analysis remains an appro-
priate choice. In practice, we suggest that experimenters only apply
LOSO to an anatomical neighborhood in which they know an effect
exists from the group analysis, but importantly, without the
constraint that the LOSO regions necessarily overlap with the group
ROI. This way, if a non-zero effect exists, it will survive all or most
LOSO folds in the more generally defined region.

The group GLM ROI cannot be used to constrain the definition of
LOSO ROIs, as that would be a form of “peeking” and create the
possibility for non-independence. Instead, the extent of the anatom-
ical neighborhood should be defined based on existing theory and
previous literature, and only guided more generally by the group
analysis. Plotting the LOSO ROIs as in Fig. 2, the degree to which
LOSO ROIs overlap and the extent of the anatomical neighborhood
can be transparently displayed. Nevertheless, one could argue that
the anatomical neighborhood approach could still be biased. If the
“anatomical neighborhood” approach is seen as introducing a form
of bias (because the anatomical neighborhood – even if defined as a
gyrus or Brodmann area – was identified using the result of the full
group GLM) one could instead conservatively include all voxels from
the entire brain that survived each LOSO fold to define the left-out
subject's ROI, without regard to anatomical location. The voxels that
survive each fold could be plotted as in Fig. 2 to be transparent
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regarding the similarity of the ROIs. The experimenter can do as he
or she sees fit with a full understanding of the consequences of
either choice.

Cross-validation is not a novel idea, but as far we know, its
application in the fMRI community has been limited to within-subject
multivoxel pattern classification (i.e., leave-one-run-out) analyses
and has not been extended to random-effects (subject as the factor)
GLMs in this way. The LOSO method for ROI definition is computa-
tionally and conceptually simple and allows for independent
estimates of effects (r, t, z, etc.) initially identified from group-level
whole-brain contrasts as well as permitting secondary analyses (e.g.,
multivoxel pattern classification or effect size estimates) that are free
of the non-independence error. Themethod described here provides a
tool to avoid some of the potential pitfalls highlighted in the recent
literature.
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