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a  b  s  t  r  a  c  t

The  posterior  parietal  cortex,  including  the  medial  superior  parietal  lobule  (mSPL),  becomes  transiently
more  active  during  acts  of cognitive  control  in a wide  range  of domains,  including  shifts  of  spatial  and
nonspatial  visual  attention,  shifts  between  working  memory  representations,  and  shifts  between  catego-
rization rules.  Furthermore,  spatial  patterns  of activity  within  mSPL,  identified  using  multivoxel  pattern
analysis  (MVPA),  reliably  distinguish  between  different  acts  of  control.  Here  we describe  a  novel  multi-
voxel pattern-based  analysis  that  uses  fluctuations  in  cognitive  state  over  time to reveal  inter-regional
functional  connectivity.  First,  we used  MVPA  to model  patterns  of  activity  in  mSPL  associated  with  shift-
ing or  maintaining  spatial  attention.  We  then  computed  a multivoxel  pattern  time  course  (MVPTC)  that
reflects,  moment-by-moment,  the  degree  to  which  the  pattern  of  activity  in mSPL  more  closely  matches
an  attention-shift  pattern  or  a sustained-attention  pattern.  We  then  entered  the  MVPTC  as  a  regressor  in
a univariate  (i.e.,  voxelwise)  general  linear  model  (GLM)  to  identify  voxels  whose  BOLD  activity  covaried
with the  MVPTC.  This  analysis  revealed  several  regions,  including  the  striatum  of the basal  ganglia  and
bilateral  middle  frontal  gyrus,  whose  activity  was  significantly  correlated  with  the MVPTC  in  mSPL.  For

comparison,  we  also conducted  a  conventional  functional  connectivity  analysis,  entering the  mean  BOLD
time  course  in  mSPL  as  a  regressor  in  a univariate  GLM.  The  latter  analysis  revealed  correlations  in exten-
sive  regions  of the frontal  lobes  but  not  in  any  subcortical  area.  The  MVPTC  analysis  provides  greater
sensitivity  (e.g.,  revealing  the  striatal-mSPL  connectivity)  and  greater  specificity  (i.e.,  revealing  more-
focal clusters)  than  a  conventional  functional  connectivity  analysis.  We  discuss  the  broad  applicability  of
MVPTC  analysis  to a variety  of  neuroimaging  contexts.
. Introduction

Humans prioritize the processing of goal-relevant sensory infor-
ation through voluntary shifts of selective attention. Several

ecent studies have reported that voluntary shifts of attention
re associated with transient activity in the medial wall of the
uperior parietal lobule (mSPL; e.g., Kelley, Serences, Giesbrecht,

 Yantis, 2008; Liu, Slotnick, Serences, & Yantis, 2003; Serences,
chwarzbach, Courtney, Golay, & Yantis, 2004; Shomstein & Yantis,
006; Shulman et al., 2009; Vandenberghe, Gitelman, Parrish, &
esulam, 2001; Yantis et al., 2002). In contrast, sustained activ-
ty associated with maintaining attention is found in intraparietal
ulcus and prefrontal cortex (e.g., Saygin & Sereno, 2008; Serences

 Yantis, 2007; Silver, Ress, & Heeger, 2005). These findings sug-
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gest that mSPL plays a role in reconfiguring or shifting attention
rather than in maintaining the current state of attention. Further-
more, this transient mSPL signal is also observed in non-spatial and
non-perceptual acts of control, including shifts of categorization
rule (Chiu & Yantis, 2009) and shifts of attention between work-
ing memory representations (Tamber-Rosenau, Esterman, Chiu, &
Yantis, 2011). These studies thus implicate mSPL as a domain-
independent hub for cognitive reconfiguration (Chiu & Yantis,
2009; Greenberg, Esterman, Wilson, Serences, & Yantis, 2010).

In addition to mSPL, other cortical and subcortical regions have
been associated with cognitive reconfiguration. For example, dor-
solateral prefrontal regions are often co-activated with parietal
cortex, forming a dorsal frontoparietal attention control network
for deployments of attention to goal-relevant sensory informa-
tion (Corbetta & Shulman, 2002). Furthermore, many studies have
demonstrated functional connectivity between dorsal parietal cor-
tex and prefrontal cortex (e.g., Fox, Corbetta, Snyder, Vincent, &

Raichle, 2006), and have shown that this connectivity affected
behavior during spatial attention tasks (He,  Shulman, Snyder, &
Corbetta, 2007; Thiebaut de Schotten et al., 2005). In addition
to those cortical regions, the basal ganglia (BG) also have been

dx.doi.org/10.1016/j.neuropsychologia.2011.07.007
http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
mailto:chiu.yuchin@gmail.com
dx.doi.org/10.1016/j.neuropsychologia.2011.07.007
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Fig. 1. Behavioral task. While maintaining fixation at the center of the screen, the
subject was instructed to start attending to the left-central RSVP stream and to
monitor for occasional targets (2, 3, #, $). When a shift cue was  presented in the
left-central stream, the subject had to shift attention covertly to the right-central
RSVP stream, and vice versa, and continue to monitor for targets in the currently
80 Y.-C. Chiu et al. / Neurop

mplicated in shifts of spatial attention (e.g., Gitelman et al., 1999;
rande et al., 2006; Shulman et al., 2009), shifts of task set (e.g.,
ools, Altamirano, & D’Esposito, 2006; Cools, Clark, & Robbins,
004; Leber, Turk-Browne, & Chun, 2008; Ravizza & Ivry, 2001),
nd updates in working memory (O’Reilly & Frank, 2006). How-
ver, functional connectivity has not been demonstrated between
ortical control regions and subcortical structures (e.g., the BG) in
umans during shifts of spatial attention. The current study was
esigned to examine the functional connectivity between mSPL and
ther cortical and subcortical regions using a novel multivariate
echnique.

One well-established approach to assessing functional connec-
ivity first computes the time course of the mean blood oxygenation
evel dependent (BOLD) signal across all voxels within a seed
egion of interest (ROI). This time course is then entered as a
nivariate (voxelwise) general linear model (GLM) regressor in
rder to identify other voxels whose activity covaries with that
f the seed region (e.g., Biswal, Yetkin, Haughton, & Hyde, 1995;
riston, Frith, Liddle, & Frackowiak, 1993). Another approach, beta
eries correlation (Rissman, Gazzaley, & D’Esposito, 2004), uses
rial-by-trial beta coefficient values, instead of raw time series,
ithin a seed region to explore correlations across the brain. More

ophisticated approaches, such as psychophysiological interaction
nalysis (e.g., Diekhof, Falkai, & Gruber, 2009; Duann, Ide, Luo, & Li,
009) or dynamic causal modeling (e.g., Friston et al., 1997; Smith,
tephan, Rugg, & Dolan, 2006; Stephan, Marshall, Penny, Friston,

 Fink, 2007), further include interaction terms among regressors
o explore connectivity. Using the mean BOLD signal (or beta val-
es) within an ROI to explore functional connectivity, however,
ssumes that all voxels within the ROI are all estimates of a single,
ommon time series (thus justifying taking their average). Further-
ore, this method relies on the presence of reliable activations

after correcting for multiple comparisons) in the seed regions of
nterest.

Here we develop an information-based functional connectiv-
ty method. In general, an information-based approach employs

ultivoxel pattern analysis (MVPA) to identify regions in which
nformation expressed by spatiotemporal patterns of voxel activa-
ion reliably reflects distinct cognitive states (e.g., Chiu, Esterman,
an, Rosen, & Yantis, 2011; Kamitani & Tong, 2005; Kriegeskorte,
oebel, & Bandettini, 2006; Norman, Polyn, Detre, & Haxby, 2006;
olyn, Natu, Cohen, & Norman, 2005; Serences, Ester, Vogel, &
wh, 2009). Our novel information-based functional connectiv-

ty method exploits the multivoxel pattern of activity within a
eed region by computing a continuous index of “pattern strength”
s it evolves and fluctuates over time. This multivoxel pattern
ime course (MVPTC) then is used to identify other voxels whose
ctivity covaries with the pattern strength within the seed region.
his approach was motivated by recent studies (Esterman, Chiu,
amber-Rosenau, & Yantis, 2009; Greenberg et al., 2010; Tamber-
osenau et al., 2011) showing that spatial patterns of activity within
SPL reliably predicted which of several domains of cognitive con-

rol subjects were engaged in (e.g., spatial representations vs. rule
epresentations; and visual vs. working memory representations)
t each time point of a experimental run. Thus, multivoxel patterns
f activity in mSPL provide a signature of cognitive state that is oth-
rwise masked by averaging the BOLD signal across voxels within
he ROI.

In the current study, subjects performed cue-evoked covert
hifts of spatial attention in the task. We  first identified a region
f mSPL that exhibited transient increases in mean activity time-
ocked to shifts of attention. We  then used MVPA (employing a

inear support vector machine, or SVM) to model multivoxel acti-
ation patterns within mSPL associated with attention shifts and
ustained attention, respectively. The resulting classifier was  then
pplied to each time point in the entire mSPL time series, yielding
relevant stream. The subject had to press one of four buttons to indicate the identity
of each target appearing in the relevant stream.

a continuous information-based index (i.e., the classifier decision
value) of the degree to which the mSPL pattern reflected shift-
ing vs. sustained attention on a moment-by-moment basis. Finally,
the MVPTC obtained from mSPL was  entered as a regressor in a
whole-brain voxelwise GLM to explore information-based func-
tional connectivity between mSPL and the rest of the brain.

2. Methods

2.1. Subjects

Ten right-handed subjects (20–23 yrs old, four males) participated in this study.
Two  of the subjects failed to maintain fixation during the task and were excluded
from further analysis. All subjects had normal or corrected-to-normal vision and
had  no history of neurological impairment. The Johns Hopkins Medicine Institu-
tional Review Board approved the study protocol. Written informed consents were
obtained from all participants.

2.2. Stimuli and procedure

Subjects were instructed to maintain fixation on a central fixation cross while
monitoring one of eight rapid serial visual presentation (RSVP) streams of alphanu-
merical characters (see Fig. 1). Each RSVP frame had a duration of 125 ms. Two  of
these streams were task-relevant, located 3.5◦ to the left and right of the fixation
cross  on the horizontal meridian; each was  flanked by three irrelevant distractor
streams (3.3◦ center-to-center distance) in order to maximize the demand for selec-
tive  attention. Critical events (cues and targets) were randomly intermixed among
filler items (A–Z, except for R and L) within the task-relevant streams; the distractor
streams contained only filler items. All characters subtended approximately 1.4◦ in
height and 1.0◦ in width, and were presented in uppercase Arial font. Cues were
always rendered in bright red (and therefore were highly salient), while all other
items (targets and fillers) were randomly rendered in one of eight colors (green,
blue, purple, orange, yellow, army green, rose, and cyan). No two  items had the
same color in any given frame. Subjects began with their attention directed to one
of  the two relevant streams (according to instructions at the beginning of each run).
‘Shift’ and ‘Hold’ instructions were conveyed by the letters “L” and “R” in the cur-
rently attended stream. These cues instructed subjects to direct attention to the left
or  right stream, respectively (e.g., “R” in the left stream signaled subjects to shift

attention to the right stream; “L” in the left stream signaled subjects to maintain
attention to the left stream). Cue onset asynchrony varied between 10 and 15 s, in
1-s increment, and the minimum target-to-cue and cue-to-target onset asynchrony
was 3 s. Approximately half of the cues were shift cues, and half were hold cues.
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Fig. 2. Multivoxel pattern time course (MVPTC) analysis flow. (A) Shift-related voxels in mSPL as identified by the HRF-based univariate GLM. (B) A schematic illustration of
an  event-related average BOLD time course in mSPL time-locked to shift cues. The dashed rectangles indicate the time windows that were used to extract multivoxel patterns
associated with sustained attention and shifts of attention, respectively, during classifier training. (C) An SVM classifier was  trained to discriminate patterns associated with
shifts  of attention vs. sustained attention and tested using a leave-one-run-out protocol. (D) An example of an mSPL MVPTC (the SVM multivoxel pattern decision value at
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ach  time point, in blue) and mSPL mean BOLD time course (expressed as a z-score, 

ues  (e.g., sLR or sRL).

Subjects were instructed to make a four-alternative button-press response to
ach appearance of a target character (2, 3, #, or $) embedded within the currently
elevant RSVP stream. Two  target characters were simultaneously presented; either

 “2” or “3” was  presented in one stream and either a “#” or “$” was presented in
he other stream. Two stimulus-response mappings were counterbalanced across
ubjects: 2, 3, #, $, or #, $, 2, 3 were mapped to the right index-, middle-, ring-, and
ittle-finger buttons, respectively. Behavioral responses thus provided a check on
he subject’s current locus of attention. Note that the behavioral responses always

ccurred during epochs of sustained attention; no behavioral response was made to
he  cues themselves. Each subject completed 10–13 runs, each lasting 134 s within
ne  2-h fMRI session.

Prior to the fMRI session, subjects completed a behavioral practice session. Dur-
ng this session, the rate of stimulus presentation gradually decreased from 500 to
) from a single run of one representative participant. Arrows mark the onset of shift

125 ms  per frame, a rate at which subjects were able to maintain a performance
accuracy of at least 80% across two successive blocks. In the practice session, accu-
racy feedback was  provided at the end of each block. In the imaging session, frame
duration was  fixed at 125 ms  and accuracy feedback was not provided.

During scanning, visual stimuli were projected onto a screen placed at the end
of  the magnet bore and viewed with a mirror mounted above the head coil from a
distance of 68 cm.  Subjects held a custom-built MR-compatible response box with
four  buttons in their right hand. All visual stimuli were presented on a grey back-

ground. Stimulus presentation and behavioral data collection were controlled by
custom MATLAB (The MathWorks, Natick, MA) code using Psychophysics Toolbox
3  (Brainard, 1997; Pelli, 1997). Eye position was  monitored in the imaging session
using a custom MR-compatible infrared camera and ViewPoint 2.8.3 eye tracking
software (Arrington Research, Scottsdale, AZ).
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.3. Image acquisition and analysis

Neuroimaging data were acquired with a Philips Intera 3T scanner and an
-channel SENSE head coil (MRI Devices) at the F.M. Kirby Research Center for Func-
ional Brain Imaging (Baltimore, MD). One high-resolution, whole-brain anatomical
can was  acquired with an MPRAGE T1-weighted sequence yielding 1-mm isotropic
oxel resolution (coronal slices, matrix = 256 × 256, TE = 3.7 ms,  TR = 8.0 ms,  flip
ngle = 8◦). Whole-brain functional volumes were acquired with a T2*-weighted
choplanar imaging (EPI) sequence in 31 axial slices (3-mm thickness, 1-mm
ap, 3 mm × 3 mm in-plane resolution, matrix = 64 × 64, TE = 30 ms,  TR = 1.5 s, flip
ngle = 70◦).

Neuroimaging data were analyzed using BrainVoyager QX software (Brain Inno-
ation, The Netherlands). Functional data were slice-time and motion corrected
nd then temporally high-pass filtered to remove components occurring three or
ewer cycles per run. To correct for between-scan motion, each subject’s EPI vol-
mes were all coregistered to that subject’s anatomical scan. Finally, the volumes
ere Talairach-transformed and resampled into 3-mm isotropic voxels. No spatial

moothing was applied to the EPI data.

.4. Functional region of interest (functional ROI)

The GLM approach (Friston et al., 1995) was used to estimate beta weights for
egressors representing critical events. Included were regressors that modeled the
resentation of targets and cues instructing subjects to shift attention from left
o  right (sLR), shift attention from right to left (sRL), hold attention on the right
tream (hR), and hold attention on the left stream (hL), respectively. The regres-
ors were created by convolving a single-gamma hemodynamic response function
Boynton, Engel, Glover, & Heeger, 1996) with a stick function marking the onset of
ach event. The mSPL ROI to be used for pattern classification was  identified by a
ontrast of attention Shift (sLR, sRL) vs. attention Hold (hR, hL) with a liberal thresh-
ld of t(7) = 2 (p < 0.06 uncorrected; see Fig. 2A). The mSPL ROI in Talairach space was
hen  transformed back to the subjects’ native anatomical space, from which prepro-
essed functional EPI data were extracted for further analyses. The BOLD signal was
-transformed relative to the mean and standard deviation of each run.

.5.  Multivoxel pattern classification

Patterns associated with shifting vs. sustained attention were extracted from
he  mSPL ROI for each subject: for each voxel in the mSPL ROI, activity associated
ith shifting attention was defined as the mean of the BOLD signal at 6 and 7.5 s after

he  onset of an attention-shift cue. Activity associated with sustained attention was
efined as the mean of the BOLD signal at 1.5 and 0 s before the onset of an attention-
hift cue, an epoch during which participants should have sustained attention to the
eft or right RSVP stream (see Fig. 2B). It is possible that this pre-shift epoch included
ther cognitive operations or states in addition to sustained attention (e.g., letter
dentification). However, it should be noted that discriminating the target stimuli in
he  RSVP task required highly focused attention, and subjects did so with reasonable
ccuracy.

This resulted in a set of 120–128 training/testing examples for each pattern for
ach  subject. A linear classifier was trained to discriminate between these mul-
ivoxel patterns associated with shifting vs. sustained attention for each subject.

e  used the standard leave-one-run-out cross-validation procedure (see Fig. 2C)
ith a support vector machine (OSU SVM toolbox, an adaptation of libsvm, Chang &

in,  2001). The initial mean cross-validation accuracy at the group level was 65.1%
S.E.M. = 1.95%), which was significantly above chance (p < 0.05), indicating that pat-
erns of activity in mSPL can be reliably decoded when all of the voxels within the
OI were used. This was, of course, as expected, because several previous stud-

es  have found transient activity in mSPL during shifts of attention, but not during
ustained state of attention (i.e., Kelley et al., 2008; Saygin & Sereno, 2008; Silver
t  al., 2005; Yantis et al., 2002). Nevertheless, to ensure that an optimized classifier
ould be employed when distinguishing patterns of activity at other time points
ot  included in the training and testing epochs above, we eliminated voxels within
he ROI that contributed mostly noise (i.e., voxels that did not help to distinguish
etween shifting and sustained attention patterns), as described below.

For  each fold of training and testing, a set of classifier weights (one weight per
oxel) was obtained. We first calculated the absolute value of the mean weight for
ach voxel across all folds, and then ranked them. Based on this ranking, classifier
ccuracy was optimized with the 75 mSPL voxels with the highest importance (i.e.,
argest absolute weight magnitude; see Esterman et al., 2009). The selected voxels

ere then re-trained with all examples (no run left-out) to obtain a new set of
eights. Note that no inference can be made from this analysis about the voxels in
SPL (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009).

.6. Multivoxel pattern-based functional connectivity
The classifier was then applied to the mSPL activity pattern at each time point
f  all runs to derive a decision value (see Fig. 2D), thus creating a multivoxel pat-
ern time course, or MVPTC. The MVPTC indexes the degree to which activation
n  the ROI reflects a shifting-attention pattern (i.e., a positive decision value) vs. a
ustained-attention pattern (i.e., a negative decision value) as multivoxel activity
ogia 50 (2012) 479– 486

fluctuates throughout task performance. Importantly, the output of the classifier
was not binarized (as it otherwise would be for discrete classification; see Fig. 2D
for  an example).

The MVPTC for each run was entered as a regressor in a whole-brain univariate
(voxelwise) GLM; we refer to this as the mSPL-pattern model. To account for whole-
brain fluctuations in signal intensity (Fox, Zhang, Snyder, & Raichle, 2009; Zarahn,
Aguirre, & D’Esposito, 1997), we also entered a global signal regressor (mean activity
across all voxels) in this GLM as a nuisance regressor. A random-effect group level
analysis (with subject as a random factor and run number as a nuisance variable) was
conducted to identify voxels that exhibited activity that was significantly correlated
with the mSPL MVPTC. Because the mSPL MVPTC was not independent of voxel
activity in mSPL itself and the surrounding parietal regions (see Kriegeskorte et al.,
2009; Vul, Harris, Winkielman, & Pashler, 2009), voxels in the parietal lobe were
excluded from the results reported below.

For comparison with conventional functional connectivity analysis, we gener-
ated a regressor in which the BOLD signal across the same 75 mSPL voxels was
averaged to create a mean time course (termed the mSPL-mean model, see Fig. 2D
for an example). This was equivalent to assuming that all voxels contribute equally
by  setting identical classifier weight for each voxel. The mSPL-mean model then
served as a regressor in a separate whole-brain GLM along with the global signal
regressor as described above. A random-effect group level analysis (with subject as
a  random factor and run number as a nuisance variable) was conducted to identify
voxels that were significantly correlated with the mean activity in mSPL. Statistical
maps were corrected for multiple comparisons by applying a cluster-size threshold
(Forman et al., 1995): voxelwise nominal p = 0.009, t(7) = 3.5, corrected alpha = 0.05.

3. Results

3.1. Behavioral results

During the RSVP task in the scanner, mean accuracy was 83.3%
(SE = 2.5%). Almost all of the errors were misses (i.e., failure to
respond; M = 15.2%, SE = 2.4%) rather than incorrect button-presses
(M = 1.5%, SE = 0.5%), indicating that subjects rarely failed to shift
attention to the appropriate RSVP stream following a shift cue (i.e.,
if subjects failed to shift attention to the relevant stream, they
would have responded often to targets in the irrelevant stream,
resulting in incorrect button-presses).

3.2. Neuroimaging results

The Shift vs. Hold contrast in the hemodynamic response func-
tion (HRF)-based univariate GLM yielded a region in mSPL that
was subsequently used as the seed region for connectivity analyses
(Fig. 2A). No other brain region exceeded the threshold for statisti-
cal significance. Fig. 2D shows the MVPTC (blue) and the mean BOLD
signal (red) from mSPL for a representative subject during one run.
The small arrows indicate when a shift-cue appeared—that is, when
the subject was instructed to shift attention. Both time courses
exhibit fluctuations; in most instances, the MVPTC increases in
magnitude sharply after shift cues, but to a varying degree from
one shift cue to the next. The mean BOLD signal also increases
following shifts but the change in magnitude is less pronounced
(see Fig. 2D). Using this seed region, we computed a whole-brain
correlation map  with the standard functional connectivity analysis
approach (i.e., the mSPL-mean model; Fig. 3A). As shown in Fig. 3A,
the mSPL-mean model identified a network of frontal and occipital
regions; see Table 1 for a complete list.

After computing the MVPTC from this same region, several clus-
ters of voxels were found to exhibit reliable positive correlations
(i.e., correlations with shift-like multivoxel activity in mSPL) includ-
ing the left caudate nucleus of the basal ganglia (BG) and bilateral
middle frontal gyrus (MFG; see Fig. 3B). We  found no brain region
that exhibited a negative correlation with the MVPTC. See Table 1
for a complete list.

The HRF-based univariate GLM (Fig. 2A) failed to reveal frontal

or BG activations associated with shifts of attention, when exam-
ining either a Shift vs. Hold contrast or a simple main effect of
Shift (even with a liberal threshold of t(7) = 2.3, voxelwise p < 0.06,
uncorrected). Although the MFG  was  identified in the mSPL-mean
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Fig. 3. Comparison of two functional connectivity analyses. (A) Conventional functional connectivity analysis results using the mean BOLD signal time course in mSPL as
the  seed (mSPL-mean model). The correlated regions are quite extensive both in lateral and medial frontal lobes. (B) Correlation map  from the mSPL MVPTC (mSPL-pattern
model) revealing more focused clusters of activation and a previously undetected cluster in the basal ganglia (BG). (C) Correlation map  of voxels uniquely correlated with the
mSPL-pattern model, revealing clusters in the BG, similar to those in (B). The cluster size correction for multiple comparisons yielded the same family-wise Type I error rate
of  p < 0.05 for both sets of maps shown here. Note that the mSPL seed region and the sur
gyrus.

Table  1
Peak Activation Coordinates from the Group-level Analyses.

Side Talairach coordinates*

Peak X Peak Y Peak Z

mSPL mean functional connectivity
Middle frontal gyrus (MFG) R 29 37 30
Superior frontal gyrus (SFG) L −32 34 35
Medial frontal gyrus 1 25 31
Cuneus R 26 −79 16
mSPL-pattern functional connectivity
Middle frontal gyrus (MFG) R 28 35 29
Superior frontal gyrus (SFG) L −33 34 35
Caudate L −19 9 17

f
m
d

tion in the BG, demonstrating that mSPL-pattern model uniquely
Cuneus R 23 −79 18

* Voxelwise nominal p = 0.009, t(7) = 3.5, corrected alpha = 0.05.
unctional connectivity model, that analysis also revealed much
ore extensive (i.e., less selective) activations in frontal lobes than

id the mSPL-pattern model. In addition, no BG activation was
rounding parietal regions were masked out of both analyses. MFG, middle frontal

observed in the mSPL-mean model even with a liberal threshold
of t(7) = 2.3, voxelwise p < 0.06, uncorrected. This suggests that the
mSPL-pattern model was more sensitive to BG involvement, and
revealed more specific (focal) prefrontal activity than the SPL-mean
model (cf. Fig. 3A and B).

Furthermore, in order to directly contrast the explanatory power
of the mSPL-pattern model to the mSPL-mean model, we con-
ducted a step-wise regression analysis procedure (to avoid issues of
collinearity between the two time courses) using both mSPL-mean
and mSPL-pattern time courses. Specifically, our first-stage GLM
included mSPL-mean as a regressor (same procedure as above), but
instead of obtaining the activation map, we  obtained the residu-
als. In the second stage, the mSPL-pattern vector was entered in
a GLM as a regressor of the mean-model residuals, yielding a new
map  as shown in Fig. 3C. This analysis revealed significant correla-
accounted for activation in the basal ganglia, above and beyond that
accounted for by the mSPL-mean model (cf. Fig. 3B and C).
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Fig. 4. Comparison of connectivity analysis using continuous vs. binarized decision values. The time course regressor was obtained from: (A) training SVM with mSPL-mean
as  a single-voxel classifier and creating continuous decision values (green) or binarized decision values (yellow); and from (B) training SVM with mSPL-pattern as multi-voxel
c ). Not
o

(
t
W
p
a
d
n
c
b
a
a
t

4

i
(
i
y
w
m
t
p
t

(
i
m

lassifier and creating continuous decision values (blue) or binarized values (orange
ut  here to ensure that the correlation maps were sensible.

Finally, it is important to ensure that the observed basal ganglia
BG) correlation was due to the use of multivariate pattern informa-
ion, rather than some other aspect of the SVM training procedure.

e thus conducted the following auxiliary analyses to exclude this
ossibility. First, we applied the SVM procedure to the SPL-mean
s a single-feature classifier. We  used both the raw/continuous
ecision values as well as the binarized values (Fig. 4A). No sig-
ificant BG correlations were revealed, suggesting that the pattern
ontributed uniquely to the BG correlation. We  also conducted the
inarized MVPTC analysis as a comparison to the original MVPTC
nalysis with the continuous decision values (Fig. 4B). Both of these
nalyses revealed BG activation, suggesting that it was  the pattern
hat provided the sensitivity.

. Discussion

In this study, we replicated the finding of transient activ-
ty in mSPL associated with voluntary shifts of spatial attention
Fig. 2A; e.g., Kelley et al., 2008; Yantis et al., 2002). We  then
mplemented a novel multivoxel pattern-based connectivity anal-
sis method that revealed regions of the brain whose activity
as correlated with fluctuations in multivoxel patterns within
SPL. These regions included prefrontal cortex and the striatum of

he basal ganglia, providing converging evidence for an expanded
arietal–frontal–striatal network for the shifting of spatial atten-
ion (e.g., Gitelman et al., 1999; Shulman et al., 2009).
We compared the results of the MVPTC correlation analysis
mSPL-pattern model) with a conventional functional connectiv-
ty analysis (mSPL-mean model) in which the time course of the

ean BOLD signal in mSPL was used as a regressor. The mSPL-mean
e that the mSPL seed region and the surrounding parietal regions were not masked

model revealed extensive activity in the frontal regions (Fig. 3A).
Studies have shown that the precuneus (of which mSPL is the
dorsal-most part) is associated with a variety of cognitive functions
(e.g., Cavanna & Trimble, 2006) in addition to the control of visu-
ospatial attention shifts. Thus, some of the variance in the mean
mSPL signal over time is likely to be driven by functions other than
the control of attention shifts. In addition, there are intrinsic fluc-
tuations in widespread cortical networks when participants are at
rest (Aguirre, Zarahn, & D’Esposito, 1998; Macey, Macey, Kumar,
& Harper, 2004) that could also account for connectivity in the
mSPL-mean model.

In contrast, the mSPL MVPTC reflects changes in the mSPL
multivoxel pattern that is associated specifically with the state
of visuospatial attention; it was correlated with only a subset of
the regions identified by the mSPL-mean model. Furthermore, this
analysis uniquely revealed functional connectivity between the
striatum and mSPL (see Table 1, cf., Fig. 3A and B). It is noteworthy
that these results rule out the possibility that the regions identified
with the mSPL-pattern model were simply the regions found to be
most statistically robust (i.e., those with the highest t values) in
the mSPL-mean model. The activity in the caudate detected by the
mSPL-pattern model was  not detected by the mSPL-mean model
even with a more liberal threshold (voxel p < 0.06, uncorrected).
We suggest that the MVPTC method reveals more process-specific
functional connectivity, as the mSPL MVPTC specifically indexes
shifting and sustained states of visuospatial attention, whereas the

mean BOLD signal over the course of a run reflects a combination
of multiple task-relevant, and possibly task-irrelevant, processes
throughout the entire experiment.
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The MVPTC analysis appears to be more sensitive than the
RF-based univariate GLM (cf. Figs. 3A and 2A); it revealed frontos-

riatal brain regions associated with attention shifting that were not
evealed by the HRF-based univariate GLM. This difference could
ot be explained trivially by the choice of statistical threshold. An

mportant feature of the mSPL-pattern model is that it generalizes
o time points in the experiment beyond those used for training the
lassifier (i.e., during cued shifts of attention). For example, posi-
ive deflections in the MVPTC could reflect not only cued shifts of
ttention, but also spontaneous shifts of attention that are likely
o occur from time to time (e.g., Christoff, Gordon, Smallwood,
mith, & Schooler, 2009; Weissman, Roberts, Visscher, & Woldorff,
006). Furthermore, even for cued shifts of attention, the MVPTC
ay  reflect meaningful variability in the amplitude and timing of

ach shift following the cue onset. In contrast, the conventional
RF-based univariate GLM assumes a consistent hemodynamic

esponse function for each modeled attention-shift cue, and does
ot account for potential spontaneous shifts of attention.

The results of the mSPL MVPTC correlation analysis corrobo-
ate and extend previous findings in the literature suggesting a
ole for frontostriatal circuits in shifting between behaviorally rel-
vant locations or objects (e.g., Cools et al., 2006, 2004; Shulman
t al., 2009). Studies of patients with Parkinson’s disease (which is
ssociated with progressive neurodegeneration of the BG) exhibit
eficits in set shifting (Ravizza & Ivry, 2001) as well as deficits in
oal-directed, but not stimulus-driven, spatial attention (Grande
t al., 2006). It has also been suggested that this circuit plays a
ole in selection and updating within working memory (O’Reilly

 Frank, 2006). In fact, all shifts of goal-directed attention might
e accompanied by an update in working memory, as suggested by
’Reilly and Frank’s (2006) model.

The method described here is related to the hybrid SVM–GLM
pproach proposed by LaConte, Strother, Cherkassky, Anderson,
nd Hu (2005) and Wang (2009).  Wang (2009) suggested that the
ybrid SVM–GLM approach has better sensitivity than a conven-
ional GLM for detecting task-relevant activations. Our method is
lso a hybrid SVM–GLM approach; however, the MVPTC analysis
ntroduces two crucial extensions. First, while LaConte et al. (2005)
nd Wang (2009) both created a similar “pattern time course,”
hey did not use it for functional connectivity. Second, we  used a
apid event-related design, whereas the previous implementations
mployed block designs (LaConte et al., 2005; Wang, 2009). Thus,
e demonstrate that MVPTC can be used to make inferences about

ime points (TRs) that are not used in the training of the classifier
odel.
Our application avoids circular inferences (Kriegeskorte et al.,

009; Vul et al., 2009) by limiting the univariate GLM analysis
o data from voxels that are spatially independent of the func-
ionally defined ROI used to create the multivoxel-pattern model.
nother recently proposed method for assessing functional con-
ectivity uses multivoxel patterns to compute mutual information
etween two or more regions of interest (Chai, Walther, Beck, &
ei-Fei, 2009); this is different both from the MVPTC approach pro-
osed here and from the methods of LaConte et al. (2005) and Wang
2009), but points to a number of potential novel uses of MVPA
eyond simple decoding.

The present study introduces a new way to use multivoxel pat-
ern analysis that exploits evolving patterns of activity during task
erformance. Multivoxel pattern analysis is first used to distin-
uish patterns of activity associated with cognitive processes of
nterest, and the resulting classifier is then used to compute a mul-
ivoxel pattern time course that reflects fluctuations in cognitive

tate over time. Although here we modeled transient attention-
elated activity, there are a wide range of potential applications
f this method. These include modeling sustained attention to dif-
ogia 50 (2012) 479– 486 485

ferent spatial locations or objects and modeling working memory
operations for different stimuli or task sets.

A major advantage of this method is that it could provide a way
to track fluctuating brain states during tasks in which the timing
and effectiveness of a given cognitive operation (i.e., how rapid and
accurate was  a given shift of attention?) may not be closely tied to
external experimental events. For example, one could train a mul-
tivoxel pattern model to discriminate between patterns of activity
associated with high task engagement vs. patterns of activity asso-
ciated with low task engagement (e.g., during mind-wandering,
Christoff et al., 2009; or attentional lapses, Weissman et al., 2006),
and then apply the estimated weights to data from an indepen-
dent data set to predict fluctuations in behavioral performance.
These and other potential applications of the MVPTC may  provide
new insights into how ongoing changes in brain state give rise to
fluctuations in cognition and behavior.
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