Intensive Cognitive Communication Rehabilitation (ICCR) Program for Young Adults With Acquired Brain Injury

Boston University

College of Health & Rehabilitation Sciences: Sargent College Department of Speech, Language & Hearing Sciences Aphasia Research Laboratory Boston, MA

BACKGROUND

- Acquired Brain Injury (ABI) due to stroke or TBI typically results in chronic cognitive-communication impairments.¹⁻³
- Young adults (YAs) commonly experience ABI,^{5,6} which often negatively impacts their academic SUCCESS.
- Cognitive Rehabilitation (CR) is the gold standard treatment.¹
- Optimal CR includes:
- Impairment-based and functional approaches^{1,7}
- Principles of neural plasticity: a) intensity, b) age, c) repetition, and d) salience⁸
- Metacognitive strategy training and counseling^{1,9,10}
- None of the existing CR programs¹¹⁻¹⁴ for YAs with ABI currently incorporate elements of optimal CR in the academic setting or with the primary goal of enrolling in higher education.

CURRENT STUDY

Aim: To test the efficacy of a novel intensive cognitive-communication rehabilitation (ICCR) program, which simulates a college semester, for YAs with ABI interested in higher education

Research Questions:

Do participants...

- RQ1. show changes in cognitive-linguistic skills as a result of this novel intervention program? • RQ2. demonstrate the ability to acquire novel skills necessary for success in a functional
- environment? ✤ RQ3. progress toward personal and therapeutic goals over the course of treatment?
- *RQ4.* exhibit changes at the activity and participation levels, as well as changes to their quality
- of life, as a result of this program? METHODS

Participants		IVILINODS					
		P1	P2	P3	P4	C1	C2
Etiology		TBI	CVA	TBI	TBI	CVA	TB
Age		21	29	25	34	31	23
Sex		Μ	Μ	Μ	Μ	F	F
Education (years)		12	15	10	16	14	12
Months Post Onset		49	70	96	97	59	38
WAB-R	LQ	56.8	73.2	71.8	24.0	85.3	90.
	CQ	65.2	77.2	73.9	33.8	88.3	90.
	AQ	61.9	80.4	66.1	18.8	84.6	91.
RBANS - Index		45.0	64.0	46.0	48.0	76.0	52.

Pre- and Post-assessment

✤ Western Aphasia Battery-Revised (WAB-R)

- Repeatable Battery for the Assessment of Neuropsychological Status Update (RBANS Update)
- Scales of Cognitive and Communicative Ability for Neurorehabilitation (SCCAN)
- Discourse Comprehension Test (DCT) Child and Adolescent Scale of Participation (CASP)
- TBI-QOL & Neuro-QOL Subtests

Treatment

✤ 12 week simulated semesters (fall, spring, and summer)

	Monday	Tuesday	Wednesday
10:00			
11:00	PSYCHOLOGY	BIOLOGY	PSYCHOLOGY
12:00			
1:00	Lunch	Lunch	Lunch
2:00	US HISTORY	FINANCE	US HISTORY
3:00	TECH TRAINING	Individual SLP	TECH TRAINING

Natalie Gilmore, Katrina Ross, and Swathi Kiran

Boston University, College of Health and Rehabilitation Sciences: Sargent College, Boston, MA

8-9-				
		Final Goal Areas		
ment with	1.	Alternating/divided attention in a mildly distracting environment with minimal cues		
and extra	2.	Mixed concrete-abstract problem solving with minimal- moderate cues and extra time		
ete,	1.	Multi-step functional problem solving with moderate cues		
	2.	Organization and cognitive flexibility in functional situations with moderate-maximal cues		
ly mal cues	1.	10 minute sustained and selective attention in a classroom environment with minimal cues		
I cues and	2.	Minimally-moderately complex concrete problem solving with moderate-maximal cues and extra time		
repair 1.		Use total communication on 4-5 occasions to repair breakdowns given moderate cues		
a field of		Identify basic familiar pictures by name from a field of 4		
increased over time!				

This work was made possible by internal funding through the office of the Dean of Sargent College of Health and Rehabilitation Sciences and through the National Institutes of Health/National Institute on Deafness and Other Communication Disorders NIH/NIDCD: T32DC01301701A1S1.

- All three experimental participants showed gains in at least one domain and decreases in at least one domain.
- Decreases may have been due to increased insight into deficits or response shift

 \bullet Experimental participants in ICCR improved significantly in ≥ 1 cognitive-linguistic skill; controls

- ✤ All Semester 3 participants (n=3) exhibited more positive classroom behaviors over time. The classroom provided context for learning and generalization of skills and strategies.

CONCLUSIONS

There is a gap for YAs with ABI who want to return to higher education, and ICCR is a first step to

- The majority of participants demonstrated significant gains in standardized tests, classroom
- This study provides initial support for the effectiveness of ICCR as a form of CR for YAs with ABI. An intensive program based on principles of experience-dependent plasticity that incorporated classroom lectures, metacognitive strategy instruction, individual therapy and technology-based

SELECTED REFERENCES

- Kennedy et al. (2008). Intervention for executive functions after traumatic brain injury: A systematic review, meta-analysis and clinical recommendations. Neuropsych. Rehab., 18(3), 257–299.
- 7. Todis & Glang (2008). Redfining Success: Results of a Qualitative Study of Postsecondary Transition Outcomes for Youth with Traumatic Brain Injury. J Head Trauma Rehabil, 23(4), 252-263. 8. Kleim & Jones (2008). Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Sp, Lang, & Hear Res, 51(1), S225–S239.
- 11. Ylvisaker, Turkstra, & Coelho (2005). Behavioral and Social Interventions for Individuals with Traumatic Brain Injury: A Summary of the Research with Clinical Implications. Sem. Sp. and Lang., 26(4),
- 12. Persad, C., Wozniak, L., & Kostopoulos, E. (2013). Retrospective analysis of outcomes from two intensive comprehensive aphasia programs. Topics in Stroke Rehabilitation, 20(5), 388–397. 13. MacLennan & MacLennan (2008). Assessing readiness for post-secondary education after traumatic brain injury using a simulated college experience. NeuroRehabilitation 2, 521-528. 14. Cooper et al. (2017). Cognitive rehabilitation for military service members with Mild Traumatic Brain Injury: A randomized clinical trial. J Head Trauma Rehabil, 32(3). E1-E15.

ACKNOWLEDGEMENTS