White matter matters in the recovery of language in post-stroke aphasia

Erin L. Meier1, Jeffrey P. Johnson1, Yansong Geng1, Ajay Kurani2, James Higgins2, Todd Parrish2, Cynthia K. Thompson3, & Swathi Kiran4

Sargent College of Health and Rehabilitation Sciences, Boston University1; Feinberg School of Medicine, Northwestern University2; School of Communication, Northwestern University3

Background
- Lesion size has been highlighted as a critical predictor of language outcome in persons with stroke-induced aphasia (PWA)1-2
- Lesion symptom-mapping studies have implicated specific gray matter (GM) structures in certain language skills (e.g., naming, lexical-semantics)3-4
- Due to structural disconnects, metrics of regional white matter (WM) integrity may be more powerful predictors of language skills in PWA than GM metrics alone5-10
- However, the potential compensation by remaining GM and WM left hemisphere (LH) structures, and their right hemisphere (RH) homologues11-12 has received little attention in the context of naming in patients with anoma

Research Questions (RQs)

RQ #1: To what extent does the integrity of core LH WM regions differ from RH homologues in PWA?
- Hypothesis: Fractional anisotropy (FA): LH < RH; mean diffusivity (MD): LH > RH

RQ #2a: What is the relationship between bilateral GM and WM integrity and (a) aphasia severity and (b) naming skills in PWA?
- Hypothesis: All LH ROIs will predict aphasia severity whereas the strongest predictors of naming will be middle temporal and inferior frontal areas and their RH homologues13-14

RQ #2b: What type of LH model is best for predicting language?
- Hypothesis: GM+WM model will better predict language than either GM only or WM only models10

Participants
- 27 PWA (17M, 24 right-handed, mean age = 62.3 ± 10.5 years, time post CVA onset = 55.0 ± 52.1 months)
- The Western Aphasia Battery-Revised15 was used to index overall aphasia severity via the Aphasia Quotient (AQ)
- A 180-item non-standardized picture naming probe was administered to assess naming abilities
- PWA ranged in severity of aphasia and naming impairment as well as size and location of lesion

Lesion overlap (n = 27 PWA)

Methods: MR Data Acquisition
- Images acquired on a 3T Siemens Trio Tim scanner with a 20-channel coil
- T1-weighted (TR/TE = 2300/2.91ms, slice thickness = 1mm, 176 sagittal slices), TR-FLAIR (TR/TE = 9000/90ms, slice thickness = 5mm, 36 slices, acceleration x2) and DTI (TR/TE = 900ms/92ms, slice thickness = 2mm, 70 interleaved slices, b = 1000 s/mm²) scans collected
- Eight regions of interest (ROIs, i.e., ACC; superior, middle, and inferior frontal gyri [SFG, MFG, IFG]; middle and inferior temporal gyri [MTG, ITG]; and supramarginal and angular gyri [SMG and AG]) were identified and masks were extracted from the Harvard-Oxford (H-O) cort-maxprob-thr0,1mm template

Methods: MRI Data Processing
- Cortical gray matter
 - Lesion masks (lesion = 0) & maps (lesion = 1) manually drawn for each patient in MRcron
 - Lesion masks & maps used in segmentation and normalization
- GM integrity metrics:
 - Lesioned LH ROIs generated for each patient
 - Cortical integrity calculated by % spared tissue (H-O ROI volume – normalized lesion volume) / (H-O ROI volume) in MarsBar

RQ #1 Results: WM Metrics by Hemisphere
- FA by Hemisphere
 - FA significantly lower in LH than RH ROIs (F(1,52) = 10.15, p < .001) except for ACC (F(1,52) = 0.32, p = 0.58)
- MD by Hemisphere
 - MD was significantly higher in LH than RH ROIs (F(1,52) = 5.77, p < .001)

RQ #2 Results: Language Predictions
- Six components resulted from the PCA including all LH metrics (i.e., FA, MD, and %spared tissue)
- Metrics from certain adjacent regions loaded together

Conclusions
- Integrity metrics of LIFG and LH dorsomedial prefrontal regions were the strongest predictors of both aphasia severity and naming
- LMSG and LAG—highly damaged regions in this sample—also predicted AQ
- GM metrics (per PCA components) did not independently predict language skill
- For naming, the WM only and GM+WM models did not differ in predictive power
- WM integrity of LIFG and LACG is likely most critical for word retrieval16
- WM integrity of cortical ROIs (e.g., LAG, LMSG, and LMTG) aligns with established WM tracts like the arcuate fasciculus
- Next steps include determining the utility of regional versus en masse integrity metrics in predicting language therapy outcomes

Selected References

Acknowledgments

We would like to thank all the individuals who contributed to this project. Additional support was provided by the National Institute on Deafness & Other Communication Disorders (R01 DC015944) and the National Institute of Neurological Disorders and Stroke (R01 NS099901 and the Blueprint for Brain Health Initiative through a Partnership with the Patient-Centered Outcomes Research Institute (PCORI) Funded Research Project 1209-35513). The study was also supported by a National Institutes of Health (NIH) K23 career development award (K23 DC013607) and a National Science Foundation (NSF) Graduate Research Fellowship to SK.

Images and Data

- [Image 58x400 to 414x495](image1.png)
- [Image 339x58 to 627x197](image2.png)
- [Image 974x862 to 1281x1014](image3.png)
- [Image 982x787 to 1272x847](image4.png)
- [Image 983x471 to 1263x687](image5.png)

Table 1:
<table>
<thead>
<tr>
<th>Region</th>
<th>FA (LH)</th>
<th>FA (RH)</th>
<th>MD (LH)</th>
<th>MD (RH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>0.80</td>
<td>0.84</td>
<td>0.91</td>
<td>0.87</td>
</tr>
<tr>
<td>SFG</td>
<td>0.70</td>
<td>0.78</td>
<td>0.82</td>
<td>0.79</td>
</tr>
<tr>
<td>MFG</td>
<td>0.72</td>
<td>0.80</td>
<td>0.85</td>
<td>0.81</td>
</tr>
<tr>
<td>IFG (LH)</td>
<td>0.73</td>
<td>0.81</td>
<td>0.86</td>
<td>0.82</td>
</tr>
<tr>
<td>MTG</td>
<td>0.75</td>
<td>0.83</td>
<td>0.88</td>
<td>0.84</td>
</tr>
<tr>
<td>ITG</td>
<td>0.76</td>
<td>0.84</td>
<td>0.89</td>
<td>0.85</td>
</tr>
<tr>
<td>SMG</td>
<td>0.77</td>
<td>0.85</td>
<td>0.90</td>
<td>0.86</td>
</tr>
<tr>
<td>AG</td>
<td>0.78</td>
<td>0.86</td>
<td>0.91</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Table 2:
- **Research Questions (RQs)**
 - **Background**
 - **Participants**
 - **Methods: MR Data Processing**
 - **RQ #1 Results: WM Metrics by Hemisphere**
 - **RQ #2 Results: Language Predictions**
 - **Conclusions**

References