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Purpose: The purpose of the current study was to explore
nonlinguistic learning ability in individuals with aphasia,
examining the impact of stimulus typicality and feedback on
success with learning.
Method: Eighteen individuals with aphasia and 8 nonaphasic
controls participated in this study. All participants completed
4 computerized, nonlinguistic category-learning tasks.
Learning ability was probed under 2 methods of instruction:
feedback-based (FB) and paired-associate (PA). The impact
of task complexity on learning ability was also examined,
comparing 2 stimulus conditions: typical and atypical.
Performance was compared between groups and across
conditions.
Results: The controls were able to successfully learn
categories under all conditions. For the individuals with

aphasia, 2 patterns of performance arose: One subgroup of
individuals was able to maintain learning across task
manipulations and conditions; the other subgroup
demonstrated a sensitivity to task complexity, learning
successfully only in the typical training conditions.
Conclusion: Results support the hypothesis that impairments
of general learning are present in individuals with aphasia.
Some individuals demonstrated the ability to extract category
information under complex training conditions; others learned
only under conditions that were simplified and that
emphasized salient category features. Overall, the typical
training condition facilitated learning for all of the participants.
Findings have implications for treatment, which are discussed.
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A
lthough aphasia is a deficit that is characterized
primarily by impairments in language, an increas-
ing body of research has recently been dedicated to

understanding the contribution of cognitive deficits of
attention, concept knowledge, executive function, and
memory on language construction, use, and rehabilitation in
people with aphasia (PWA; Erickson, Goldinger, &
LaPointe, 1996; Fridriksson, Nettles, Davis, Morrow, &
Montgomery, 2006; Helm-Estabrooks, 2002; Hula &
McNeil, 2008; Keil & Kaszniak, 2002; Lesniak, Bak, Czepiel,
Seniow, & Czlonkowska, 2008; Murray, 2012; Peach, Rubin,
& Newhoff, 1994; Ramsberger, 2005; Zinn, Bosworth,
Hoenig, & Swartwelder, 2007). Expanding on these investi-
gations into cognitive deficits that likely impact rehabilitation

outcomes, we focused on learning ability, a skill that, to date,
has received limited attention in the field of aphasia.

Researchers have identified learning ability as a
central factor in rehabilitation (Ferguson, 1999; Hopper &
Holland, 2005) whether improvement involves facilitating
access to previously mastered information, developing
compensatory strategies in light of deficits, or learning new
information (Kelly & Armstrong, 2009; Tuomiranta et al.,
2011). In spite of this, only a select number of studies have
been dedicated to understanding how PWA learn. Studies
have shown that PWA are capable of demonstrating new
verbal learning (Breitenstein, Kamping, Jansen,
Schomacher, & Knecht, 2004; Freedman & Martin, 2001;
Gupta, Martin, Abbs, Schwartz, & Lipinski, 2006; Kelly &
Armstrong, 2009; Marshall, Neuburger, & Phillips, 1992;
Tuomiranta et al., 2011), and in addition, that learning
ability appears to be related to PWA’s profiles of linguistic
(Grossman & Carey, 1987; Gupta et al., 2006) and cognitive
strengths and deficits (Freedman & Martin, 2001). Our
understanding of learning in PWA is still limited, however,
particularly because all of the recent studies have explored
verbal learning without exploring nonverbal learning.
Language is the primary deficit in aphasia, so it is likely that
language deficits interfere with patterns of learning when
tasks are verbal or grammatically structured. We hypothe-
size that behavioral patterns observed during nonverbal
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learning tasks will shed new light on the process of learning
in PWA.

As a first step toward examining this possibility, we
recently explored nonlinguistic category learning in PWA
and age-matched controls (Vallila-Rohter & Kiran, 2013). In
this study, 19 PWA and 12 nonaphasic controls were tested
as they completed computerized nonlinguistic, multidimen-
sional category-learning tasks. Tasks were similar to those
described in the current paper. Results showed that different
profiles of learning arose between the PWA and the controls.
Only 11 out of the 19 PWA showed learning of categories
compared with across-the-board learning by the control
participants. Interestingly, measures of participants’ cogni-
tive or linguistic abilities did not correlate with their
performance on learning tasks. These results highlight that
nonlinguistic learning ability is affected in PWA. The reasons
for incomplete learning in this group, however, remain
unanswered and merit further investigation.

Although little is known about nonverbal learning in
PWA, studies involving other clinical populations and
healthy individuals have investigated patterns of behavior
that arise during various types of nonverbal learning.
Research has demonstrated that manipulations of training
method, stimulus characteristics, category structure, and
response selection impact learning results (Ashby, Maddox,
& Bohil, 2002; Ashby, Noble, Filoteo, Waldron, & Ell, 2003;
Davis, Love, & Maddox, 2009; Filoteo & Maddox, 2007;
Knowlton, Squire, & Gluck, 1994; Maddox, Love, Glass, &
Filoteo, 2008).

Often, manipulations of task and instruction method
have been found critical to promoting learning in individuals
with brain damage. Individuals with Parkinson’s disease
(PD), for example, have shown impaired procedural-based
learning, information integration, and rule-based learning,
particularly when stimuli pose high working memory or
attention demands (Ell, Weinstein, & Ivry, 2010; Filoteo &
Maddox, 2007; Filoteo, Maddox, Ing, Zizak, & Song, 2005;
Price, 2006). These individuals show intact artificial grammar
learning (Reber & Squire, 1999; Smith, Siegert, &McDowall,
2001; Witt, Nuhsman, & Deuschl, 2002) and intact
information integration learning under conditions of limited
complexity (Ashby et al., 2003; Filoteo, Maddox, Salmon, &
Song, 2005). Similarly, individuals with amnesia are sensitive
to instruction method, demonstrating impairments in learn-
ing that involves recall and recognition (Filoteo, Maddox, &
Davis, 2001; Graf, Squire, & Mandler; 1984; Knowlton,
Ramus, & Squire, 1992), yet showing successful learning of
probabilistic classification tasks (Knowlton et al., 1994).

The mechanism underlying the facilitation or impair-
ment of learning for these individuals is thought to be related
to the existence of multiple memory systems that rely on
different neurobiological structures and support learning in
different ways. Many types of learning rely on the recall of
individual instances, facts, or events consciously or uncon-
sciously in order to form associations between previously
unrelated stimuli. Conscious learning of this type, termed
explicit learning, is thought to rely heavily on the hippo-
campus and medial temporal lobe structures (Seger & Miller,

2010; Squire, 1992, for review). Explicit systems are
considered important for rule learning (Breitenstein et al.,
2005; Squire, 1992; Warringon &Weiskrantz, 1982; Winocur
& Weiskrantz, 1976), and, as described in the competition
between verbal and implicit systems model (Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Maddox & Ashby, 2004,
for review), explicit systems are likely engaged in the early
stages of many additional types of category learning. In these
stages, learners are thought to engage logic and reasoning to
form hypotheses; often verbalizable ones. Hypotheses are
then tested and results are monitored. Such processes are
proposed to rely heavily on attention and working memory
networks.

In contrast, unconscious systems have been thought
critical for gradual learning, particularly of statistical
properties, complex or abstract information, and learning via
trial-by-trial feedback (Ashby et al., 1998; Keri, 2003;
Knowlton, Mangels, & Squire, 1996; Knowlton & Squire,
1993; Maddox & Ashby, 2004; Seger & Miller, 2010, for
review). This type of learning is carried out via automatic
processes that incrementally reinforce experiences (Ashby et
al., 1998; Knowlton & Squire, 1993). Research suggests that
unexpected rewards trigger the release of dopamine, which
gradually strengthens the association between cues and
responses (Seger & Miller, 2010; Shohamy et al., 2004;
Shohamy, Myers, Kalanithi & Gluck, 2008). Therefore,
feedback appears to be critical to this type of learning (Ashby
et al., 1998; Ashby & Crossley, 2010; Ashby & Maddox,
2011; Ashby & Valentin, 2005; Keri, 2003; Maddox &
Ashby, 2004; Maddox, Ashby, Ing, & Pichening, 2004; Seger
& Miller, 2010).

Although certain conditions are thought to emphasize
the engagement of one memory system over another,
research has suggested that these systems can interact or
compete throughout learning (Ashby et al., 2008; Ashby &
Crossley, 2012; Ashby & Valentin, 2005; Cincotta & Seger,
2007; Moody, Bookheimer, Vanek, & Knowlton, 2004;
Poldrack et al., 2001; Seger & Miller, 2010). Of particular
relevance to the current study, Ashby et al. (2002) explored
learning strategies employed under conditions of feedback-
based (FB) and paired-associate (PA; observational) training
on an information integration task. Results suggested that
the presence of feedback led to an effective reliance on
automatic processes of information integration. In contrast,
observational paradigms led to a high reliance on rule-based
strategies. Ashby et al. (2002) proposed that observation
learning reduced instances of unexpected reward and there-
fore interfered with the automatic processes of information
integration. In our study, we examined the rates of successful
learning when participants learned multidimensional cate-
gories under conditions with and without feedback.

Another factor that we explored in the current study is
stimulus complexity, as complexity has been the focus of
considerable research in aphasia rehabilitation. Studies in
aphasia have noted generalization from complex to less
complex related structures. This has been observed following
both syntactic therapy (Thompson, 2001; Thomson, Ballard,
& Shapiro, 1998; Thompson et al., 1997; Thompson,
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Shapiro, & Roberts, 1993) and semantic therapy (Kiran,
2007, 2008; Kiran, Sandberg, & Sebastian, 2011; Kiran &
Thompson, 2003a, 2003b). Such observations led to the
formulation of the complexity account of treatment efficacy
(CATE) hypothesis (Thompson, Shapiro, Kiran, & Sobecks,
2003), which draws attention to the potential impact of
stimulus complexity on treatment outcomes and general-
ization patterns in PWA.

Motivation for the development of CATE came from
results that were obtained through aphasia treatment studies
as well as from connectionist principles of generalization. In
his influential paper, Plaut (1996) used connectionist
modeling to explore patterns of relearning after damage. One
computational experiment focused on the impact of training
typical or atypical words produced two major findings: First,
the retraining simulation showed better overall learning of
typical words than of atypical words. Second, and critical to
the CATE hypothesis, training on atypical words resulted in
substantial generalization to untrained typical words. Plaut
posited that training of atypical exemplars highlights feature
variability within a category, simultaneously providing
information about the breadth of categories and of central
category tendencies. This breadth of information was lacking
when models were trained only on typical words, resulting in
limited generalization.

In the current study, we aimed to better understand
nonlinguistic category-learning ability in PWA, exploring the
impacts of both instruction method and stimulus character-
istics on an individual’s success with learning. We examined
nonlinguistic learning ability in PWA and nonaphasic
controls, comparing FB instruction and PA instruction.
Within these two conditions, we explored the impact of
stimulus characteristics, comparing one condition in which
training emphasized salient category features (typical train-
ing) and another condition in which training highlighted
feature variability within categories (atypical training). We
further explored whether demographic variables or standar-
dized measures of cognitive–linguistic ability demonstrated a
predictive relationship with participants’ learning scores.

We hypothesized that participants would learn better
under FB conditions, as research has suggested that implicit
systems that are sensitive to feedback are better suited for
complex category learning that requires information inte-
gration (Ashby et al., 2002). We also hypothesized that
typical training would result in better overall learning rates
than atypical training. Based on connectionist theories, we
proposed that following atypical training, participants would
show generalization of learning to typical items.

Method

Participants

Eighteen (10 men and eight women) PWA subsequent
to single left-hemisphere stroke participated in this study.
The mean age of participants was 61.32 (ranging from 33.7 to
77.2 years; SD = 12.17), and they had completed an average
of 15.83 years of education (ranging from 11 to 19 years; SD
= 2.92; see Table 1). Fifteen PWA were Caucasian, two were

Black, and one was of Hispanic ethnicity. The PWA were
tested at least 6 months after the onset of their stroke and
had degrees of aphasia severity ranging from mild to severe,
as determined by Western Aphasia Battery (WAB; Kertesz,
1982) aphasia quotients (AQs from 24.8 to 98). Our patient
population represented a heterogeneous sample including
patients with conduction, Broca’s, Wernicke’s, transcortical
motor, and anomic aphasia, as determined by the WAB. All
of the PWA were premorbidly right-handed and were
medically and neurologically stable at the time of testing.
One participant dropped out of the study before completing
the diagnostic test battery and therefore is missing measures
of cognitive–linguistic ability and was not assigned an
aphasia type.

Eight nonaphasic controls (three men and five women)
were also recruited to participate in this study. These
participants had no known history of neurological disease;
psychiatric disorder; or developmental speech, language or
learning abilities. The mean age of the controls was 62.87
(ranging from 57.2 to 72.6 years; SD = 6.58), and they had
completed an average of 16.5 years of education (ranging
from 16 to 18 years; SD = 1.03; see Table 1). One control,
Cn 4, was left-handed. All of the controls were Caucasian.
Because we were most interested in patient patterns of
learning, we included only a small group of similarly aged
nonaphasic controls to serve as a baseline.

Stimuli

Stimuli for the current study were two sets of cartoon
animals that were created by Zeithamova, Maddox, and
Schnyer (2008) and were first reported in Vallila-Rohter and
Kiran (2013). Each animal had one of two possible feature
values for 10 dimensions: neck length (long or short), tail
shape (straight or curled), toes (pointed or curved), snout
(round or pointed), ears (pointed or rounded), color (purple
or pink), body shape (pyramidal or round), body pattern
(spots or stripes), head direction (upward or downward), and
leg length (long or short). Two orthogonal categories were
created per stimulus set. For each category, one animal was
selected as prototype A, with the animal that differed from
that prototype by all 10 dimensions identified as prototype B.
The remaining 1,024 animals in each stimulus set were
grouped by their distance from prototype A, each distance
increment describing the number of features by which the
animals differed from prototype A. Thus, animals at distance
1 from prototype A had a nine-feature overlap with that
prototype, animals at distance 2 had an eight-feature overlap
with prototype A, and so forth. The binary nature of the
features meant that with each increasing distance increment
from prototype A, the animals had an increasing feature
overlap with the prototypical animal of the opposite
category, B (i.e., animals at distance 1 had a nine-feature
overlap with prototype A and a one-feature overlap with
prototype B, animals at distance 2 had an eight-feature
overlap with prototype A and a two-feature overlap with
prototype B, etc.). In this manner, two categories were
established along a continuum that depended on feature
overlap with each prototypical animal.
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Category membership was delineated by the percen-
tage of features that were shared with each of the two
prototypes. All animals that shared at least six features with
a prototype (60% feature overlap) were considered members
of that category. Animals that were at distance 5 were not
considered members of either category and were expected to
be categorized with each of the two prototypes with a rate of
50%. Within a category, animals that had a high feature
overlap with the prototype, meaning that they had eight to
nine features in common with the prototype (80% to 90%
feature overlap) were considered typical category members.
Animals that matched the prototype’s features by only six to
seven features (60% to 70% feature overlap) were considered
atypical category members (see Figure 1).

Design and Procedures

Testing was completed in a quiet room at Boston
University in the presence of a speech-language pathologist
(SLP) over the course of up to 6 days (one paradigm per
session for the PWA and up to two paradigms per session for
the controls). Tests were computer-based and were pro-
grammed using E-Prime software (Psychology Software
Tools, n.d.). The PWA completed the WAB, the Boston
Naming Test (BNT; Kaplan, Goodglass, & Weintraub,
1983), and the Cognitive Linguistic Quick Test (CLQT;

Helm-Estabrooks, 2001), all of which are standardized
cognitive–linguistic measures.

Both the PWA and the controls completed category-
learning tasks for which instruction method was either FB or
PA, with training items that were either typical (Typ)
category members or atypical (Atyp) category members.
Combining these task manipulations, four conditions were
established: FB Typ, FB Atyp, PA Typ, and PA Atyp. One
person with aphasia dropped out after completing only three
out of four tasks. Each category-learning paradigm consisted
of a 10-min training phase followed by a 10-min testing
phase and is described in further detail in the following
paragraphs. Of note, before completing these four category-
learning paradigms, each participant completed a baseline
FB task and a baseline PA task, as reported in Vallila-Rohter
and Kiran (2013) and also briefly described in the following
paragraphs. Results from the current study were interpreted
independently and within the context of baseline tasks.
Stimulus sets and learning tasks were counterbalanced across
participants, and paradigms were built such that no animal
was repeatedly presented across paradigms (see Figure 2 for
a possible sequence of tests). At the start of testing, an SLP
used illustrated pictures to explain the tasks to the
participants. The participants were told that they would be
completing multiple paradigms, each requiring them to learn

Table 1. Study participants’ demographics.

ID Age Gender Ed. MPO Aphasia typea Comp.b Attn.c Mem.c Exec.c Visuoc BNT AQ

IWA1 33.7 Female 14 6 Con. 91 WNL Sev Mod WNL 0 24.8
IWA 2 49.7 Female 18 24 Anomic 185 WNL WNL WNL WNL 100.0 93.9
IWA 3 52.7 Female 12 25 Wern. 116 WNL Sev Mod WNL 6.7 41.4
IWA 4 52.7 Male 16 107 Con./Wern. 142 Mild Sev WNL WNL 6.7 48.0
IWA 5 61 Male 13 6 Anomic 192 Mild Mild Sev Mild 80.0 91.0
IWA 6 63.7 Female 18 18 Anomic 143 Mild Sev Sev Mild 13.3 67.7
IWA 7 65.7 Female 18 41 Bro. 120 Mild Sev Sev Mild 0 28.4
IWA 8 69.5 Male 21 27 Wern. 78 Mild Sev Mild WNL 0 33.8
IWA 9 77.2 Female 16 94 Anomic 200 WNL WNL WNL WNL 98.3 98.0
IWA 10 86.8 Male 12 13 Anomic 185 Mild Mod Mild Mild 58.3 88.1
IWA 11 51.9 Male 11 260 Anomic 175 Mod Sev Mild Mild 31.7 61.3
IWA 12 59.5 Male 19 26 Anomic 178 WNL Mod WNL WNL 78.3 82.8
IWA 13 61 Male 16 45 Con. 168 WNL WNL WNL WNL 43.3 67.9
IWA 14 63.6 Female 16 64 Anomic 174 WNL Mod Mod WNL 30.0 69.1
IWA 15 67.5 Female 12 28 TCM 179 Mod Sev Mod Sev 83.3 82.2
IWA 16 68 Male 19 13 Anomic 74 Mild Mild Mod Mild 30.0 74.3
IWA 17 47.7 Male 16 86 81.7
IWA 18 71.9 Male 18 15 Con. 139 WNL Mild WNL WNL 85.0 76.7
Cn 1 57.6 Female 18
Cn 2 57.7 Female 18
Cn 3 57.2 Female 16
Cn 4 59.7 Female 16
Cn 5 69.5 Male 16
Cn 6 70 Male 18
Cn 7 72.6 Female 16
Cn 8 58.7 Male 16

Note. Ed. = education in years; MPO = months post onset of stroke; BNT = Boston Naming Test (Kaplan, Goodglass, & Weintraub, 1983); AQ
= aphasia quotient of the Western Aphasia Battery (WAB; Kertesz, 1982; higher scores represent lower degrees of aphasia severity); IWA =
individual with aphasia; Cn = control.
aAphasia type = conduction (Con.), Wernicke’s (Wern.), Broca’s (Bro.), and transcortical motor (TCM). bComp. = comprehension as determined
by the WAB. cAtt. = attention, Mem. = memory, Exec. = executive functions, and Visuo = visuospatial skills as determined by the Cognitive
Linguistic Quick Test (Helm-Estabrooks, 2001). CLQT scores are within normal limits (WNL), mild, moderate (Mod), or severe (Sev).
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to recognize animals as belonging to one of two families. The
participants were informed that each task would have a
similar overall structure, but that each was unique.

In FB learning, pictures of the animals were presented
one at a time on a computer screen for 4,000 ms. The
participants were required to guess each animal’s affilia-
tion, indicating their selection with a left-handed button
press, 1 or 2, corresponding to categories A and B,
respectively. If the participants did not respond within the
4,000-ms time frame, a message appeared indicating that they
had responded too slowly. The participants received feedback
for 3,000 ms after each trial that indicated the correct
category affiliation and whether their response was correct or
incorrect. Animals remained on screen for a total of 7,000 ms.

This design encourages gradual trial-by-trial learning through
feedback.

In PA learning, pictures of the animals were presented
one at a time, this time with a label denoting their category
affiliation. In each trial, the participants were instructed to
press the button that matched the indicated category as soon
as the picture appeared on the screen. The overall structure
and timing of the FB task was maintained in the PA
condition. The animals remained on screen for 7,000 ms and
were followed by a 1,000-ms fixation cross before advancing
to the next animal. This design supports the formulation of
stimulus response associations.

The FB and PA instruction paradigms were similarly
structured and started with a 10-min training phase

Figure 1. Sample animal stimuli contributed by Zeithamova, Maddox, and Schnyer (2008). Animals are
arranged according to the number of features with which they differ from each prototypical animal. The
number of features by which an animal differs from each prototype is referred to as its distance from the
prototype. Typical animals share 80% to 90% of their features with prototypes. Atypical animals share 60%
to 70% of their features with prototypes.

Figure 2. Sample sequence of testing. All participants completed baseline tasks followed by the completion
of four additional category-learning tasks. Task instruction, typicality, stimulus set, and prototype were
counterbalanced across participants.
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consisting of 60 categorization trials. Prototypes were never
presented in training. Within these parallel task structures,
we constructed two training conditions: typical and atypical.
Recall that stimuli in each category were grouped into typical
animals (animals that had an 80% to 90% feature overlap
with the prototype) and atypical animals (animals that had a
60% to70% overlap with the prototype).

Under typical training conditions, all 60 stimulus
animals presented in training were typical to categories.
Participants therefore saw each feature associated 24 to 30
times with one category and only three to six times with the
opposite category. This condition was created in order to
emphasize typical category features, increasing their salience
through training. Under atypical training conditions, overall
task structure was maintained, the only manipulation being
that the 60 stimulus animals presented in training were all
atypical to categories. Participants therefore saw each feature
associated 15 to 21 times with one category and nine to 15
times with the opposite category. This condition was created
in order to emphasize the feature variability of categories.
Vallila-Rohter and Kiran’s (2013) FB baseline and PA
baseline tasks were similarly structured to these paradigms;
however, in the baseline conditions, the 60 stimulus items
presented in training included both typical and atypical
exemplars.

All training paradigms were followed by a 72-trial
testing phase. Following all training conditions, the partici-
pants were tested on their categorization of prototypes,
typical and atypical items. We were interested in examining
participants’ abilities to learn not only animals within the
group to which they were exposed in training (typical or
atypical), but whether learning generalized such that
participants showed feature matching of their responses
across category items. Test items included novel animals and
animals that had been seen in training. In this phase, the
animals appeared one at a time on a computer screen and
participants were given 4,000 ms to indicate each animal’s
category affiliation with a button press. No feedback was
provided. Testing phases were identically structured follow-
ing all conditions. Data were collected on accuracy and
reaction time, although at this time, only accuracy data are
reported and analyzed. Accuracy rates were examined to
determine whether the participants learned overall category
structure across tasks.

Research has shown a tendency for participant
responses to probability match stimulus characteristics
during probabilistic learning (Knowlton et al., 1994).
Therefore, for our experimental tasks, we predicted success-
ful learning to correspond to responses that matched the
percentage of feature overlap with prototypes (i.e., animals at
distance 1 would be categorized with prototype B in 10% of
trials and with prototype A in 90% of trials). This prediction
is further supported by results of our previous study (Vallila-
Rohter & Kiran, 2013). We predicted the percentage of B
response (%BResp) scores to increase by 10% with each
ordinal increase in distance from prototype A. Thus,
successful learning of the category corresponds to a linearly
increasing %BResp with a slope of +10. Chance response

would produce 50% BResp across all distances from the
prototype, corresponding to a slope of 0.

This model also allows us to probe the question of
generalization from atypical items to typical items following
training. In order to produce %BResp scores that satisfy our
conditions for learning following atypical training, partici-
pants must produce categorizations with a high probability
match for typical exemplars and prototypes. Therefore,
successful learning following atypical training necessitates
generalization from atypical exemplars to typical exemplars.
Due to the nature of our task, where atypical exemplars have
a 30% to 70% feature match with prototypes (close to chance
response of 50%), we are unable to measure generalization
from typical to atypical items.

Data Analysis

For each participant, mean accuracy scores at each
distance from prototype A were first converted into a
%BResp score. This allowed us to examine responses and
trends as a function of distance from prototype A. Once
scores were converted to a %BResp score at each distance,
we analyzed overall performance using a mixed model
analysis of variance (ANOVA) with typicality (Typ vs. Atyp)
and instruction method (FB vs. PA) as within-subject factors
and group (PWA vs. controls) as the between-subject factor.
Main effects of group, typicality, or instruction method
would demonstrate that group or task manipulations
impacted performance.

Next, we examined individual participant results to
determine whether %BResp scores did, in fact, match the
probability of feature overlap with prototype A across all
distances. In order to do this, we tested scores for linearity
and also examined slopes of %BResp with increasing
distance. As described above, correct probability matching
on our task corresponds to a linearly increasing %BResp
with a slope of +10. Scores were tested for linearity using a
method described by Cox and Wermuth (1994) and Gasdal
(2012). In this method, three model regressions with different
independent variables are compared. For our task, the three
modeled independent variables were our distance term, the
square of our distance term, and the cube of our distance
term. In order to satisfy conditions of linearity, %BResp
scores had to produce a significant regression between
%BResp and our distance term with an alpha value <.05 that
was also the greatest significance value across models. We
computed a linear regression coefficient for each result. Each
participant was assigned a score of learning (slope) for each
training condition based on linear coefficients. Using these
analyses, we were able to examine the patterns of learning
across conditions for the PWA and controls.

Finally, we used regression analyses to explore
relationships between PWA slope scores of learning, demo-
graphic information, and standardized cognitive–linguistic
measures. Four linear regressions were run with the
independent variables: age, education, and months post
onset (MPO). Each of the four linear regressions had a
different dependent variable: slope score following FB Typ,
FB Atyp, PA Typ, and PA Atyp training. Four additional
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linear regressions were run, this time evaluating PWA slope
scores of learning and standardized measures of cognitive
linguistic ability. In these regressions, we explored AQ,
attention, memory, executive function, and visuospatial skills
as determined by composite scores on the CLQT.

Results

Our 2 × 2 × 2 mixed model ANOVA yielded a
significant main effect of group, F(1, 23) = 14.52, p < .01,
demonstrating that performance on our task differed
between the PWA and controls. There was also a significant
main effect of typicality, F(1, 23) = 11.67, p = <.01,
indicating that performance varied depending on whether
instruction was focused on typical or atypical exemplars. The
interaction between typicality and group was nonsignificant,
F(1, 23) = 0.46, p = .50, suggesting that stimulus typicality
influenced the performance of both PWA and controls.
There was no significant main effect of instruction method, F
(1, 23) = 0.13, p = .72. Thus, results do not suggest an
advantage of one method of instruction over another, FB or
PA. Similarly, the interaction between instruction method
and group was nonsignificant, F(1, 23) = 0.32, p = .57.

Slope scores for all four test conditions and for
baseline conditions for the PWA and controls are provided
in Table 2. Slope scores marked with an asterisk indicate
scores that satisfied our conditions of linearity and produced
significant positive regression results. Figure 3 shows sample

plots of %BResp as a function of distance in which a linearly
increasing %BResp with a slope approaching 10 is evident.

An examination of individual control results revealed
that six out of eight controls were able to successfully learn
categories under every condition: FB Typ, FB Atyp, PA Typ,
and PA Atyp. One control participant (Cn 1) learned under
all conditions except the PA Atyp condition, and another
control participant (Cn 4) learned only following typical
training (see Table 2 and Figure 4a).

Upon examination of individual patient results, we
found that nine out of 18 PWA were able to learn categories
under at least one atypical training condition. All nine of
these PWA were also able to learn categories successfully
following at least one typical training condition, FB or PA.
We examined the performance of these PWA on our
previously published baseline conditions (Vallila-Rohter &
Kiran, 2013) and found that of the nine PWA who learned
following at least one atypical training condition, six also
demonstrated successful learning of at least one baseline task.

Of the nine remaining PWA who did not learn
following atypical training, eight were able to learn under at
least one typical training condition, FB or PA. Among these
PWA, only three were able to successfully learn baseline
tasks from our previous study. Results suggest an overall
more limited ability to extract central category tendencies
from training items that contain category variability. For
these PWA, learning occurred primarily under conditions
that emphasized feature overlap between categories.

Table 2. Study participants’ slope scores at baseline and following feedback-based (FB) and paired-associate (PA) training on typical (Typ) and
atypical (Atyp) items.

Participant FBBaseline PABaseline FBTyp FBAtyp PATyp PAAtyp

IWA 1 10.26* –9.07 10.41* 10.84* 10.10* –8.29
IWA 2 9.48* 8.29* 8.75* 6.73* 9.61* –1.04
IWA 3 7.66* –9.46 9.89* 10.11* 9.719* 9.59*

IWA 4 9.48* 7.96* 8.48* –5.96 10.74* –6.6
IWA 5 –1.9 9.57* 9.35* –1.5 0.06 9.35*

IWA 6 –7.32 5.15* 0.88 –5.96 8.01* 8.48*

IWA 7 –9.74 9.81* 10.00* 8.98* –10.11 9.00*

IWA 8 6.71* 6.06* 10.21* 1.07 –4.03 4.26
IWA 9 1.95 4.87* 10.52* 9.09* 11.21* 8.01*

IWA 10 3.94 7.84* 5.14* 2.08 4.74* 8.27
IWA 11 –3.33 –2.45 11.39* 6.10* 6.88* –4.61
IWA 12 –0.52 1.91 9.72* 2.48 8.79* –1.99
IWA 13 –0.78 –4.37 10.23* –5.76 3.92 1.69
IWA 14 2.27 –1.04 –0.96 0.76 11.47* 1.86
IWA 15 –1.17 3.4 –2.36 –4.08 –7.42
IWA 16 2.55 –2.66 7.58* –2.93 –1.77 2.77
IWA 17 –1.17 1.93 10.61* –6.21 9.61* –7.51
IWA 18 –0.52 –0.76 10.61* –6.212 3.333 8.29*

Cn1 8.70* 9.22* 7.27* 6.74* 7.84* –3.55
Cn2 6.62* 8.74* 11.20* 8.27* 12.79* 4.46*

Cn3 4.63 11.75* 10.64* 9.59* 11.15* 8.44*

Cn4 8.96* 11.49* 10.73* –5.39 11.21* 4.31
Cn5 7.96* 10.56* 9.91* 9.68* 9.35* 7.47*

Cn6 7.71* 8.40* 8.45* 10.43* 12.25* 9.57*

Cn7 5.89* 7.53* 8.48* 9.89* 11.26* 9.63*

Cn8 10.52* 9.61* 7.58* 7.59* 9.44* 8.98*

Note. Slope scores marked with an asterisk satisfied our conditions of linearity and also produced positive significant regressions with ordinal
distance from prototype A. These slopes represent successful learning of categories.
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Figure 3. Sample plots of %BResp as a function of distance for two control participants. Solid lines represent results for the typical training
condition, and dotted lines reflect results from the atypical training condition.

Figure 4. Slope scores of learning across tasks for control participants (top panel, A) and for patient participants (lower panels, B).
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Our regression analyses exploring patient learning scores
(slopes) with demographic measures produced only one
significant relationship. Age was significantly related to slope
scores on the PAAtyp condition (p< .01, see Table 3). Results
from all other regressions of demographic measures and slope
scores of learning in FB Typ, FB Atyp, PA Typ, and PA
Atyp conditions were nonsignificant. Similarly, all linear
regressions between slope scores and cognitive–linguistic
measures of AQ, attention, memory, executive function, and
visuospatial skills were nonsignificant (see Table 3).

Discussion

In this study, we extended our previous examination
of learning ability through an investigation into the impact
of training method and stimulus characteristics on the
nonlinguistic category learning ability of PWA and a control
group of nonaphasic individuals. We compared FB and PA
instruction on a multidimensional category-learning task;
conditions that researchers have posited might differentially
engage learning systems through the course of learning. We
posited that PWA would learn better under FB conditions,
as researchers have found improved information integration
learning under FB conditions (Ashby et al., 2002).

For both the PWA and controls, overall learning
ability was similar under FB and PA conditions. Thus, for
our task, there was no observed advantage of feedback over
observational training. Our task differed from the task
implemented in Ashby et al. (2002) by stimulus type and
categorical rules. The probablistic multifeature characteris-
tics of our category likely precluded the use of a rule-based
strategy. We suspect that successful learning on our task
requires instance memory and automatic processes under
both instruction paradigms. Feedback presence or absence
likely influenced strategy use, but overall was not facilitative
or disruptive.

Results suggest that when PWA are able to successfully
learn categories, they can do so under either FB or PA
conditions. These findings are in line with results from our
previous study (Vallila-Rohter & Kiran, 2013). Unlike in PD
and amnesia, foci of neural damage in aphasia are in language
areas and not in regions that are critical to learning and
memory. We suspect that like the controls, PWA can engage
explicit or automatic processes throughout learning. Specific
learning methods may be more effective for certain individuals
with aphasia, but these were not identified in the current study.

Our second stimulus factor of interest, stimulus
typicality, did significantly impact performance on our tasks.

Table 3. Regression results exploring the slope scores and the patient demographic and linguistic variables.

Dependent variable Independent variable B Standard error (of B) β Significance

FB Typ Age –0.09 0.09 –0.27 0.30
Education 0.38 0.38 0.26 0.33
MPO 0.02 0.02 0.25 0.36

FB Typ AQ –0.17 0.10 –1.10 0.13
Attention –0.04 0.06 –0.45 0.56
Memory 0.08 0.07 0.87 0.27
Executive function 0.22 0.30 0.37 0.46
Visuospatial 0.02 0.15 0.12 0.90

FB Atyp Age –0.09 0.13 –0.18 0.50
Education –0.40 0.58 –0.19 0.51
MPO 0.00 0.03 0.01 0.97

FB Atyp AQ –0.06 0.17 –0.27 0.72
Attention 0.06 0.10 0.55 0.52
Memory –0.04 0.11 –0.27 0.75
Executive function 0.56 0.48 0.63 0.26
Visuospatial –0.12 0.25 –0.50 0.63

PA Typ Age –0.19 0.14 –0.35 0.18
Education –0.08 0.59 –0.04 0.89
MPO 0.02 0.03 0.17 0.52

PA Typ AQ –0.24 0.18 –0.97 0.21
Attention –0.02 0.10 –0.16 0.85
Memory 0.17 0.12 1.19 0.18
Executive function 0.18 0.51 0.19 0.73
Visuospatial –0.06 0.26 –0.23 0.82

PA Atyp Age 0.36 0.09 0.69 <0.01**
Education –0.53 0.41 –0.23 0.22
MPO –0.04 0.02 –0.38 0.06

PA Atyp AQ 0.24 0.15 1.05 0.14
Attention 0.12 0.09 1.05 0.21
Memory –0.10 0.01 –0.78 0.35
Executive function –0.32 0.47 –0.35 0.51
Visuospatial –0.15 0.25 –0.57 0.56

**p < .01.
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Overall, we found that the typical training condition
facilitated learning for all participants—both PWA and
controls. These findings are supported by Plaut’s (1996)
work that noted that connectionist networks relearned
trained items faster when exposed to typical category
exemplars than when trained on atypical category exemplars.
Plaut proposed that typical training conditions highlight
salient category features, reducing the complexity of training.

Regarding atypical training conditions, we first found
that most control participants showed successful category
learning in this condition. Successful learning following
atypical training requires accurate categorization of typical
items. Therefore, data from six controls demonstrated
support for connectionist principles that suggest that high-
lighting feature variability provides not only information
about category breadth, but also about central category
tendencies (Plaut, 1996). The majority of the controls were
able to successfully extract category information in a short
period of time despite high task demands.

For our participants with aphasia, only 50% were able
to extract central category tendencies following training that
highlighted feature variability. Examination of their results
on baseline tasks showed that most of these PWA also
learned under baseline conditions. We propose that these
participants have robust category-learning mechanisms that
allowed them to recognize and track patterns efficiently. In
contrast, 50% of the PWAwere able to successfully learn only
under the typical training condition. These participants did
not demonstrate the ability to extract central category
tendencies from atypical training items, and in addition,
generally did not successfully learn under baseline conditions.
Thus, for seven of the 18 PWA, learning was only successfully
achieved when instruction highlighted feature overlap within
categories. For these participants, an emphasis on central
category tendencies proved critical to successful learning. We
propose that for these participants, general mechanisms of
learning are impaired, successful category learning occurring
only under conditions that are facilitative and simplified.

In our examination of the relationship between
demographic and cognitive–linguistic variables and learning
scores, only age and slope scores in the PA Atyp condition
were significant. Standardized measures of the WAB and
CLQT did not predict success with our task. We propose
that nonlinguistic category learning tasks represent a unique
cognitive measure that has not yet been captured through
standardized tests of aphasia. Furthermore, we hypothesize
that the aphasia-inducing strokes that each of our PWA
experienced may have differentially affected their learning
and language networks. Some patients may have severe
language deficits within the context of a relatively preserved
system for category learning. Others may experience mild
language deficits within a more significantly impaired
category-learning network. It is also possible that current
results are reflective of different premorbid learning abilities
in our study participants.

Clinically, our results demonstrate differential cate-
gory-learning abilities among PWA. Category learning
depends on the ability to detect and integrate commonalities

or patterns and is considered essential toward helping us
rapidly recognize and classify objects meaningfully (for
review, see Ashby et al., 1998; Ashby & Maddox, 2005; Keri,
2003; Seger & Miller, 2010). Current results suggest that post
stroke, some PWA may have difficulty engaging in such
integrative processes. We do not suggest that these PWA lose
the ability to learn categories entirely. Our task engaged
participants in very short phases of learning of complex
information. It is conceivable, however, that many PWA
may experience difficulty in the process of integrating
commonalities across stimuli.

We propose that PWA who experience difficulty
integrating commonalities during our task might also have
difficulty integrating commonalities during treatment. Thus,
for these PWA, treatments that focus on simple targets and
simple tasks that reinforce salient patterns and strategies are
likely to be the most effective means of promoting
improvement. PWA with general learning mechanisms that
are not well suited for extracting central category tendencies
likely do not have language learning mechanisms that are
well suited for extracting central category tendencies.

In contrast, we suspect that PWA with a demonstrated
ability to extract commonalities under conditions that
highlight feature variability will translate these skills to
treatment. These PWA likely have general learning
mechanisms that are suited to integrate variability and
abstract patterns, mechanisms that can be recruited in
treatment. We propose that these PWA would be suitable
candidates for treatments that include complex, variable
tasks and targets.

We are limited in our predictions, as the current study
involved a limited group of participants with heterogeneous
profiles of aphasia. Also, we can only infer that skills
demonstrated on our nonlinguistic category-learning task
will translate to performance in actual language treatment.
The next step will be to test whether predictions drawn from
short, controlled nonlinguistic tasks can translate to progress
with treatment. In addition, there are a multitude of
demands posed on patients during regular aphasia treatment
that merit to be the focus of future studies.

We do propose that current results draw attention to
underlying processes that have not yet been the focus of
research in aphasia, yet likely contribute to outcomes with
treatment. A better understanding of how these mechanisms
of learning are affected in PWA and the contribution of these
processes to treatment is critical for the selection of
appropriate tasks and targets for PWA. We suggest that only
with a better understanding of the factors that contribute to
successful learning in PWA can clinicians tailor treatment to
individuals, selecting targets and methods of treatment that
will facilitate patient progress and improve the predictability
of patient outcomes.
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