

Simulating bilingual aphasia rehabilitation: Evidence from a computational model

Swathi Kiran¹, Uli Grasemann², Chaleece Sandberg¹ & Risto Miikkulianen²

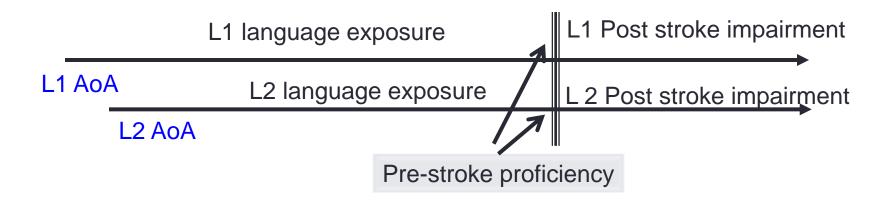
¹Boston University, USA

²University of Texas at Austin, USA

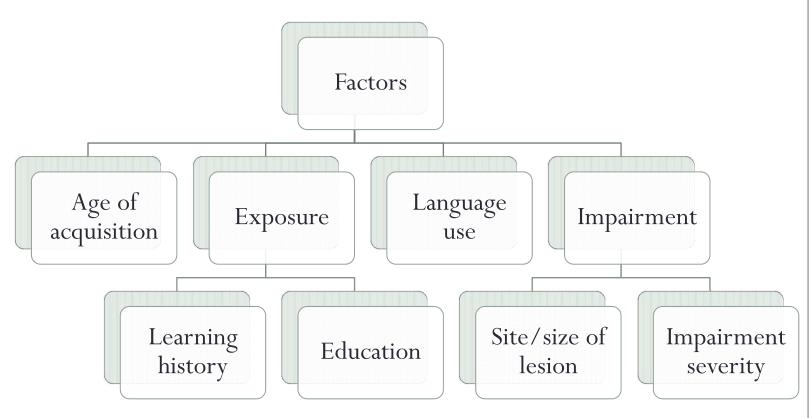
Funding support from NIH/NIDCD: R21 DC009446; ASHF-Clinical Research Grant, ASHF New Investigator Grant

Bilingual Aphasia

Stroke



Factors influencing language recovery and rehabilitation



Hernandez & Li, 2007; Li, Zhao, & McWhinney, 2007; Abutalebi, 2008

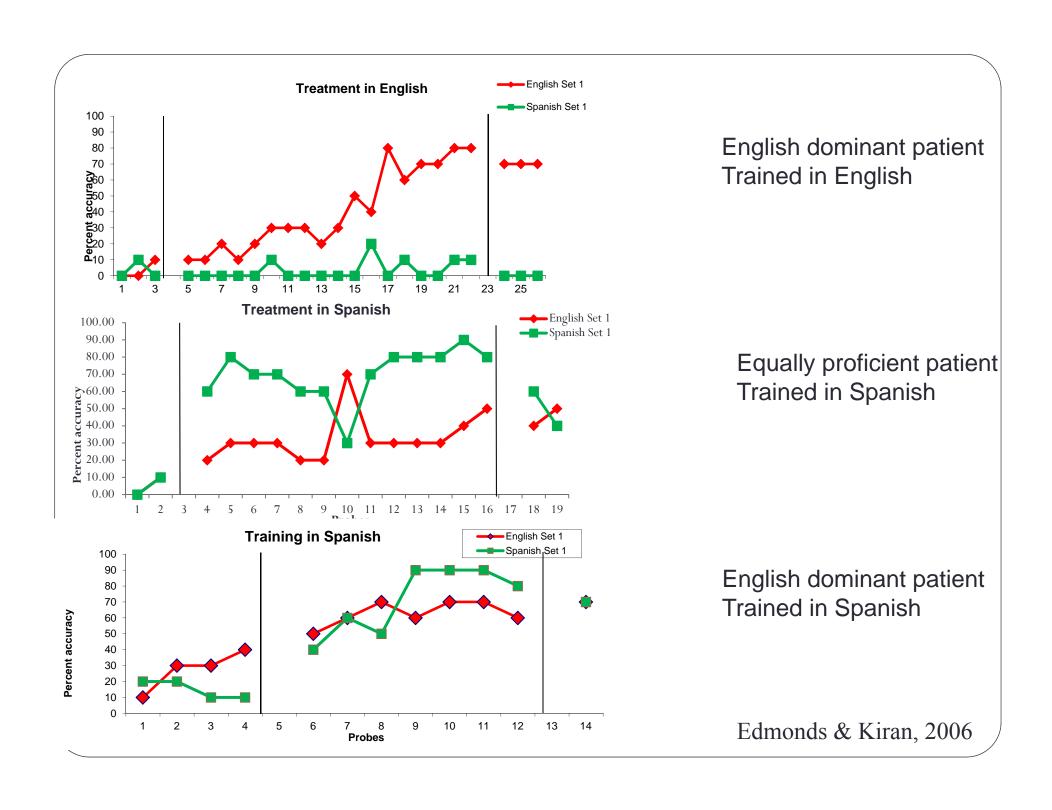
Fabbro, 2001a; Lorenzen & Murray, 2009; Mechelli, Crinion, et al., 2004

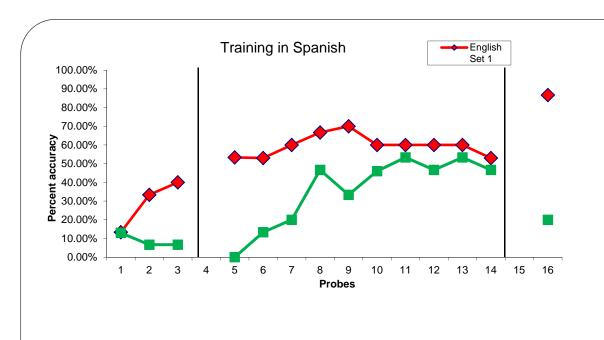
Bilingual Aphasia Rehabilitation

• No consistent results on rehabilitation of bilingual aphasia (Lorenzen & Murray, 2008; Faroqi-Shah et al., 2010)

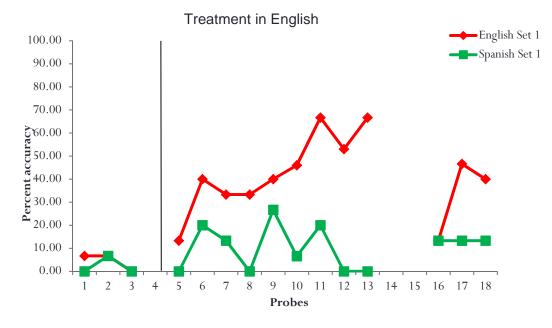
• Few systematic studies that have examined and observed the extent of cross language transfer but results vary (Croft et al., 2011; Edmonds & Kiran, 2006; Miertsch et al., 2009, Kiran & Roberts, 2009)

• For instance...





English dominant patient More impaired in Spanish Trained in Spanish



Equally proficient Trained in English

Kiran & Roberts, 2009

Goal of this project

- Develop a computational simulation of bilingual aphasic naming deficits and rehabilitation of bilingual aphasia.
 - Similar to predicting rehabilitation of naming deficits (Plaut, 1996)
- Self Organizing Maps (Kohonen, 1995) is an type of artificial neural network that is based on unsupervised learning.
- SOMs operate in two modes
 - Training -builds the map using input examples
 - Mapping- classifies a new input vector
- SOMs have been used to understand bilingual language learning (Li, Zhao & McWhinney, 2007) and biological/psychiatric conditions (Hamalainen, 1994; Hoffman, Grasemann, & Miikkulainen, 2011)

Develop a computational simulation of bilingual aphasic naming deficits and rehabilitation of bilingual aphasia.

Step 1

- Model pre-stroke/normal bilingual language performance
 - Use AoA and exposure as training parameters
 - DISLEX should be able to match pre-stroke English and Spanish performance

Step 2

- Simulate damage to the lexicon
 - Distort associative connections with noise
 - DISLEX should be able to model impairment in patients

Step 3

- Use the model to predict treatment outcomes
 - Examine improvements in trained language and cross language transfer

• Model pre-stroke/normal bilingual language performance • Use AoA and exposure as training parameters Step 1 • DISLEX should be able to match pre-stroke English and Spanish performance

Input Data

300 words, including those used for treatment

Semantic representations

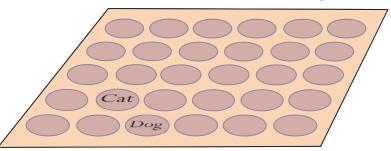
- 260 hand-coded binary features
- E.g. "can fly", "is a container", "can be used as a weapon"

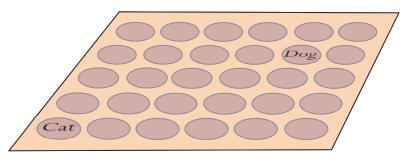
Phonetic representations

- Based on English and Spanish IPA transcriptions
- Numerical representations of phonemes
- E.g. frontness, openness, roundedness for vowels

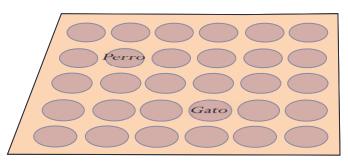
The Bilingual DISLEX Model

Semantic map





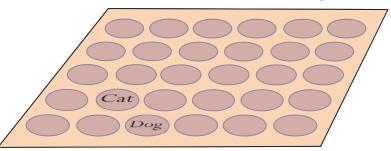
English phonetic map

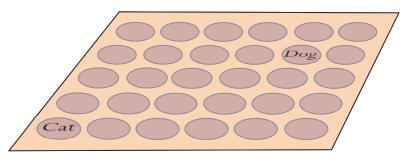


Spanish phonetic map

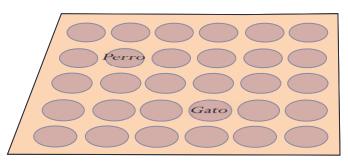
The Bilingual DISLEX Model

Semantic map



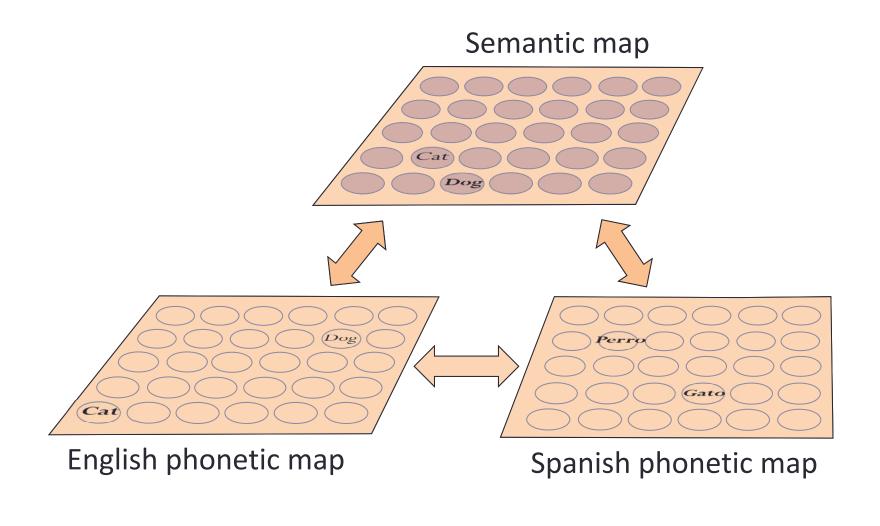


English phonetic map

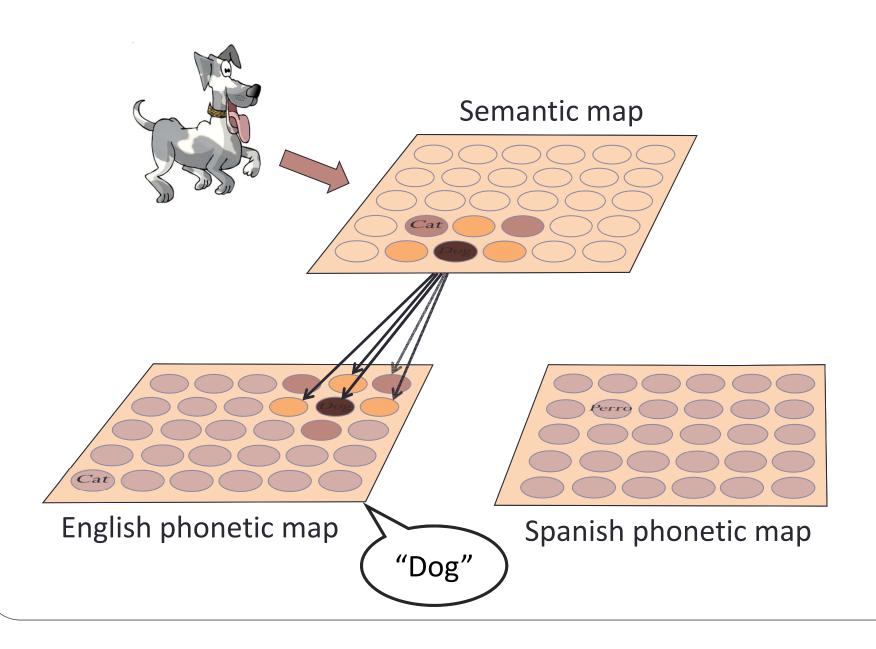


Spanish phonetic map

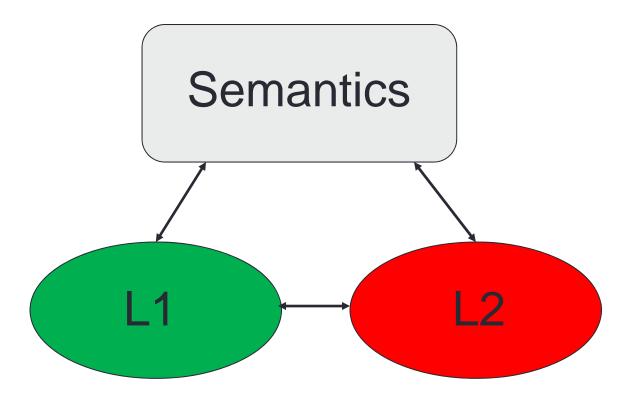
The Bilingual DISLEX Model



Naming Task



Model of Bilingual Lexical Access

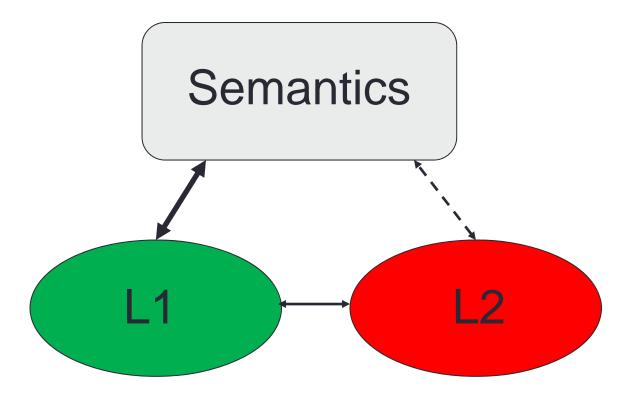


(de Groot, 1992, 1994)

Asymmetrical Model (Kroll & Stewart, 1994

Kroll et al., 2010)

Model of Bilingual Lexical Access

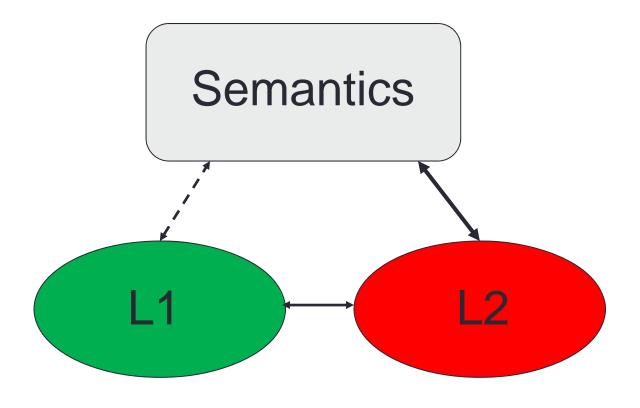


(de Groot, 1992, 1994)

Asymmetrical Model (Kroll & Stewart, 1994

Kroll et al., 2010)

Model of Bilingual Lexical Access



(de Groot, 1992, 1994)

Asymmetrical Model (Kroll & Stewart, 1994

Kroll et al., 2010)

Approach

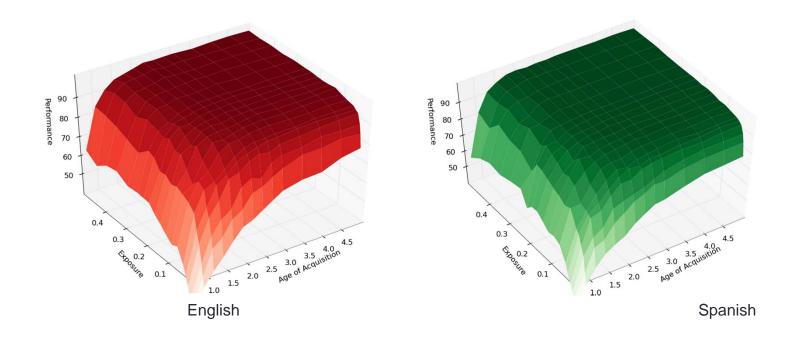


Information about AoA, Language exposure, proficiency obtained from a language use question – Kiran et al.(2010, submitted)

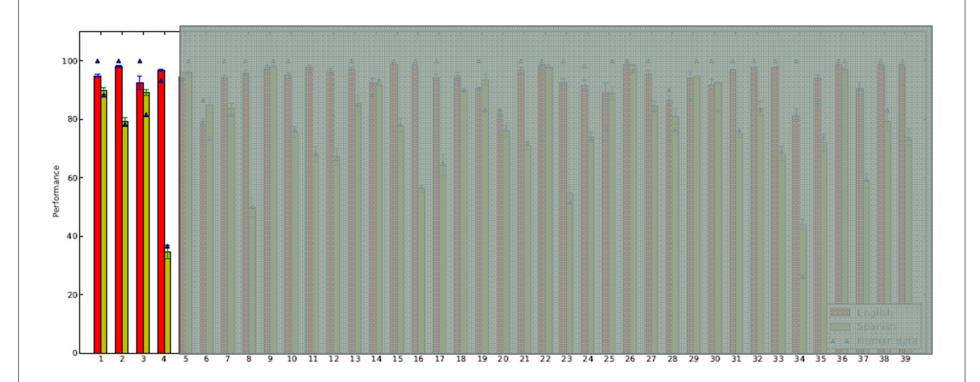
Simulate normal bilingual performance

- •39 normal bilinguals
- •19 patients with bilingual aphasia

(Grasemann et al., 2010; Grasemann et al., 2011; Kiran et al., 2010)



Results of simulation of normal bilingual individuals

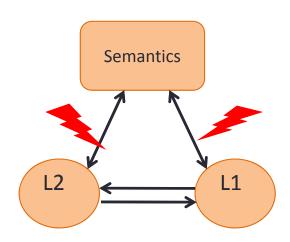


(Grasemann et al., 2010; Grasemann et al., 2011; Kiran et al., 2010)

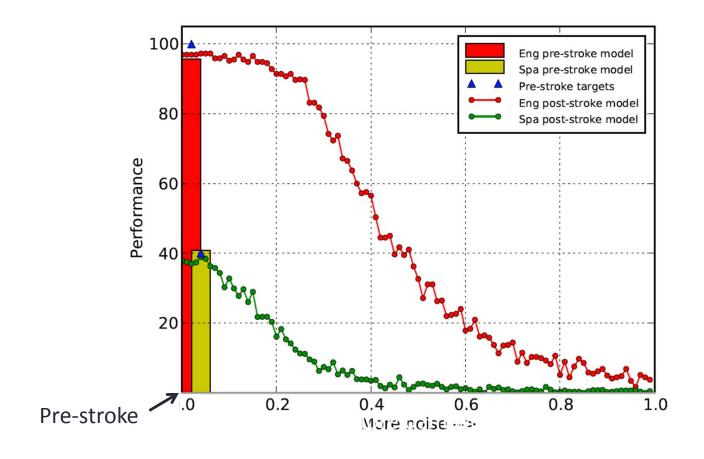
• Simulate damage to the lexicon • Distort associative connections with noise Step 2 • DISLEX should be able to model impairment in patients

Approach

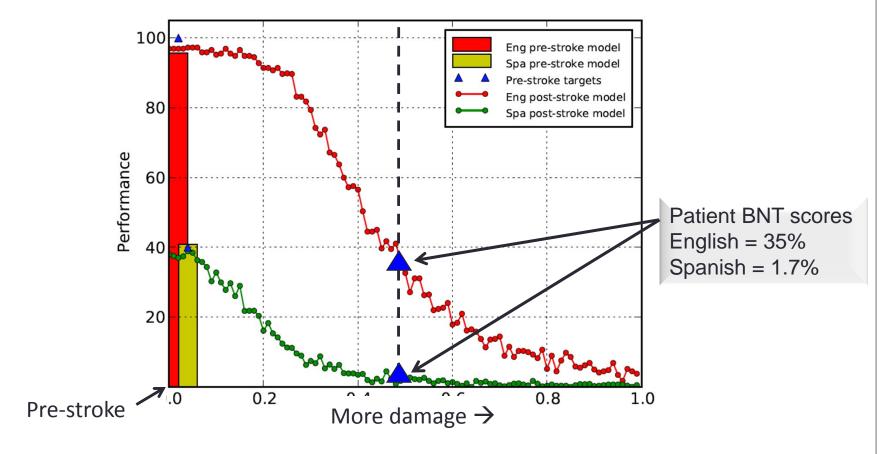
- Lesion was applied to the connections from the semantic map to the phonetic maps
- Adding Gaussian noise with $\mu = 0$ to all these connections.
- The amount of damage (the "lesion strength") in each case was adjusted by changing the \sigma (σ) of the noise between 0 and 1.0 in steps of 0.01.
- Then, individual models of premorbid patient performance were used to investigate how damage to the model's lexicon matched actual bilingual aphasia patient naming patterns



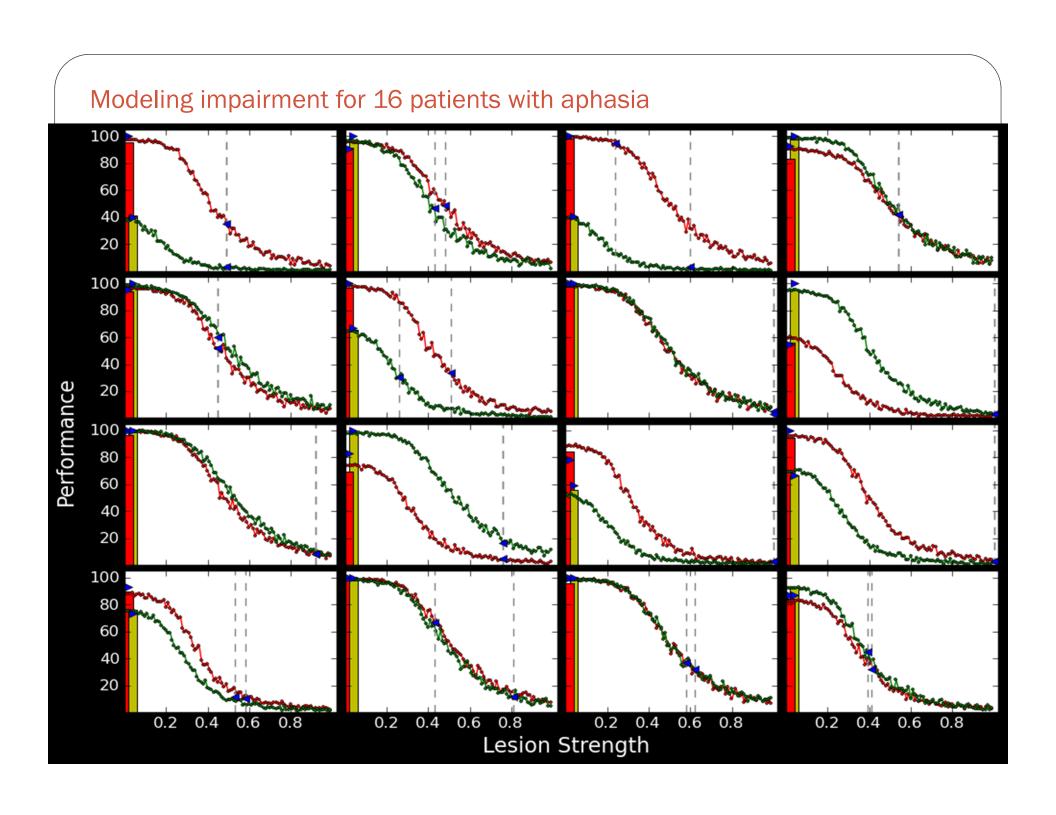
Results – Modeling Impairment in one patient



Results - Modeling Impairment

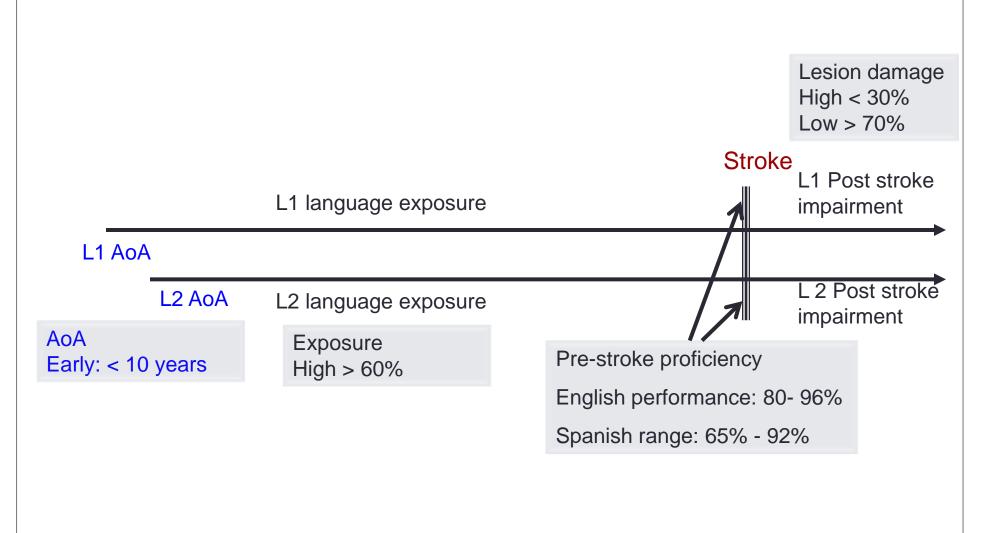


Different pre-stroke proficiency, different level of impairment



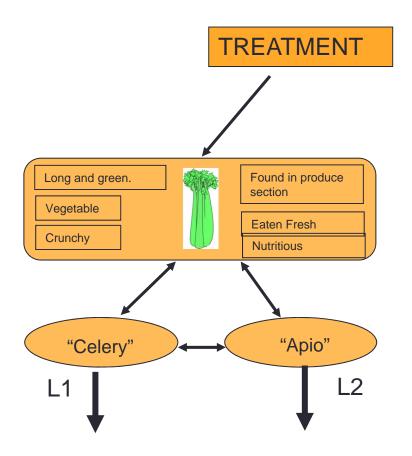
• Use the model to predict treatment outcomes • Examine improvements in trained language and cross language transfer Step 3

Approach



Approach

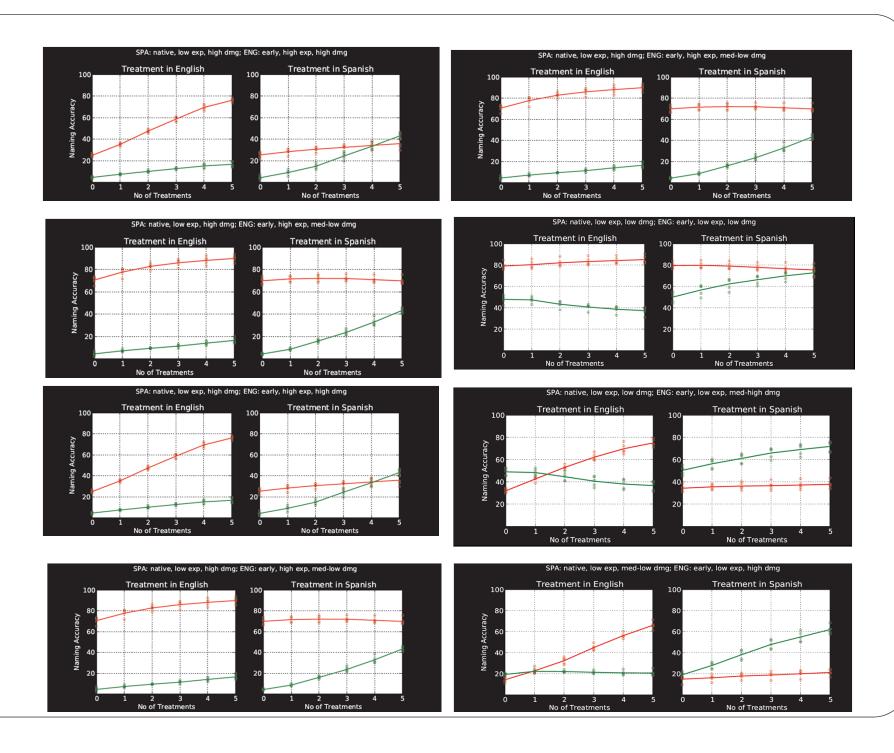
- The starting point was set to either a severe impairment in naming (30% or less accuracy) or mild impairment (70% or high naming accuracy).
- Model retrained trained with different number and schedule of presentations of words in one language
- Treatment always provided only in one language (either English/Spanish) and amount of improvement examined
- Generalization (cross language transfer) examined to untrained language



Edmonds & Kiran, 2006; Kiran & Roberts, 2009

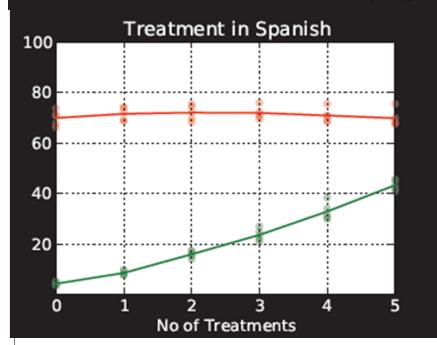
In order to evaluate the model

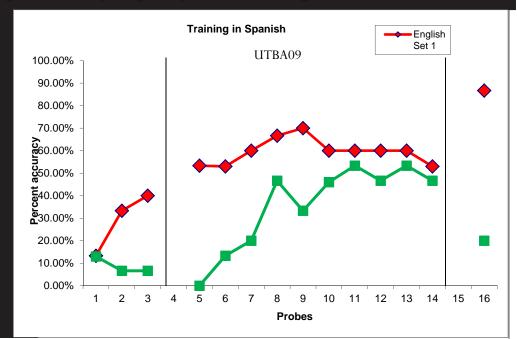
• Match the patient and model's parameters on AoA, exposure and damage parameters and see if the model's predictions match the actual data obtained.



Patient Parameters

									Untrained
	Spanish	Spanish	Spanish		Spanish	Spanish	Trained	Effect	language
	AoA	exposure	Damage	English AoA	exposure	Damage	Language	size	ES
P1	native	low	high	early	high	high	English	12.70	0.58
P2	native	low	high	early	high	high	English	6.82	0.83
P3	native	low	high	early	high	low-mod	Spanish	16.50	2.52
P4	native	low	high	early	high	low-mod	Spanish	10.97	2.07
P5	native	low	high	early	high	low-mod	English	5.32	1.19
P6	native	high	high	early	low	high	Spanish	13.84	10.68
P7	native	high	high	late	low	high	English	2.89	4.08
P8	native	high	high	late	low	high	Spanish	0.00	0.00
P9	native	high	high	late	low	high	English	0.00	0.00
P10	native	high	mod-high	late	low	high	English	1.44	4.90
P11	native	high	mod-high	late	low	high	Spanish	12.73	1.89
P12	native	high	mod-high	late	low	mod-high	English	4.92	1.42
P13	native	high	mod-high	late	low	mod-high	Spanish	11.08	4.95
P14	native	mod	high	late	mod	high	English	14.90	1.15
P16	native	mod	mod-high	late	mod	high	Spanish	15.17	1.73
P17	native	no data	high	early	no data	high	Spanish	12.41	3.11

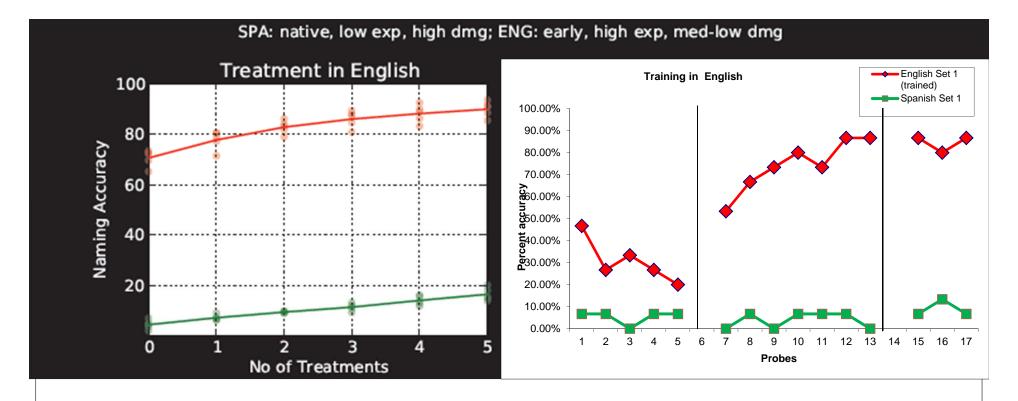




UTBA 09:

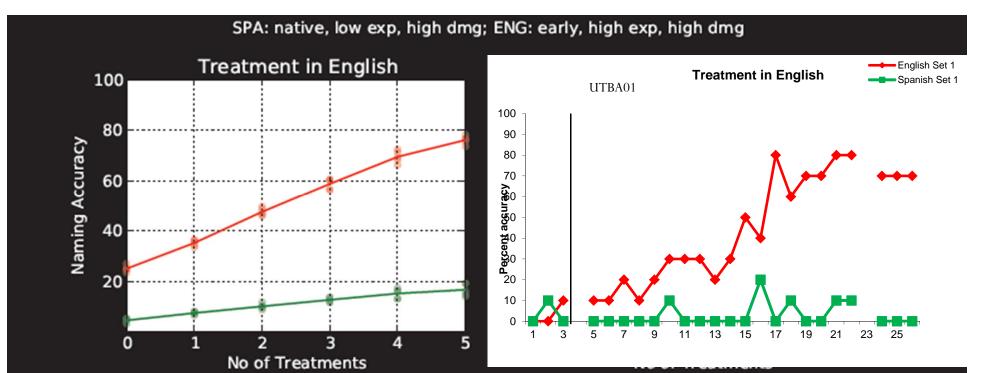
Spanish ES: 10.97

English ES: 2.07



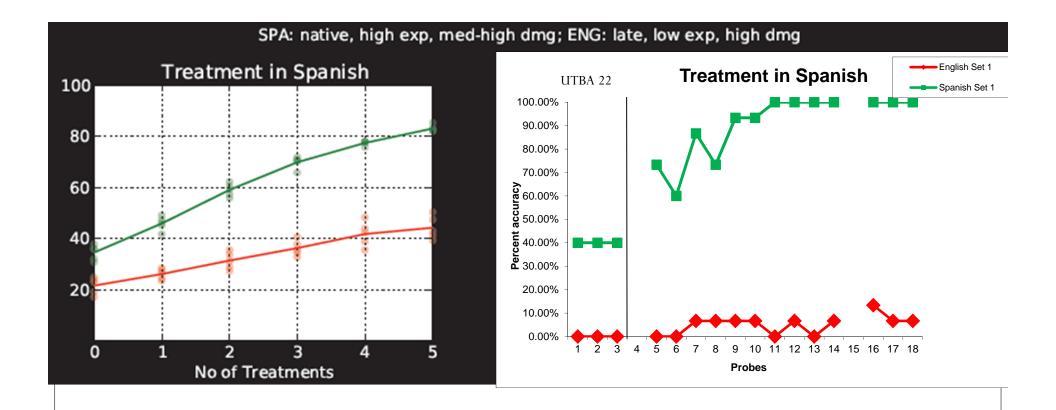
UTBA 17:

Spanish ES: 5.32 English ES: 1.19



UTBA 01:

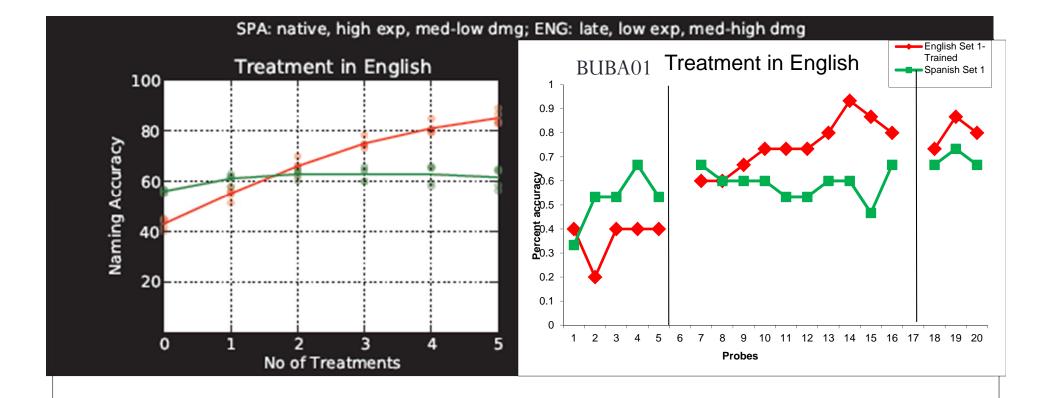
Spanish ES: .58 English ES: 12.7



UTBA 22:

Spanish ES: 12.7

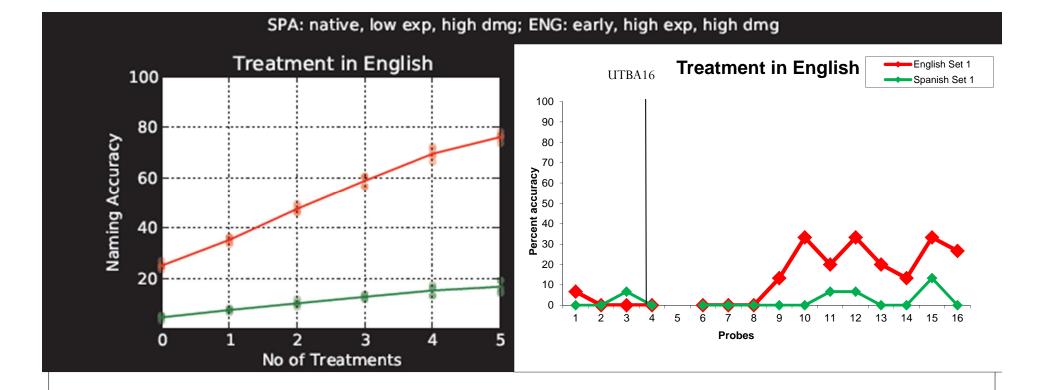
English ES: 1.89



BUBA01

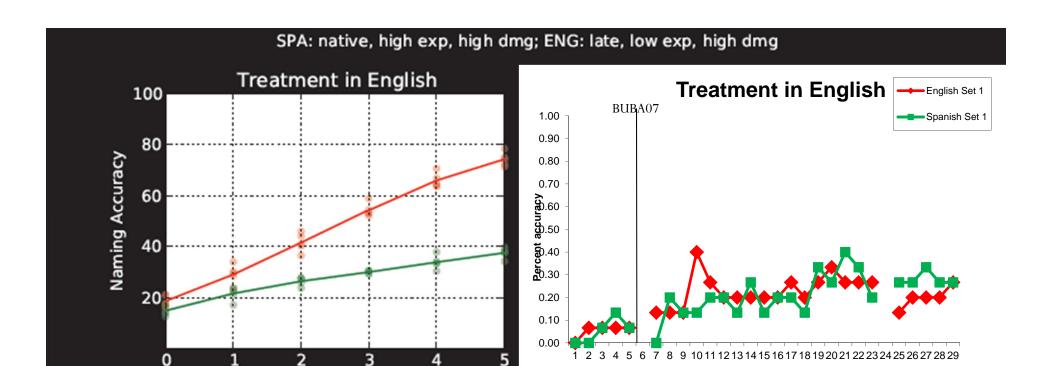
Spanish ES: 1.42

English ES: 4.92



UTBA16:

Spanish ES: .83 English ES: 6.8



No of Treatments

BUBA07

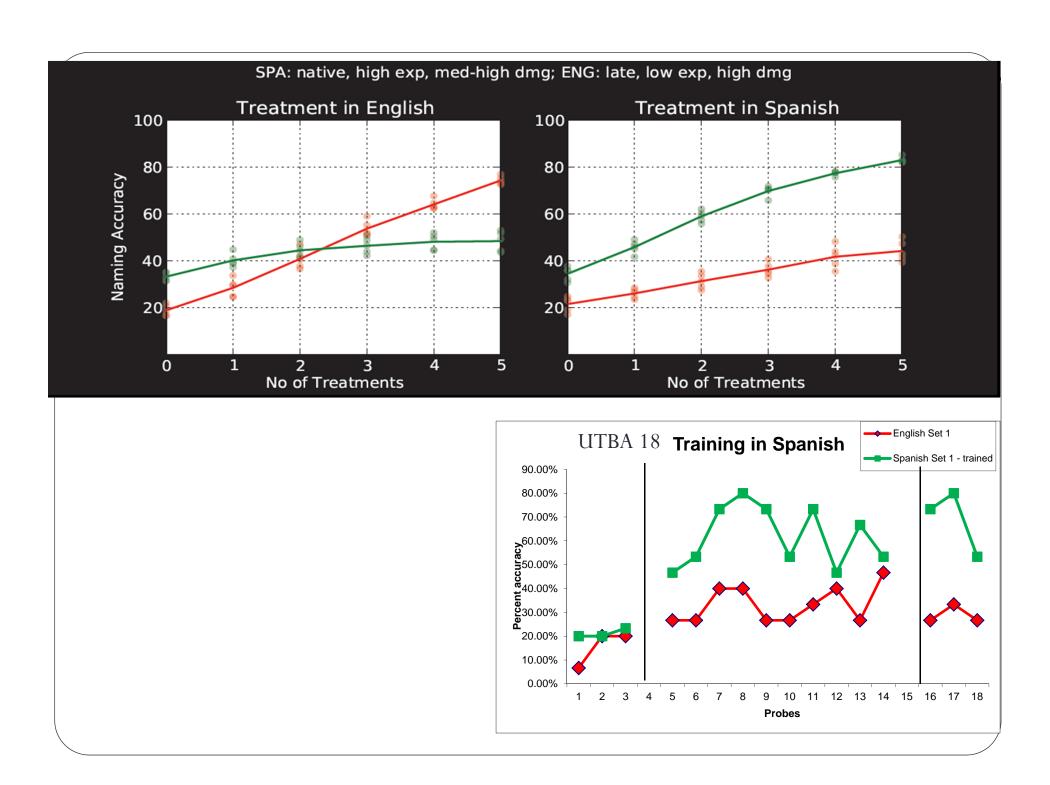
Spanish ES: 4.08

English ES: 2.8

Probes

Summary

- Model can predict rehabilitation outcomes
 - Of the 16 patients, good fit for 11 patients,
 - For patients that do not have a good fit 5/16, model overestimates outcomes for 3 of them
 - Provides a starting point for understanding why patient did not improve
- Curve fitting analysis ongoing-can evaluate the extent of match.
- Model can also predict what treatment outcome may have been if treatment plan was different that what was followed...



Conclusions and future directions

- While preliminary, results from this project allows a direct comparison of outcomes using two parallel yet complementary scientific approaches.
- The combination of computational modeling and behavioral treatment provide a promising approach to examining the important issue of recovery of language in bilingual aphasia
- In future, we are refining our ability to describe our own patients in terms of exposure, proficiency and impairment- which in of itself can help us better understand bilingual aphasia.

Uli Grasemann UT-Austin

Risto Miikkulainen UT-Austin

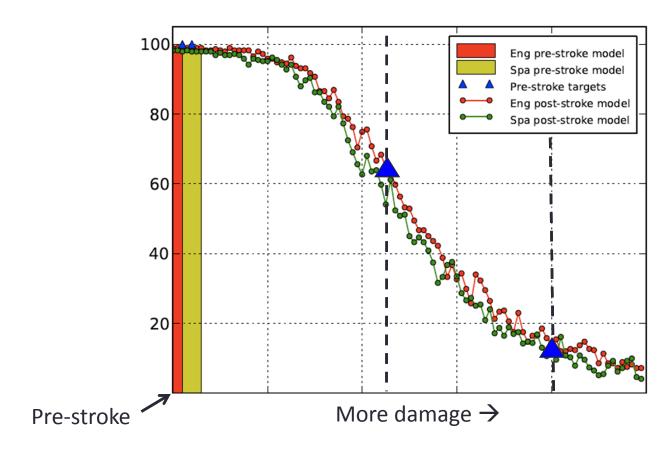
Chaleece Sandberg Boston University

Acknowledgements

- UT Austin
 - Anne Alvarez
 - Ellen Kester
 - Rajani Sebastian

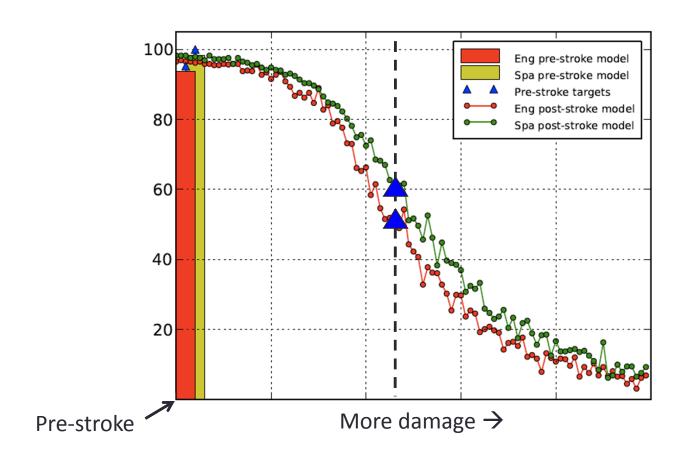
- Boston University
 - Danielle Tsibulsky
 - Fabiana Cabral
 - Lauren Liria
 - Teresa Gray

Results – Modeling Impairment in a different patient



Similar pre-stroke proficiency, different level of impairment

Results – Modeling Impairment in a third patient



Similar pre-stroke proficiency, same level of impairment Impairment of 12/15 patients modeled well with symmetric damage