Rehabilitation of bilingual aphasia: Evidence for within and between language generalization

Swathi Kiran¹, Chaleece Sandberg¹, Ellen Kester ²,³, Elsa Ascenso¹, Teresa Gray¹, & Patricia Roberts ⁴

¹Speech and Hearing Sciences, Boston University
²University of Texas at Austin,
³Bilinguals, Austin
⁴University of Ottawa

Funding support from NIH/NIDCD: R21 DC009446; ASHF- Clinical Research Grant, ASHF New Investigator Grant, New Century Scholars Grant
Significance of this problem

• It is estimated that 60% of the world is bi/multi-lingual.

• Within the US, Spanish-English bilingualism is the largest growing bilingual speaking population.

• 37 million in the United States (2010) are currently Spanish speakers.

• Obviously, this translates to an increase in clinical need to address bilingual aphasia rehabilitation,

• But no clear guidelines on how to do so...
A recent review of 13 studies on bilingual aphasia rehabilitation (Faroqi-Shah et al., 2010)

• Except for one study with 30 participants (Junque et al., 1989), most studies were case studies.

The good news:

• Therapy provided in the L2 results in improved treatment outcomes in the treated language.
• Cross language transfer occurs in over half the participants.
• Age of acquisition and language differences across studies do not specifically influence treatment outcomes.

The bad news

• Variability in treatment type and consequent treatment outcomes
• Other confounding variables including time post onset and nature of aphasia influence outcomes.
English dominant patient
Trained in English

Equally proficient patient
Trained in Spanish

Edmonds & Kiran, 2006
Training in Spanish

- English dominant patient
- More impaired in Spanish
- Trained in Spanish

Treatment in English

- Equally proficient
- Trained in English

Kiran & Roberts, 2009
Other studies have similar issues

• Within language gains but no between-language transfer
 • But patients with differential proficiency and differential impairment in L1 (French) L2 (English) (Miller-Amberger, 2011)
 • Both languages (Spanish, English) trained (Galvez & Hinckley, 2003)

• Between language transfer
 • Trilingual patient - generalization from L3 (French) to L2 (English) but not L1 (German) (Miertsch, Miesel, & Isel, 2009)
 • Selective generalization from trained L2 (English) to L3 (French) but not L1 (Hebrew) (Goral et al., 2010)
 • Generalization for cognates but not for cognates (Kohnert, 2004)
Problem

• It is not clear whether treatment is effective in improving trained behavior/language

• It is not clear if generalization occurs, when it occurs and under what circumstances it does not occur
Language exposure

Language Use

Education History

Family Proficiency

Age of Acquisition

Time post onset stroke

Language severity

Lesion site

Impairment in each language

Degree of naming impairment

Degree of semantic syntactic impairment

Degree of semantic processing impairment

Language Trained

Treatment outcome?

Hernandez & Li, 2007; Li, Zhao, & McWhinney, 2007; Abutalebi, 2008

Fabbro, 2001a; Lorenzen & Murray, 2009; Mechelli, Crinion, et al., 2004
Rationale for this study

• Is there a principled way to understand the nature of rehabilitation in bilingual aphasia such that patterns of acquisition and generalization are predictable and logical?

• In this study, we examine a larger group of patients (N= 17) who have received therapy to improve naming in one language.

• The ultimate goal is to understand the factors that predict treatment outcomes.
Specific Questions

• Q1. What are the effects of treatment on acquisition of trained items on the trained language independent of what language is trained?

• Q2. What are the effects of treatment on generalization to translation items and untrained items independent of what language is trained?

• And... Q3. What are relevant factors influencing treatment outcomes?
Participants

- Seventeen patients with bilingual aphasia participated in the therapy experiment.
- Five of these patients have been reported previously (Edmonds & Kiran, 2006; Kiran & Roberts, 2010).
- All were at least five months post-onset from a left perisylvian area CVA (one had a gun-shot wound),
- Pre-morbidly right-handed and bilingual speakers of English and Spanish.
- Post-CVA they had language impairment in both languages.
Measures of level of bilingualism

• For each participant, a detailed language use questionnaire that obtained information in each language about:

 • Age of Acquisition (AoA)
 • Pre-stroke lifetime exposure
 • Post-stroke current language use
 • Self-rated language ability
 • Education history
 • Family proficiency
Measures of language impairment

• For each participant, assessment focused towards lexical semantic processing & naming

• PAPT- Three pictures
• English and Spanish versions of
 • Boston Naming Test
 • Bilingual Aphasia Test
 • Category Generation Task
 • Naming Baseline

• Western Aphasia Battery for some patients but not reported
Stimuli

• For each participant, a different list of stimuli were developed
 • Trained Language Set 1: Celery
 • Trained Language Set 2: Cabbage
 • Trained Language Unrelated Set: Dustpan
 • Untrained Language Set 1: Apio
 • Untrained Language Set 2: Repollo
 • Untrained Language Unrelated Set: Recogedor

• Frequency of items matched within language and across languages for each participant
 • Matched semantically unrelated control set for English and Spanish (e.g., boat, vaca) (N=5 for each set)
 • No cognates (e.g., elephant/elefante) or pairs with 50% or more phonetic similarity (cat/gato)
 • Only one pair per semantic category used (e.g., tools, furniture)
Schematic of treatment for each participant

Pre-treatment assessment:
Western Aphasia Battery, BNT, Bilingual Aphasia Test

Baselines: Naming across consecutive sessions & languages

Treatment on 1 set of examples in 1 language

Session 1: Training
Session 2: Testing & Training
Session 2: Testing & Training
Session 2: Testing & Training

Week 1
Week 2
Week 3
Week 4

Until 80% accuracy achieved on items trained

Post-treatment assessment:
Standardized language tests

No feedback provided

Edmonds & Kiran, (2006) JSLHR
Treatment protocol in Behavioral studies

1. Name picture
2. If incorrect, told correct name
3. Choose 6 correct features from 12 cards
4. Answer 15 yes/no questions about the item
5. Named item again with feedback

- Treatment always provided only in one language (either English/Spanish) and amount of improvement examined

Edmonds & Kiran, 2006; Kiran & Roberts, 2009
Q1. What are the effects of treatment?

- 13/17 patients show Effect Sizes > 4.0*
- 10/17 patients show Effect Sizes > 10.0*
- Range of ES from 0 to 16.50

*Small ES
*Large ES (Beeson & Robey, 2006)
Q1. What are the effects of treatment?

8/17 received tx in Spanish
9/17 received tx in English

Current effect: F(1, 13)=4.5777, p=.05194

Training in Spanish results in greater effect sizes than training in English.
Q2. What are the effects of generalization?

• Examined cross-correlation function analyses using SPSS
 • improvements on the untrained items were associated with improvements in the trained language set 1.

• For each time series, a regression line is fit to the actual data and the residuals are calculated for that data. Then cross-correlations are calculated on the residuals and averaged over time (Box, Jenkins & Reinsel, 1994).

• In this study, for each patient, we correlated the time series between trained and untrained languages at 10 lag points (-5 to 5).

• Correlations that exceeded .50 and exceeded two standard errors were deemed statistically significant.
Within language generalization - Trained Set 1 and Trained set 2
Within Language Generalization

Correlations that exceeded .50 and exceeded two standard errors Within language generalization in 10/14 cases
• Consistent with our previous work on generalization to semantically related items in monolingual aphasia (Kiran & Bassetto, 2008)
Between language generalization - Trained Language set 1 & Untrained Language set 1

Training and generalization - Spanish

Probes

Percent accuracy

Probes

Percent accuracy

Probes

Probes

Spanish Set 1 - trained

English Set 1
Between Language Generalization

From Trained Language Set 1 (Celery) to Untrained Language Set 1 (Apio)

Between language generalization in 5/14 cases
Selecting a word to speak in one language activates alternatives in the non-target language (e.g., Colomé, 2001; Costa, La Heij, & Navarette, 2006; Costa, Miozzo, & Caramazza, 1999; Hermans, Bongaerts, De Bot, & Schreuder, 1998).
Between language generalization- Trained Language set 1 & Untrained Language set 2

Training and generalization - Spanish

Percent accuracy

Probes

Probes

Probes

Probes

Percent accuracy

Percent accuracy

Spanish Set 1 - trained

English Set 2
Between Language Generalization

From Trained Language Set 1 (Celery) to Set 2 (Repollo)

Cross correlation coefficient

Participant number

UT11 UT09 UT07 UT02 UT18 UT01 UT16 UT17 UT19 UT22 UT23 BU01 BU04 BU07

Between language generalization to untrained semantic related words 6/14 cases
Training semantic representations and facilitating spreading activation between semantically related items in one language should also show generalization to translations in the untrained language -- whether or not the translations were directly trained.
Some patients show between language generalization to both target types, others show generalization only one type.

Asymmetric costs for the more proficient language shows at least in differential proficiency, inhibiting a dominant languages may be more difficult than inhibiting a less dominant language (Costa, Santestevan, & Ivanova, 2006).

<table>
<thead>
<tr>
<th>Between Language generalization to untrained Set 1</th>
<th>Between Language generalization to untrained Set 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celery- Apio</td>
<td>Celery- Repollo</td>
</tr>
<tr>
<td>UT01</td>
<td>UT07</td>
</tr>
<tr>
<td>UT18</td>
<td></td>
</tr>
<tr>
<td>UT22</td>
<td></td>
</tr>
<tr>
<td>UT23</td>
<td>UT23</td>
</tr>
<tr>
<td>BU07</td>
<td>BU07</td>
</tr>
<tr>
<td></td>
<td>UT02</td>
</tr>
<tr>
<td></td>
<td>BU01</td>
</tr>
<tr>
<td></td>
<td>BU04</td>
</tr>
</tbody>
</table>
Obviously, the scenario is more complex:

- What about the patients who do not improve in treatment?
- What about the patients who show within language generalization and no between-language generalization?
- Cannot ignore language use and proficiency factors that may determine the level of bilingualism
- Cannot ignore stroke related factors -- mainly level of impairment in the domain being studying, time post onset
Q3: What factors predict treatment outcomes?

- Language Use Factors for each language:
 - Pre-stroke language exposure
 - Post-stroke current use
 - Self rated Language Ability
 - Education History
 - Family proficiency
 - Composite score for each language

- Impairment Factors:
 - Age
 - PAPT
 - BNT-English
 - BAT-Comprehension English
 - BAT-Semantic-English
 - BNT-Spanish
 - BAT-Comprehension-Spanish
 - BAT-Semantics-Spanish
Language Impairment Variables

• Forward stepwise multiple regression (R= .7200 R²= .518 Adjusted R²= .449 F(2,14)=7.5384 p<.006)
 • PAPT (B= .68, t = 3.5, p < .002)
 • BNT-E, BNT – Sp not significant predictors

Level of bilingualism variables

• Forward stepwise multiple regression (R= .775 R²= .602 Adjusted R²= .510 F(3,13)=6.55, p<.006)
 • Language Trained (B = .64, t= 3.5, p < .003)
 • Average English Composite (B= .85, t = 3.4, p <.004)
 • Average Spanish Composite (B = .57, t = 2.3, p < .03)
Summary

• Training naming results in improvements on trained items irrespective of language trained.
• Although, ES in Spanish are greater than ES in English.
• Training naming results in within-language generalization to semantically related items in more than half (10/14) patients.
• Training naming in one language results in between language generalization in a little over 1/3 of the patients.
• Differences in patterns of between language generalization indicative of the interplay between facilitation and inhibition.
• Factors such as semantic processing impairment and language use determine the extent of treatment outcomes and may begin to explain when and why patients do not show improvements in therapy.
Acknowledgements

- Boston University
 - Sofia Vallila
 - Danielle Tsibulsky
 - Sarah Villard
 - Jason Lucas
 - Isabel Balachandran

- UT – Austin
 - Anne Alvarez
 - Keith Lebel
 - Scott Prath
 - Rajani Sebastian