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Abstract: Classical dissipative systems with symmetry can exhibit a geometric
phase effect wherein an adiabatic variation of a parameter drives a shift in the
symmetry direction. Viewing the parameter as a control variable, the effect may
be useful in the parametric control of dissipative systems, many of which exhibit
pattern-forming solutions. Earlier work by A.S. Landsberg developed a theory for
this effect in systems admitting an abelian symmetry. In this paper we present a
generalization allowing for arbitrary continuous symmetries. This generalization
is achieved by defining a new principal connection, here called the Landsberg
connection, on an appropriate principal fiber bundle. A simple example is presented
to illustrate the theory.

Keywords: nonlinear systems, phase shift, perturbation analysis, dissipation,
geometric approaches

1. INTRODUCTION

Dissipation is a common feature in physical sys-
tems and can give rise to interesting dynamics
such as exponentially stable equilibria and at-
tracting limit cycles. If these systems also admit
a symmetry then they can exhibit a geometric
phase effect due to an adiabatic variation of a
parameter. The essential idea is as follows. Under
appropriate assumptions, a system with a symme-
try group action on state space can be factored
into dynamics on a reduced space, independent of
the group variables, and dynamics on the group.
Assume that the reduced system has an exponen-
tially stable equilibrium point which depends on
a parameter. Since this point is exponentially sta-
ble, as the parameter is slowly varied the system
will remain close to equilibrium at all times. If the
parameter is brought back to its original value,
the reduced system will return to the original
equilibrium point. However, there may be a net
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shift in the group variables which depends only
on the path followed by the parameter. This shift
is called the geometric phase.

It is not uncommon to find the existence of
pattern-forming solutions in systems with dissi-
pation (Cross and Hohenberg, 1993). If these sys-
tems exhibit a translational symmetry then any
shift of the pattern by the action of the sym-
metry group will also be a solution. An adia-
batic variation of the parameter will result in a
deformation of the pattern. After returning the
parameter to its original value the initial pattern
will be recovered but it may have shifted in the
symmetry direction. The geometric phase is this
displacement of the pattern.

Interest in the effect of geometric phases in physi-
cal systems was spurred by work of Michael Berry
(Berry, 1984; Shapere and Wilczek, 1989). Early
work on geometric phases in classical dissipative
systems includes (Kepler and Kagan, 1991) in
which the authors considered systems with stable



limit cycles undergoing an adiabatic variation of
a parameter around a closed path. They showed
the existence of a geometric shift in the variable
parametrizing the limit cycle and expressed this
shift as the integral of a two-form over a sur-
face bounded by the loop in parameter space.
Together with Epstein they applied these ideas
to explore geometric phase shifts in chemical os-
cillators (Kagan et al., 1991).

Landsberg developed a general theory of geomet-
ric phases in classical dissipative systems with
abelian symmetries (Landsberg, 1992; Landsberg,
1993). However, many symmetry groups are non-
abelian and it is the purpose of this work to de-
velop a theory allowing for arbitrary symmetries.
It is hoped that this will lead to novel control tech-
niques for systems of this type and particularly of
pattern-forming systems.

The remainder of this paper is organized as fol-
lows. The natural framework in which to discuss
geometric phases is that of connections on fiber
bundles and in Section 2 we present a brief review
of the essential concepts. In Section 3 we give the
basic model for a dissipative system with symme-
try and develop the Landsberg connection under
the assumption that the group dynamics are at
an equilibrium whenever the reduced dynamics
are. We relax this assumption and introduce the
notion of the dynamic phase in Section 4. This
permits us to describe the behavior of systems ex-
hibiting propagating patterns. We then present a
simulation example in Section 5 before concluding
in Section 6.

2. PRINCIPAL CONNECTIONS AND THE
GEOMETRIC PHASE

To establish notation, we provide a brief review
of principal bundles and principal connections. A
standard reference is (Nomizu, 1956).

Let P be a smooth manifold and let G be a Lie
group that acts freely and properly on P on the
left. A principal fiber bundle with structure group
G is a fiber bundle π : P → P/G whose fibers are
diffeomorphic to the group G. We often denote
the base space P/G by B. Let g denote the Lie
algebra associated to G.

Definition 2.1. A principal connection on the
principal bundle π : P → P/G is a g-valued one
form A : TP → g satisfying:

(1) A(ξP (p)) = ξ ∀ξ ∈ g and p ∈ P where
ξP (p) is the infinitesimal generator corre-
sponding to ξ.

(2) A is Ad−equivariant. That is,

A(TpΦg(vp)) = AdgA(vp) (1)

for all vp ∈ TpP and g ∈ G where Φg is
the action of G on P and Adg is the adjoint
action of G on g.

Given p ∈ P , there is a natural subspace of TpP
called the vertical space at p, denoted by Vp and
defined by Vp = kerTpπ. The connection defines a
horizontal space at each point p given by

Hp = {vp ∈ TpP |A(vp) = 0} (2)

and thus gives a splitting of the tangent space at
each p, TpP = Vp ⊕ Hp.

Given a principal connection A, a point p ∈ P ,
and a tangent vector w ∈ Tπ(p)B, the horizontal
lift of w to TpP is defined as the unique tangent
vector in Hp which projects to w under Tpπ.

Let b(t), t ∈ [0, 1], be a piecewise differentiable
curve in P/G. A horizontal lift of b(·) with respect
to A is a curve p(·) in P such that π(p(t)) =

b(t) and such that the tangent vector dp(t)
dt

is
horizontal for each t ∈ [0, 1]. Consider now a
closed curve at b0 ∈ B, i.e. b(0) = b(1) = b0.
The diffeomorphism of the fiber π−1(b0) onto itself
given by parallel transport along b(t) is called the
holonomy or geometric phase of the path b(·).
The holonomy can be identified as an element of G
as follows (Yang, 1992). Assume b(·) is contained
in an open set U of B and let p0 ∈ π−1(b(0)). Let
σ : U → P be an arbitrary local section of the
bundle and let p(·) be the horizontal lift of b(·)
with p(0) = p0. Let g(·) be the curve in G such
that p(t) = Φ(g(t), σ(b(t))). Then

dp(t)

dt
= Tσ(b(t))Φg(t)[Tb(t)σ(ḃ(t))]

+Tσ(b(t))Φg(t)ξP (t)(σ(b(t))) (3)

where ξ(t)
△
= g(t)−1ġ(t) and ξP (t)(σ(b(t))) is the

corresponding infinitesimal generator. Since p(t) is
horizontal, applying A to both sides of (3) yields

0 =A
[
Tσ(b(t))Φg(t)[Tb(t)σ(ḃ(t))]

+Tσ(b(t))Φg(t)ξP (t)(σ(b(t)))
]

= Adg

[
A(Tb(t)σ(ḃ(t))) + A(ξP (t)(σ(b(t))))

]

= Adg

[
(σ∗A)(ḃ(t)) + ξ(t)

]

where we have used the Ad−equivariance of A
and the fact that A maps infinitesimal generators
to the corresponding Lie algebra elements. The
g-valued form σ∗A is called the local connection
form and is denoted Aloc. Thus

ξ(t) = −Aloc(ḃ(t)). (4)



By the definition of ξ(t) we have

ġ(t) = g(t)ξ(t) = −g(t)Aloc(ḃ(t)) (5)

and the solution of this differential equation at
t = 1 is the geometric phase. For concreteness, in
the remainder of this paper we restrict ourselves
to matrix Lie groups.

3. THE GEOMETRIC PHASE

We now give a brief derivation of the Landsberg
connection. For details see (Andersson, 2003).

3.1 Dissipative systems with symmetry

Let P be a smooth manifold. A vector field X on
P is called dissipative with respect to a smooth
function h on P if

i) (X(h))(p) ≤ 0, for all p,
ii) (X(h))(p) = 0 if and only if X = 0 for all p.

Let Φ be a free and proper left action of a
matrix Lie group G on P and construct the
principal bundle π : P → P/G. Assume that X is
equivariant with respect to the group action, that
is for every g ∈ G and for every p ∈ P we have

X(Φg(p)) = (TpΦg)X(p) (6)

The system defined by X is then said to admit G
as a symmetry.

Using standard reduction arguments (see, e.g.
(Marsden et al., 1990)), in a local trivialization
of the fiber bundle the curve p(·) starting at
p0 = (g0, y0) can be locally defined by the system

ġ = gξ(y, λ)
ẏ = f(y, λ)

(7)

where we have introduced the parameter λ ∈ U ⊂
R

m. Here f is the projection of the dissipative
vector field X onto the base space and ξ(·) ∈ g is
a curve in the Lie algebra. (The left invariance of
the group system follows from the equivariance of
X.)

3.2 The Landsberg connection

Now assume there exists a family of exponen-
tially asymptotically stable equilibria y∗(λ), i.e.
f(y∗(λ), λ) = 0 for all λ ∈ U , and that
ξ(y∗(λ), λ) = 0 for all λ. (This second condition
will be relaxed in Section 4.)

We wish to understand the behavior of system (7)
as the parameter λ is varied adiabatically. To do

so, take λ = λ(τ) where τ = ǫt, ǫ > 0, and carry
out an asymptotic analysis of the system. Begin
by assuming y can be expressed as

y(t) = y0(t, τ) + ǫy1(t, τ) + · · · (8)

with initial condition y(0) = y∗. From (8) we have

ẏ =
∂y0

∂t
+ ǫ

[
∂y0

∂τ
+

∂y1

∂t

]
+ O(ǫ2). (9)

Setting ǫ = 0 and using ẏ = f(y, λ) yields

f(y0, λ) =
∂y0

∂t
, y0(0) = y∗ (10)

and therefore y0 ≡ y∗. Now expand f in a Taylor
series about the solution y = y∗. This gives

f(y, λ) = ǫ (Ty∗f) y1 + O(ǫ2) (11)

where (Ty∗f) denotes the linearization of f at y∗.
Combining (9) and (11) we find

ǫ (Ty∗f) y1 + O(ǫ2) = ǫ

[
∂y∗

∂τ
+

∂y1

∂t

]
+ O(ǫ2).(12)

At first order in ǫ we have

∂y1

∂t
= (Ty∗f) y1 −

∂y∗

∂τ
. (13)

For fixed τ this is a linear ordinary differential
with constant coefficients. Using the variation of
constants formula, the solution is

y1(t) = (Ty∗f)
−1

[
∂y∗

∂τ
− e(Ty∗f)t ∂y∗

∂τ

]
(14)

where the fact that yi(0) = 0 for all i 6= 0 has
been used. Since the equilibrium y∗ is assumed
exponentially stable we know (Ty∗f) is Hurwitz

and thus (Ty∗f)
−1

exists. From the Hurwitz prop-
erty the second term in (14) decays to zero expo-
nentially. The rate of this decay determines the
dissipative time scale of the system. For times long
with respect to this time scale the second term in
(14) can be neglected and thus

y(t)≈ y∗ + (Ty∗f)
−1 ∂y∗

∂t
(15)

Recalling that y∗ depends on time only through
its dependence on λ we write

y(t) ≈ y∗ + (Ty∗f)
−1 ∇λy∗ dλ

dt
. (16)

To determine the effect of the parameter variation
on the group variables, expand the map ξ(·) in a
Taylor series around y∗ and truncate to first order.
This yields



ξ(y)≈ (Ty∗ξ) (Ty∗f)
−1 ∇λy∗ dλ

dt
(17)

where we have used the assumption that ξ(y∗, λ) =
0. Define the map Aloc : T IRm → g by

Aloc(λ)(v) =
(
(Ty∗ξ) (Ty∗f)

−1 ∇λy∗

)
v. (18)

Consider the principal bundle G×U → U and the
action of G on G × U defined by

Φ̃ : G × (G × U) → G × U, Φ̃h((g, λ)) = (hg, λ)

The infinitesimal generator corresponding to an
element η ∈ g is given by

ηG×U =
d

ds

∣∣∣∣
s=0

(exp(sη)g, λ) = (ηg, 0). (19)

Proposition 3.1. The g-valued one form given by

AL(g, λ)(ġ, λ̇) = Adg

(
g−1ġ −Aloc(λ)λ̇

)
(20)

is a principal connection on π : G × U → U . The
corresponding geometric phase equation is

ġ = gAloc(λ)λ̇. (21)

Proof A simple calculation shows that AL meets
the conditions in Definition 2.1. (21) follows from
(20) and (18).

The geometric phase corresponding to an adia-
batic variation of λ around a loop parametrized
by s ∈ [0, 1] is the solution to (21) at s = 1.

Remark 3.2. Since Landsberg first carried out the
perturbation analysis (for systems with abelian
symmetries), we refer to this connection as the
Landsberg connection.

4. THE DYNAMIC PHASE

Consider once again system (7). We would like
to remove the restriction that ξ(y∗, λ) = 0 by
expressing g as the product of a component cap-
turing the geometric evolution, denoted ggp, and
a component capturing the dynamic evolution,
denoted gdp. Since the symmetry group may be
nonabelian, there are multiple ways both to define
the systems for ggp and gdp and to combine these
terms to get g. The most natural choice is to define

ġgp = ggp(ξ(y, λ) − ξ(y∗, λ))
△
= ggpξgp(y, λ) (22)

and to set

g(t) = ggp(t)gdp(t). (23)

Taking the derivative of (23) and using (22) yields

ġdp = gdpAdggp
(ξ(y∗, λ)) , gdp(0) = 1I. (24)

In the adiabatic approximation, we replace the
group equation in system (7) by(24) together with

ġgp = ggpAloc(λ)λ̇, ggp(0) = 1I (25)

where ξgp in (22) is used in the definition for Aloc.
The group evolution is reconstructed from (23).
Letting T denote the time at which the parameter
returns to its original value, the geometric and
dynamic phases are the solutions to (25) and (24)
respectively at time T . With these choices, the
errors introduced by the adiabatic approximation
go to zero in the adiabatic limit. For details see
(Andersson, 2003).

5. EXAMPLE

We now illustrate the techniques developed in
this paper with an example containing both a
geometric and a dynamic phase. Let G = SE(2)
and as a basis for the Lie algebra se(2) choose

A1=




0 −1 0
1 0 0
0 0 0


 , A2=




0 0 1
0 0 0
0 0 0


 , A3=




0 0 0
0 0 1
0 0 0


 .

Consider a damped harmonic oscillator with forc-
ing (in state space form) where the natural fre-
quency and the driving force are parameter-
dependent.

ẏ=

(
0 ω(λ1)

−ω(λ1) −k

)
y +

(
0

f(λ2)

)
=Ay + b (26)

for k > 0. The example system we consider is

ġ = g (A1y1 + A2y2) ,
ẏ = A(λ)y + b(λ)

(27)

The parameter-dependent equilibrium point is

y∗(λ) = −A−1(λ)b(λ) =




f(λ2)

ω(λ1)
0


 . (28)

At this equilibrium point we have

ξ(y∗, λ) = A1
f(λ2)

ω(λ1)
(29)

and so the group dynamics are not stationary
when the dynamics on the reduced space are at
equilibrium. Following the technique outlined in
Section 4, we replace (27) by the system

ġgp = ggp (A1(y1 − y∗
1) + A2y2) ,

ẏ = A(λ)y + b(λ),

ġdp = gdpAdggp

(
A1

f(λ2)

ω(λ1)

)
△
= gdpξdp.

(30)



The natural frequency and the driving force are
taken to have the following forms.

ω(λ1) = ω̄ + λ1, f(λ2) =
λ2

2

2
. (31)

The rate of dissipation is given by the largest real
part of the eigenvalues of the matrix A. These
eigenvalues are

µl,s =
−k ±

√
k2 − 4ω2

2
. (32)

5.1 The geometric and dynamic phase equations

The Lie algebra se(2) is solvable and thus the
solution to a left invariant system ġ = gξ can be
expressed globally as a product of exponentials

g(t) = eγ1(t)A1eγ2(t)A2eγ3(t)A3 (33)

where the Wei-Norman parameters are defined by



γ̇1

γ̇2

γ̇3


 =




1 0 0
γ3 1 0
−γ2 0 1







ξ1

ξ2

ξ3


 , γ(0) = 0, (34)

and are solvable by quadrature (Wei and Norman,
1964). Here ξi(t) are the components of ξ(t) ∈ g

in the given basis.

Beginning with system (30) and a curve λ(·) in
parameter space, we use the Landsberg connec-
tion to define the geometric phase, as in (21). Ex-
pressing the solution in terms of the Wei-Norman
coordinates we find

γ1(t) =

t∫

0

[
kλ2

2(τ)λ̇1(τ)

2(ω̄ + λ1(τ))4
− kλ2(τ)λ̇2(τ)

(ω̄ + λ1(τ))3

]
dτ,

γ2(t) =

t∫

0

[
−λ2

2(τ)λ̇1(τ)

2(ω̄ + λ1(τ))3
+

λ2(τ)λ̇2(τ)

(ω̄ + λ1(τ))2

]

· cos




t∫

τ

[
kλ2

2(σ)λ̇1(σ)

2(ω̄ + λ1(σ))4
− kλ2(σ)λ̇2(σ)

(ω̄ + λ1(σ))3

]
dσ


 dτ,

γ3(t) =−
t∫

0

[
−λ2

2(τ)λ̇1(τ)

2(ω̄ + λ1(τ))3
+

λ2(τ)λ̇2(τ)

(ω̄ + λ1(τ))2

]

· sin




t∫

τ

[
kλ2

2(σ)λ̇1(σ)

2(ω̄ + λ1(σ))4
− kλ2(σ)λ̇2(σ)

(ω̄ + λ1(σ))3

]
dσ


 dτ.

If the loop is completed at time T , the geometric
phase (in the Wei-Norman coordinates) is γ(T ).
Consider a smooth loop C in parameter space.
Using Stokes’ theorem, the integral of γ1 over C
can be written

γ1(T ) =

∫

D

2kλ2

(ω̄ + λ1)4
dλ1 ∧ dλ2 (35)

where D is the region in parameter space bounded
by C. The one-form in the equation for γ1 is
thus not exact and the geometric phase is not
necessarily trivial.

Using the solution to the geometric phase in the
equation for the dynamic phase (30) we have

ξdp =A1
f(λ2)

ω(λ1)

+A2
f(λ2)

ω(λ1)
(γ2(t) sin(γ1(t)) + γ3(t) cos(γ1(t)))

−A3
f(λ2)

ω(λ1)
(γ2(t) sin(γ1(t)) + γ3(t) cos(γ1(t)))

where the γi are the Wei-Norman parameters for
the geometric phase.

5.2 An elliptical loop

We now choose the closed loop given by

λ1 = a cos θ, λ2 = b sin θ, θ ∈ [0, 2π] (36)

The solution to the geometric phase is then

γ1(2π) = γ2(2π) = γ3(2π) = 0 (37)

and thus for an elliptical loop the geometric phase
is zero. (For loops in which the geometric phase is
not zero see (Andersson, 2003).) To solve for the
dynamic phase we need γ2 and γ3 as functions of
θ, not just at θ = 2π. Due to the complexity of
the equations we turn to numerical simulation.

To vary the parameter, set θ = 2π
T

t where T is
taken so as to satisfy the adiabatic condition. In
the simulations that follow we chose ω̄ = 100,
k = 200, a = 50, b = 25, and T = 10.

In Figure 1 we show the evolution of the linear
system. As y2 is close to zero at all times it is
clear the system remains close to equilibrium. In
Figures 2 and 3 we show the evolution in the group
of the full system (true evolution), the evolution of
the geometric and dynamic phases, and the evolu-
tion of the reconstructed system. The results are
expressed using the standard SE(2) coordinates
(φ, x, y). (The evolution of y is similar to that of
x and thus for space reasons its plot is omitted.)
The figures show, as expected, that the geometric
phase is zero and that the reconstructed trajectory
is a good approximation of the true trajectory.

6. CONCLUSIONS

In this paper we presented a theory describing
geometric phases in dissipative systems with sym-
metry. By appealing to the framework of connec-
tions on fiber bundles, we were able to allow for
non-abelian symmetry groups. It is hoped that
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this work will prove useful in the control of dissipa-
tive systems with symmetry. One intriguing class
of systems are Euler-Poincaré systems with double
bracket dissipation where energy is dissipated but
a Casimir functional of the angular momentum is
conserved (Bloch et al., 1996). Many interesting
physical systems may be modelled in this way,
including processes in ferromagnetics, geophysics,
plasma physics, and stellar dynamics.
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