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Abstract: The fluoroBancroft algorithm is an analytical approach that converts a collection of
fluorescence intensity measurements generated by an isolated sub-diffraction limit source into
an estimate with nanometer-scale precision of the source position. Based on this algorithm, we
have developed a scheme for tracking single fluorescent particles in a confocal microscope. In
this paper, we determine an optimal measurement constellation for the estimation algorithm.
The position estimation bias and uncertainty arising from the photon counting statistics are
calculated based on the assumption that the natural logarithm of a Poisson random variable
with large rate can be approximated as a random variable with a Gaussian distribution. A
sufficient condition for an unbiased measurement constellation and the optimal radius of a
given constellation geometry with six measurements are then derived. The results are illustrated
through numerical simulation.
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1. INTRODUCTION

Single particle tracking in fluorescence microscopy is a
powerful technique for investigating and understanding
molecular dynamics and processes [Cheezum et al. (2001),
Moerner (2007)]. Typically, this technique can be imple-
mented with either a wide-field fluorescence image cap-
tured by a charge-coupled device (CCD) camera [Babcock
et al. (2004), Murase et al. (2004)] or a position estimation
algorithm based on fluorescence intensity measurements
given by point photon detectors [Berglund and Mabuchi
(2006), Cang et al. (2006), Wells et al. (2008)]. However,
the observation time of the particle in both methods is
limited by the motion of the particle in three dimensions.
To overcome this limitation, feedback controllers have
been designed and implemented to lock the particle inside
the excitation volume of the microscope. Systems using
both sample-stage actuation with piezoelectric stages and
with beam-steering have been implemented. The particle
trajectory is estimated from the measured displacement of
the detection volume combined with estimation from the
fluorescence measurements. Recent review articles about
particle tracking systems can be found in [Yeung (2004),
Peterman et al. (2004), Cang et al. (2008)].

In our previous work, a position estimation scheme known
as the fluoroBancroft algorithm was proposed by one of the
authors [Andersson (2007), Sun and Andersson (2007)] to
estimate the location of a fluorescent probe in a confocal
microscope by taking fluorescence intensity measurements
from a collection of positions. A single particle tracking
system based on this algorithm has been designed and
implemented [Andersson and Sun (2009), Shen and An-

dersson (2009)]. The approach combines a linear quadratic
Gaussian (LQG) controller with position estimation using
the fluoroBancroft algorithm. Since the fluoroBancroft al-
gorithm relies on a collection of intensity measurements
obtained from different positions, the tracking algorithm
sweeps the detection volume of the microscope through a
“measurement constellation” that to date has been chosen
in an ad hoc manner. Experimental results have indicated
that the bias and uncertainty in the estimation procedure
vary depending on the measurement constellation, moti-
vating the need for an optimized measurement pattern.
In this paper, we utilize approximations of large photon
counts to analyze the statistics of the fluoroBancroft algo-
rithm and then to determine a measurement pattern that
optimizes the variance of the estimator.

This paper is organized as follows. In Section 2, a brief
outline of the 3-D flouroBancroft algorithm is presented.
The bias and variance of the fluoroBancroft algorithm are
calculated in Section 3. An optimal measurement con-
stellation is derived in Section 4, including a sufficient
condition for an unbiased measurement constellation and
the optimal relative radius for a given constellation geom-
etry. The resulting bias and variance is illustrated through
simulations presented in Section 5.

2. POSITION ESTIMATION

We give here a brief outline of the 3-D fluoroBancroft
localization algorithm; details can be found in [Sun and
Andersson (2007); Andersson (2007, 2008)].

The fluorescence intensity distribution of a diffraction-
limited spot is given by the point spread function (PSF) of



the optical system. The resulting intensity at (x, y, z) due
to a point source at (x0, y0, z0) can be well approximated
by a Gaussian function [Thomann et al. (2002)]:
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where σx, σy and σz are the widths of the PSF in the three
axes respectively. By scaling the coordinates using
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the fluorescence intensity distribution of a fluorescent
particle at (x0, y0, z0) can be rewritten as:
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and σ is a arbitrary, nominal spread in all three axes.

Due to shot and background noise, the actual measured
intensity can be modeled as

I = ηS + ηB (5)
where ηS is a Poisson random variable with mean and
variance equal to

λ = me−
(x′−x′0)2+(y′−y′0)2+(z′−z′0)2

2σ2 (6)
and ηB is a Poisson random variable with mean and
variance equal to NB . NB can be measured experimentally
and is therefore assumed to be a known constant.

The fluoroBancroft algorithm uses a collection of n mea-
surements taken at different positions. For each measure-
ment Ii taken at position (x′i, y
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The location of fluorescent probe can be estimated as[
x̂0

ŷ0
ẑ0

]
= T−1QB†α (9)

where
B† = (BTB)−1BT (10)

is the Moore-Penrose generlized inverse.

3. ESTIMATION BIAS AND UNCERTAINTY

The primary noise sources in the estimation process are
the shot and background noise. It is assumed that the
positions (x′i, y

′
i, z
′
i) are known exactly. In practice, posi-

tioning is often achieved using a piezoelectric stage with
sub-nanometer positioning resolution, justifying this as-
sumption.

Consider first a Poisson random variable X with mean and
variance equal to λi +NB . Define Z = X −NB . Then

E[Z] = λi, (11a)
V[Z] = λi +NB (11b)

where E[·] and V[·] denote the mean and variance respec-
tively.

Now define Y = ln(Z) and assume the rate λi is large
enough such that Y can be approximated as a normal
random variable. Then Z is a log-normal random variable
with a probability density function given by

fZ(z;µ0, σ0) =
1

z
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According to the properties of the log-normal distribution,
the mean and variance of Y can be expressed as,
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Substituting (11) into (13) yields
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To determine the bias and variance of the estimator,
consider the definition of the fluoroBancroft estimate given
in (9). The only stochastic component is the vector α.
According to (7) and (14), we find
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Using (16) and (17) in (9), the estimation bias of the
fluoroBancroft algorithm can be expressed as
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ẑ0

]]
−

[
x0

y0
z0

]
= −T−1QB†d (18)

and the estimation uncertainty can be calculated as

Eu = V

[[
x̂0

ŷ0
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4. OPTIMAL MEASUREMENT CONSTELLATION

To find an optimal measurement constellation, we first use
(18) to derive a sufficient condition for unbiased estimation
in the ideal case. Motivated by the application of tracking
in confocal microscopy, we then focus on a simple six-point
measurement constellation geometry with variable radius
that satisfies this sufficient condition. The radius of the
constellation that minimizes the estimation uncertainty is
then derived according to (19).

4.1 Unbiased constellation

The values of σx, σy, and σz are known from the theoretical
PSF of the system. The background noise intensity NB can
be determined experimentally and is thus also assumed to
be known. According to (10) and (16), both B† and d
depend on the measurement constellation (x′i, y

′
i, z
′
i) only.

Consider Proposition 2.1 in [Sun and Andersson (2007)]
Proposition 1. Let e = (1, 1, . . . , 1)T and let A be n ×m
matrix. Define B = (Ae). Then

B†e = (0 0 . . . 0 1)T .

2

Based on this result, if d = d0e with d0 a scalar constant,
then according to (18), it can be shown that

Eb = −T−1QB†d = −d0T
−1QB†e = 0. (20)

Thus a sufficient condition for unbiased measurement
constellation can be stated as:
Theorem 2. Consider a collection of measurement posi-
tions, or constellation, such that the expected fluorescence
intensity at all measurement locations are the same. Then
such a constellation yields an unbiased estimate.

2

Theorem 2 implies that unbiased estimation will be
achieved if all measurements locations are on an isosurface
of the fluorescence intensity. Since under the coordinate
transformation defined by (2), the spreads of fluorescence
intensity distribution in three axes are made identical, an
unbiased constellation can be defined by a collection of
measurement locations on a sphere (in the scaled coordi-
nate system) centered on the position of the source. In
practice, of course, the position of the source is unknown.
Under tracking control, however, the system can be stabi-
lized about this position leading to a unbiased steady-state
estimate.

4.2 Optimal constellation

For the remainder of this paper, we choose and optimize
a particular measurement constellation geometry with
respect to the variance of the estimator. The constellation,
illustrated in Fig. 1, is given by the six positions

(x′1, y
′
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′
1) = (r, 0, 0) (x′2, y

′
2, z
′
2) = (−r, 0, 0)

(x′3, y
′
3, z
′
3) = (0, r, 0) (x′4, y

′
4, z
′
4) = (0,−r, 0)

(x′5, y
′
5, z
′
5) = (0, 0, r) (x′6, y

′
6, z
′
6) = (0, 0,−r)

(21)

centered on a sphere of radius r.

Fig. 1. The measurement constellation geometry with six
measurement locations defined by a single parameter,
namely the radius r.

For simplicity, define
r = aσ. (22)

Substituting (21) into (6), we find that the rate of the
intensity is given by

λi = me−
a2
2 , i = 1, . . . , 6. (23)

A straightforward calculation reveals that
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then from (17), vi can be approximated as
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The estimation uncertainty (19) can be rewritten as
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where I is an identity matrix of the appropriate dimen-
sions. Substituting r = aσ into the above equation yields
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To optimize this with respect to the dimensionless param-
eter a defining the constellation, we take the derivative of
Eu(a) and set it equal zero. This yields

a2 − 2
a2 − 1

e−
a2
2 =

NB

m
. (29)

The peak fluorescence intensity of the particle is always
greater than zero and the background noise intensity is no
less than zero. Thus the right hand side of (29) is non-
negative. There are thus two regimes of solutions. In the
first, we have

0 ≤ a2 < 1 (30)
corresponding to values of NB/m from 2 to ∞. This
regime fails to satisfy assumption (25) and is unrealistic
in the sense that it represents the case where the peak
fluorescence intensity of the particle is less than the
background noise intensity.

In the other regime, we have
a2 ≥ 2. (31)

A plot of the solution of (29) in this regime is shown in
Fig. 2. Note that there are two branches. As the ratio of
noise to signal goes to zero, the optimal radius goes either
to ∞ or to

√
2. The former only makes sense if the signal

level, m, itself is going to infinity. Thus in practical cases
the solution branch corresponding to

√
2 is to be chosen.

Fig. 2. The optimal radius as a function of the ratio NB/m.
The lower branch is the physically relevant one.

Note that the curve exhibits a “knee”. Values of NB/m
above this point have no solution and imply a breakdown
in our assumptions. We use this to characterize the bound
on the relative values of m and NB . To solve this, let
x = a2 and consider the equation

f(x) =
x− 2
x− 1

e−
x
2 . (32)

To find the “knee” we take the derivative of f(x) and set
it equal zero, yielding

x = 3 or x = 0. (33)
The value x = 0 implies all the measurements are to
take place at the same point. Since the fluoroBancroft
algorithm requires measurements at different locations to
find a solution, we ignore this case. Thus

a2 = 3⇒ a =
√

3, (34)

leading to a maximum value of NB
m given by

NB

m
=

1
2
e−

3
2 ⇒ NB =

m

2
e−

3
2 (35)

These results yield either a bound on the background level,
given the signal level or on the signal level, given the
background.

Consider now again the assumption given by (25) on the
relative size of the intensity rate at the measurement
locations, λi, and the background rate. According to (23),
when a =

√
3, the rate is given by

λi = me−
3
2 . (36)

From (35) and (36), we find that at the knee
λi = 2NB . (37)

Finally, we calculate the inequality in (25) to be
λi +NB

λ2
i

=
1.5
λi
� 1. (38)

We therefore conclude that so long as λi satisfies (38), then
the calculations and estimates of the estimator variance
derived here are valid.

5. NUMERICAL SIMULATION

To demonstrate the feasibility of the assumptions that we
made for the derivation of the optimal constellation and to
illustrate our results, we ran a series of numerical simula-
tions in Matlab to investigate the position estimation un-
certainty of the fluoroBancroft algorithm and to compare
the results with the theoretical predictions. In all simula-
tions the particle was assumed to be located at the origin
of the coordinate system and we set σx = σy = σz = 0.25
µm. In practice, the point spread function is significantly
larger along the optical axis than in the optical plane.
As described in Sec. 2, however, the the fluoroBancroft
algorithm scales the coordinates so that the widths are the
same in all directions. Our choice of equal widths, then is
for convenience and without loss of generality. We selected
the six-point measurement constellation defined by (21).
Each intensity measurement was generated by sampling
from a Poisson random variable with rate given by λi+NB

where λi is defined in (6) and NB was varied from 0 to 20
photons. The peak fluorescence intensity, m, was varied
from 200 to 600 photons. The relative radius, a, was varied
from 0.5 to 2.5. For each combination of the peak fluores-
cence intensity m, the background noise intensity NB and
the relative radius a, the standard deviation of the particle
position estimation was calculated using 2000 iterations of
the position estimation based on the 3-D fluoroBancroft
algorithm. The theoretical value was calculated from (19).

In Fig. 3, we show the results of a run with the peak
fluorescence intensity set to m = 500 photons and the
background noise intensity set to NB = 5 photons. The fig-
ure shows a minimum estimation uncertainty point around
a = 1.4. The theoretical value from (29) is a = 1.4242.
Considering the finite step size of the simulation, the
simulation results matches very well with the theoretical
prediction of the optimal relative radius. Similarly, the
predicted and simulated variance match well. The larger



Fig. 3. The simulated and theoretical standard deviation
of the position estimation of the fluorescent particle as
a function of the relative radius of the measurement
constellation. The peak intensity was set to m = 500
photons and the background noise intensity to NB =
5 photons. The minimum occurs at approximately a =
1.4, very close to the predicted value of a = 1.4242.

error at high relative radius is because the measured fluo-
rescence intensity at those values is too low to satisfy the
assumptions made in the derivation.

While the theory is developed in terms of the ratio of
background noise to signal, in practice it is of interest
to know the separate effect of varying these two levels.
In Fig. 4 we show the standard deviation of the position
estimation for a range of background intensities and fixed
signal level of m = 600 photons. In general, increasing
the background noise increases the standard deviation
of the fluoroBancroft estimator. It should be noted that
the larger the relative radius is, the more sensitive the
standard deviation of the position estimation is to the
background noise. At a larger radius, the measured signal
is lower. Therefore, increasing the radius can also be
interpreted as decreasing the signal level. The results
therefore illustrate that at low signal levels it is essential
to minimize the background fluorescence. By contrast, the
uncertainty is insensitive to the background rate at higher
signal levels (correspondingly small values of a.)

In Fig. 5 we show the standard deviation of the posi-
tion estimation for a range of signal intensities and fixed
background rate. As expected, the position uncertainty
decreases as the peak fluorescence intensity of the particle
increases. Unlike with increasing background noise, the
entire estimation uncertainty curve shifts as the signal
level is increased. Moreover, as the signal level is increased,
the relative improvement in the position uncertainty gets
smaller. According to (27), the position estimation uncer-
tainty goes to zero as m → ∞. This is consistent with
the conclusion made by Thompson in [Thompson et al.
(2002)] that a fluorescent particle can be localized with
any precision as long as enough photons are collected for
the position estimation.

Note that the simulation curves stop at an increasingly
smaller relative radius as the signal level is decreased. This

Fig. 4. The simulated and theoretical standard deviation
of the position estimation of the fluorescent particle as
a function of the relative radius of the measurement
constellation. The peak intensity was held fixed at
m = 600 photons and background noise intensity was
varied from 0 to 20 photons.

is because at a large radius, the expected intensity from
the sample drops below the background. The probability
of sampling intensities lower than the background rate is
then relatively high. When this happens, the fluoroBan-
croft algorithm fails since it relies on taking the natural
logarithm of the measured intensity minus the expected
background rate.

Fig. 5. The simulated and theoretical standard deviation
of the position estimation of the fluorescent particle as
a function of the relative radius of the measurement
constellation. The background noise intensity was
fixed to NB = 10 photons while the peak intensity
was varied from 200 to 600 photons.

6. CONCLUSION

In this paper, we considered the optimal measurement
constellation problem of the fluoroBancroft localization
algorithm with respect to position estimation bias and



uncertainty introduced by the photon counting statistics.
We calculated the position estimation bias and uncertainty
under the assumption that the natural logarithm of a Pois-
son random variable with a large rate can be approximated
as a random variable with a Gaussian distribution. We
showed that if the expected fluorescence intensity at all the
measurement locations is the same, then the estimation is
unbiased. The optimal measurement constellation radius
was derived analytically by minimizing the position esti-
mation uncertainty of a given unbiased constellation geom-
etry. It was shown that if the peak fluorescence intensity is
large enough, then the optimal measurement constellation
radius is only determined by the ratio of the background
noise intensity to the peak fluorescence intensity of the
particle and that it takes the value between

√
2σ and

√
3σ.

We further showed that for these results to be meaningful,
the expected fluorescence intensity from the source must
be at least twice the value of the background noise.

The results depend on two major assumptions. The first is
that the intensity is large enough that the distribution of
the log of a Poisson-distributed random variable can be ap-
proximated by a Gaussian. The second is that the particle
remains fixed during the measurement process. In practice,
sub-diffraction limit estimation is used to estimate the
(instantaneous) position of a moving particle. Extension
of these results to the case of moving particles, to lower
intensities, and for different measurement constellations is
the subject of ongoing work.
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