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Abstract— Standard approaches to high-speed AFM rely on
moving the tip faster along the raster-scan pattern. Recent
work has developed a non-raster scheme for string-like samples
such as biopolymers that reduces imaging time by reducing the
total number of measurements. This local raster-scan algorithm
steers the tip in a sinusoidal path along the sample, acquiring
only data near the sample of interest. It has been shown that for
a particular class of samples, an order-of-magnitude reduction
in imaging time is possible. In this paper we build upon that
approach but consider time-lapse imaging. In this scenario, the
prior knowledge from previous images can be used to setup
a time-optimal control problem between successive crossing
points along the string-like sample. Using recent results in time-
optimal control, we solve this problem and illustrate that it
can, in principle at least, yield at least an additional order of
magnitude improvement in the imaging rate.

I. INTRODUCTION
Studying the dynamics of single macromolecules contin-

ues to further our understanding of biomolecular systems
and to elucidate a wide variety of genetic diseases [1], [2].
There are many techniques available, including fluorescence
microscopy [3], [4], optical techniques [5], optical traps
[6], electron microscopy [7] and atomic force microscopy
(AFM). Among these tools, AFM provides a unique set
of capabilities, including the ability to observe systems in
their physiological environment, a resolution on the order of
nanometers or better, and the ability to measure mechanical
properties directly. As a result, it has been playing an essen-
tial role in the study of a wide variety of macromolecular
systems. Examples include direct observation of directional
transport by protein motors [8], interactions between proteins
[9], [10] and other cellular behaviors [11].

One of the primary drawbacks of AFM when applying
it to the study of dynamic processes is its slow imaging
rate, with commercial instruments typically taking seconds
to minutes to acquire a single frame. Because of the impact
improved imaging rates can have in the study of biomolecular
systems and in other areas such as metrology and materials
science, a great deal of effort has been made on addressing
this problem and near video-rate speed has been achieved
[12]. Approaches to high-speed AFM that have been pursued
include improvements of the mechanical components [13],
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advanced controller designs for the piezo actuators [14]
[15] and other approaches such as using tuning forks for
fast scanning [16] and novel detection-based approaches for
imaging based on the transient response [17]. Despite these
achievements, there is a need for even faster imaging over
larger scan areas. For example, the dynein motor has been
reported to move at speeds of up to 1.7 µm per second. Even
at 30 frames per second, the motor would take more than six
steps between the start and end of imaging a single frame.
To study such high speed systems, an alternative approach
is needed.

II. OVERVIEW OF OUR APPROACH

In prior work the authors (with others) have introduced
a local raster-scan technique that reduces imaging time for
string-like samples such as biopolymers [18]. The algorithm,
described in Sec. II-A below, uses the measurements in
real time to steer the tip of the AFM along the sample,
focusing the measurements in the region of interest. Here
we build upon that algorithm and consider high speed time-
lapse imaging of such samples. Prior knowledge in terms
of non-raster data taken from previous scans can be utilized
to produce the time optimal path to maximize the imaging
rate. In this section, we begin with a brief description of
the local raster scan algorithm. From there we formulate our
problem into time optimal control with fixed initial and end
conditions.

A. Local raster scan algorithm
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Fig. 1. Illustration of the local raster algorithm. (a) The string-like sample
(red line) curves in a “circle” pattern; the local raster algorithm dithers the
tip in a sinusoidal pattern, using the measurements to track the sample (blue
line). (b) Interpolation is used to generate images from the non-raster data.
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The primary motivation for the local raster-scan algorithm
is high-speed imaging of dynamics along biopolymers. In
this method, illustrated in Fig. 1(a), the tip is steered along
a sinusoidal path transversely to the string. Each time the tip
moves from substrate to sample or sample to substrate, the
algorithm updates its prediction of the path of the sample,
modifying the sinusoidal pattern to stay along the sample.
An example of a simulation run is shown in Fig. 1(a). The
simulation includes the dynamics of the scanning stage, the
tip and cantilever, the nonlinear tip-sample interaction, and
noise typical in measurements. (Details on the simulation
setup can be found in [18].). We have also developed a
scheme for producing images from the local raster scan data
in [19]; the result from the simulated run is shown in Fig.
1(b). Depending on the details of the sample, the imaging
rate can be improved by an order of magnitude or more.

B. Problem description
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Fig. 2. Illustration of the tip trajectory under the local raster scan and the
time optimal trajectory. The local raster-scan algorithm drives the tip in a
sinusoidal pattern (dashed black) transversely to the sample (solid black).
Si and S f (red) are the initial and final states with full knowledge including
the position and the velocity. C1 and C2 (green) are the measurements on
the centerline of the sample which are used here to determine the velocity
of Si and S f . Given a pair of initial and final states, the time optimal path
can be derived illustrated in purple.

In this paper we assume that we have an initial scan
along a biopolymer; this scan establishes a sequence of
crossing points. Our goal is to move transversely across the
sample from crossing point to crossing point as quickly as
possible. A single crossing sequence is illustrated in Fig.
2. In this figure, C1 and C2 denote points on the centerline
of the string-like sample while Si and S f represent points
of transition on the different sides of the sample. Given
our assumptions, these points are known exactly from the
previous local raster-scan (shown in dashed-black on the
figure). There are clearly many other paths between the
points Si and S f that would be suitable for a local-raster
scan; all that is needed is that from an initial point at Si with
a velocity vector pointing toward C1, the system end at S f
with a velocity vector pointing toward C2. Our basic problem,

then, is to find the time-optimal trajectory that satisfies the
given boundary conditions. A full scan of the sample can
then be accomplished by driving the tip to follow the time
optimal paths connecting the sequence of crossings along the
string-like sample. Note that the resulting entire trajectory is
a combination of each local optimal trajectory and is not
necessarily a globally optimal solution.

Scanning in AFM is typically done with piezo actuators
using either a piezo tube or a frame-in-frame style scanner
[20]. In modeling the positioning mechanism, both dynamics
[21] and nonlinearities including hysteresis [22] and creep
[23] should be taken into account. While such effects are
important, we will assume a linear model for this paper. In
practice, one could have a (even lower level) controller to
handle nonlinearities, though more practically our approach
will need to be modified to directly account for them.

It has been shown that a single mass-spring-damper is a
reasonable model for the dynamics of a piezo [22] and we
take such a model here. For the sake of simplicity, we utilize
the same linear dynamics model for the actuators in both the
X– and Y – directions and ignore the cross coupling between
axes. Such an assumption is reasonable for a frame-in-frame
style scanner.

With these assumptions in place, our problem then be-
comes one of finding the time-optimal controller to transition
a second-order linear time-invariant system between two
points in its state space. This is a well-known problem
that can be solved using the Pontryagin Maximum Principle
(PMP) [24]. In the next section we briefly describe recent
results in the time optimal control of such systems and then
use those results in our application.

III. TIME-OPTIMAL CONTROL OF SECOND-ORDER
SYSTEMS

The time optimal control of linear time-invariant systems
was considered at least as far back as Pontryagin’s seminal
work on his maximum principle [24]. As described below,
that approach yields a bang-bang control law based on a
switching curve in the state space. Finding that switching
curve, and thus the switching time, is in general computa-
tionally challenging. Recent results for second order systems
have yielded a more efficient approach based on mapping the
problem to a coordinate system in which the switching curve
is made up of segments of standard spirals. Below we outline
the scheme; details can be found in [25].

A. Problem formulation and the bang-bang solution

Consider a second-order system of the form

G(s) =
ω2

n

s2 +2ζ ωns+ω2
n
.

The time-optimal control problem can be formulated as
follows:

min J =
∫ t f

0
dt. (1)
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subject to

ẋ =
(

0 1
−ω2

n −2ζ ωn

)
x+
(

0
ω2

n

)
u, (2)

x(t0) = x0, x(t f ) = x f , (3)

where we have expressed the system in state space form.
We assume that the system has a pair of stable complex
conjugate poles and that the admissible control is in the range
of u ∈ [umin,umax].

Fig. 3. Illustration of the construction of the switching curve in state space.
x f is the final state. x f A and x f B are the final switching curves derived by
evolving the system backwards in time under the control umax and umin
respectively; Other components of the switching curve such as BA1 and
A1B are produced by rotation and scaling of x f A and x f B.

Appealing to the PMP, the optimal solution can be shown
to be bang-bang. That is, the system should first apply one
extreme of the control for a given amount of time, then
switch to the other extreme for another period of time,
and so on until the target is reached. The point at which
switches occur is defined by the switching curve. This curve
divides the state space into two distinct regions; the positive
control extreme is applied on one side of the curve and
the negative control extreme on the other. Constructing this
switching curve, however, is non-trivial. As shown in Fig.
3, for example, the final switching curves (x f A and x f B) are
derived by evolving the system backwards in time from the
target (x f ) under the control umax and umin respectively. Other
components of the switching curves can be then produced by
rotating and scaling the final switching curve. Construction
of the curve is in general a non-trivial computation step.
Similarly, determining the switching time (or times) is com-
putationally challenging since it involves knowing when a
trajectory has crossed the (numerically computed) switching
curve.

In the following section, we describe recent work from
[25] in which a convenient mapping is derived that simplifies
the process of constructing the switching curve as well as
computing the switching time.

B. A useful coordinate transformation

Consider a second order system of the form (2) but ex-
pressed in a different coordinate system. This new coordinate
system is built from the following mapping. We define

a1 = 2ζ ωn,

a2 = ω
2
n ,

and let
Axr +Bumax = [v, z]T , (4a)

Axr +Bumin = [m, n]T . (4b)

Then we define a mapping Mmin : R2→ R2,

x 7→ X = A−1
min(x−Bmin), (5)

in which
R(t) = e

a1
2 t , (6a)

X(t) = (R(t)cos(ωt),R(t)sin(ωt))T , (6b)

Amin =

(
− a1m+n

a2
−m(4a2−a1)−2a1n

4a2ω

m − a1m+2n
2ω

)
, (6c)

Bmin = x f +

(
a1m+n

a2
, −m

)T

. (6d)

Under this mapping the switching curve becomes a col-
lection of similar spirals. The detailed structure of that
curve depends on the type of target point. Here we consider
holdable equilibrium points defined as follows.

Definition 1: A target state xr is called a holdable equilib-
rium target state if ∃ uo ∈ [umin,umax] such that Axr +Buo =
0.

The condition Ax f +Bumax 6= 0 and Ax f +Bumin 6= 0 should
be satisfied to guarantee the existence and effectiveness of
the mapping, meaning that x f should be reachable under the
control umax and umin.

The benefit of introducing this mapping is that the switch-
ing curves become regular spirals. This structure facilitates
the computation of the switching time. An example is shown
in Fig. 4. The figure illustrates an initial condition (xi) from
which only a single switch (at S) is needed. The switching
time is then defined by two angles, α and β . The acceleration
and deceleration time is then given by these two angles.
These angles can be found using a simple numerical scheme.

C. Application to non-raster scanning in AFM

The approach to solve for our time-optimal trajectory is
now clear. Given a initial state xi and final state x f on
opposite sides of the strand being imaged (as illustrated in
Fig. 2), let the corresponding coordinates in the new system
by denoted (Xo,Yo) and (X f ,Yf ) respectively. As illustrated in
Fig. 6, the two points are “close” in the state space and thus a
single switch is expected (although the technique can handle
an arbitrary number of switches). The switching time is then
found using the method outlined above. After the transition,
the end point becomes the new initial condition, the next
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Fig. 4. Illustration of constructing the switching curve in the new
coordinates. x f is the final state. AS is a system trajectory under control
umin passing through the initial state xi. α = ∠xir1S and β = ∠x f r2S.

(desired) crossing point becomes the new target point, and
the process repeats.

In principle, the entire path, including all the switching
times can be calculated in advance. In practice, however, each
switch should be calculated after the previous motion has
been completed to prevent errors from growing throughout
the scan. These errors arise from model mismatch, noise and
the chattering of bang-bang control.

IV. SIMULATION RESULT

To illustrate our approach, we performed a simulation to
generate the time optimal path for a second order system
given the boundary conditions corresponding to adjacent
crossing positions from a local raster scan of a biopoly-
mer. We choose a model which (loosely but reasonably)
approximates a piezo tube (see, e.g. [12]). In particular, for
each axis, we choose a resonant frequency of f = 871 Hz
(ωn = 5.47×103 rad/sec) and a damping of ζ = 0.1282. In
addition, the accessible range of the scanner is set to be from
-10µm to 10µm with the drive voltage in the range of -10
V to 10 V. As discussed in the last section, for simplicity
we ignore the cross-coupling between the two axes and use
the same model for both X− and Y−axes. The Bode plot is
shown in Fig. 5.

Fig. 5. The Bode plot for the model of each axis of the piezo actuator.

In [18], this model was used to simulate the local raster
scan of a sample with a tip speed of 20 µm/sec. In order to
compare to that result, we set the tip speed at the beginning
and end points of our time-optimal problem to also be
20 µm/sec. A pair of successive crossings produced from
a run of local raster scan were selected arbitrarily. These
points were xox = [201.7,5747]T , xoy = [202,−1915.7]T and
xrx = [205.85,1831.4]T , xrx = [197.95,1991.6]T . The units
in the state variables are nanometers and nanometers/second
respectively.

In order to apply the results described in Sec. III-B, we
must ensure the target point (X f ,Yf ) is a holdable equilibrium
point. Consider just the motion in the x–direction. The state
space model of the piezo actuator is

ẋ =
(

0 1
−2.9×107 −1.4×103

)
x+
(

0
2.9×107

)
u.

(7)
With this model it is easy to show that in fact there does not
exist a uo ∈ (umin,umax) such that Axrx +Buo = 0. Thus the
target point is not a holdable equilibrium point. The target
speed of 20 µm/sec, however, is quite slow relative to the
maximum speed achievable by the system. As a result, we
can approximate it by zero. Under such an approximation,
the target is a holdable equilibrium point. A similar argument
holds for the y–axis actuator.

Applying the mapping established in Sec. III-B, initial and
target points become X0 = [0.9996,0.0001]T , X f = [1,0]T and
Y0 = [1.0003,−0.0007]T , Yf = [1,0]T . These points and the
switching curve (in terms of regular spirals) are shown in the
new coordinate system in Fig. 6. The initial positions (black
dots) seen in the zoom in plot fall in the domain of only one
switch for both of the stages. For the X–stage, the system
experiences acceleration (umax, blue) first then decelerates
(umin, red) to its final state; for the Y –stage it decelerates
(umin, red) from the starting point to achieve the opposite
direction of the velocity and switches to the accelerating
process (umax, blue) until arriving the target. This entire
process for both of the two stages can be shown in Fig.
7. Computing α and β numerically yields a switching time
of 3.792 µs, and a total travel time of 7.227 µs for the X–
stage; a switching time of 3.584 µs and a total travel time of
7.427 µs for the Y –stage. Note that X–stage accomplishes its
transition faster than the Y –stage in theory. In the simulation,
we artificially limit the maximum command to the faster
direction (or, equivalently, scale time) to ensure that they
finish at the same time. The transition time is then 7.427 µs
time. The time optimal tip trajectory is generated as shown
in Fig. 8.

The two crossing points xi and x f are approximately 4 nm
apart. Since most biopolymers have the same width along
their entire length, one can assume that the time between any
successive crossings spaced 4 nm apart will be essentially
the same. Thus, using this approach, a 1 µm-long string
can be scanned in approximately 2 ms for a corresponding
frame rate of 500 Hz. This should be compared to the
local raster-scan which can achieve approximately a 10 Hz
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(a) Switching curves in the normal space for X–stage

(b) Switching curves in the normal space for Y –stage

Fig. 6. Simulation result of the switching curve in the normal space for X–
and Y –stage. The initial position are the black dots (shown in the zoomed
image).

frame rate under the same conditions on the actuator, image
resolution, and scan length, and to a standard raster scan
which can achieve approximately a 1 Hz frame rate for the
same conditions.

A. Discussion

The possible increase in frame rate to 500 Hz is quite
enticing but should also be viewed as an upper limit (under
the conditions stated). A comprehensive evaluation of the
performance of this time optimal scanning is needed after
being implemented and one should keep in mind that our
approach makes several simplying assumptions. In addition,
due to the nature of bang-bang control, chattering would be
caused by any external disturbances or unmodeled dynamics
of the system. Therefore, at the very least a robust time-
optimal control scheme such as proximate time-optimal
systems (PTOS) [26] must be used. These schemes trade off
optimality for robustness, reducing the achievable frame rate.
Another consideration is the response speed of the scanner
in the z–direction. For imaging, and to avoid damage to
the sample, the z-system must respond significantly faster
than the rate at which features are being encountered by the
tip. Since the scheme we discussed in this paper drives the
tip onto and then off a sample approximately every 8 µs,

(a) State Space plot for X–stage

(b) State Space plot for Y –stage

Fig. 7. Simulation result of the switching policy for both X– and Y stages.

features are coming at a rate of 2/(8 µs) or 250 kHz. The
typical bandwidth of a z-controller is on the order of a single
kHz [20]. However, recent results in this area have yielded
a dual-stage z-system with a bandwidth in excess of 150
kHz [27]. That rate is fast enough to bring the time-optimal
approach into the realm of feasibility. The

V. CONCLUSIONS

In this paper we have considered the problem of time-
optimal transfer between two points on either side of a
biopolymer or other string like sample. This problem forms
the foundation for the fastest possible scan along such a
sample, thus maximizing the frame rate. Simulation results
indicate an improvement of nearly two orders of magnitude
over a standard raster-scan scheme.

The results, however, should be viewed as a theoretical
upper-limit. Modeling error, noise, and nonlinearities would
all act to reduce the achievable frame rate.
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