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Abstract— A new algorithm for determining the switching
time and final time for the minimum-time control of a second-
order system is described. We show that if there is only
one switch in the bang-bang control, then the switching time
and final time are related through an affine mapping. This
mapping is determined by the system dynamics, the initial and
target states, and the control bounds on the control input.
The resulting time-optimal controller is easy to design and
implement, making it suitable for online implementation. Since
the algorithm also produces the final time, it becomes feasible
to optimize the switching sequence over a collection of states
to be visited so as to minimize the total visiting time.

I. INTRODUCTION

It is common to take measurements using a point or short-
range sensor in many applications. For example, in scanning
probe microscopy (SPM), the interaction between the probe
and the sample surface is local. To image the sample, the
generic approach is to raster scan the probe over the region of
interest and rebuild the sample image pixel by pixel using the
data collected on the regular grid. In recent years, non-raster
scanning approaches have been proposed by researchers to
reduce the imaging time by reducing the area to be sampled
[1], [2]. Under such schemes, the next sampling point is not
necessarily near the current position of the probe. To collect
the data as quickly as possible, one should move the probe
from rest to rest in minimum-time.

It is well known that by applying Pontryagin’s maximum
principle (PMP) [3] or Bellman’s principle of optimality [4],
it can be proved that the solution to the time-optimal control
problem of a linear system with bounded control is always a
bang-bang control law [3]. Though bang-bang control can
transfer the system from an initial state to a target state
in minimum time by simply switching the control between
the minimum and maximum value, it is not practical in
most applications because of its sensitivity to disturbance,
parameters variation and unmodeled dynamics [5].

Motivated by the above limitations, researchers have been
striving to increase the robustness of the controllers while
maintaining approximate time optimal performance for over
forty years. The proximate time optimal servomechanism
(PTOS) was developed for second-order and third-order
system [5], [6]. Extended PTOS (XPTOS) and adaptive
PTOS (APTOS) were proposed to address flexible dynamics
in the system [7]–[9]. Recently, the shaped time-optimal
servomechanism (STOS) was developed to modify the bang-
bang control signal before it was applied to the system to
eliminate the residual vibration due to the flexible modes
[10], [11]. A comparison of input shaping and time-optimal
flexible-body control was presented in [12]. The robust and

state-constrained time optimal control problem were also
considered in [13]–[15]. Other approaches have also been
proposed by researchers to achieve proximate time-optimal
output transition. The feedforward minimum-time control
of non-minimum-phase linear scalar systems for set-point
regulation was presented in [16] by using the stable input-
output dynamic inversion technique. The linear quadratic
minimum time (LQMT) output-transition problem was also
solved in [17] with energy constraints and pre- and post-
actuation. The near time-optimal controller for nonlinear
second order systems was also presented in [18], [19].

The above controllers have been applied successfully in
many applications, such as to disk drive systems [10], [14],
[20]. However, they do not provide an estimate of the
transition time from one state to another. In applications that
include a collection of states to be visited by the controller,
such information is useful. A primary motivating example
is that of 3-D particle tracking in a confocal microscope
[21]–[23]. In this application, a collection of measurements is
needed to estimate the position of the particle and the overall
tracking speed is limited in part by how fast the system
can move through the sequence of positions. To improve
scanning speed and measurement accuracy, one not only
needs to achieve the minimum-time transition from one state
to another, but also to optimize the visiting sequence over all
states that need to be visited. This requires us to estimate the
transition time online between any two states before they are
actually visited. In this paper, we developed a new method to
numerically calculate online the switching and final time of
a bang-bang control law for the case where only one switch
is needed to transfer a stable second-order system optimally
from one state to another.

This paper is organized as follows. In Section II, the
solution of the time-optimal problem is given. In Section
III, it is shown that the solution of the switching and final
time is equivalent to finding a crossing point of two spiral
curves under an affine mapping. From this mapping, the
switching and final time can be calculated quickly based on
the geometry of the mapping. In Section IV, simulation and
experimental results are shown to demonstrate this approach.
A brief discussion and concluding remarks are made in
Section V.

II. PROBLEM FORMATION

A. System Model
Consider a stable second-order system transfer function

Xs(s)
U(s)

=
b1s+b2

s2 +a1s+a2
, (1)
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where xs ∈R is the system position and u ∈ [umin,umax]⊂R
is the (bounded) input control signal. Define the system states
as

x1 = xs, (2a)
x2 = x1 +β1u. (2b)

Then the canonical controllable state-space model is given
by

Ẋ = AX +Bu, (3)

where

X =
[

x1
x2

]
, A =

[
0 1
−a2 −a1

]
, B =

[
β1
β2

]
. (4)

βi is given implicitly by 0
b1
b2

=

 1 0 0
a1 1 0
a2 a1 1

 β0
β1
β2

 . (5)

We assume that the eigenvalues of A are given by

λ1,2 =−a1

2
± iω (6)

where ω can be calculated as

ω =
√

4a2−a2
1 (7)

and assume that ω 6= 0. (We note that the case of two pure
real eigenvalues is a simpler version of the scheme presented
here.) With these assumptions, the eigenvectors of A are

P =
[

1 1
λ1 λ2

]
. (8)

Thus,

P−1AP =
[

λ1 0
0 λ2

]
. (9)

B. Minimum Time Control

We consider the following problem
Problem 1: Given the state-space model (3) of system (1)

and the initial system state X0, design a control law to drive
system (3) to the target state Xr in minimum time.

To solve this problem, we define a new system state X̂
and rewrite system (3) and the initial state X0 as

X̂ = X−Xr, (10a)
˙̂X = AX̂ +Bu+AXr, (10b)

X̂0 = X0−Xr. (10c)

Then Problem 1 can be stated equivalently as:
Problem 2: Given system (10), design a control law to

drive the system from the initial state X̂0 to the origin in
minimum time.

This problem can be solved by using the PMP [3]. To
minimize the switching time, the cost function is taken as

J =
∫ t f

0
1dt. (11)

Now, we apply the PMP as follows. Define the Hamiltonian
of (10) as

H = 1+λ
T (AX̂ +Bu+AXr), (12)

where λ is the state of the adjoint system of (10). The
combined system is then given by

˙̂X =
∂H
∂λ

= AX̂ +Bu+AXr, (13a)

λ̇ =−∂H
∂ X̂

=−AT
λ , (13b)

with the additional condition that

H(t f ) = 1+λ (t f )T (AX̂(t f )+Bu(t f )+AXr) = 0. (14)

(Note that while 14 is true for all time, we will explicitly
use it at the final time.) Since the target state is the origin,
we have

X̂(t f ) = 0, (15)

yielding, from (14),

1+λ (t f )T (Bu(t f )+AXr) = 0. (16)

A control signal giving the minimum time is found by
minimizing the Hamiltonian in (12). This yields

u(t) =
{

umin, i f λ T B > 0,
umax, i f λ T B < 0,

(17)

with the value of u arbitrary when λ T B = 0. This is the
bang-bang control law for the linear system. In general,
there is no analytical solution for the combined system in
(13) due to the lack of sufficient boundary conditions on
the adjoint system. As a result, there is also no analytical
expression for the switching function λ T B in the bang-bang
control law (17). Though one can numerically solve λ with
the gradient methods provided in [3], [24], the difficulty in
making a good and meaningful initial guess of the costate
λ and the time-consuming nature make it not practical
for online implementation. Moreover, it does not provide
the switching and final time explicitly. Such information
is critical to optimize the total visiting time when moving
through a collection of states.

III. SWITCHING TIME AND FINAL TIME

To simplify the presentation, we make the following defi-
nitions and assumptions for the calculation of the switching
and final time. Define:

ts :switching time,
t f :final time, (18)

Φ(t,τ) :state transition matrix.

We assume that there is only one switch in the control. For
concreteness, we arbitrarily assume that the control signal
is umax at the beginning of the bang-bang control, switching
to umin at ts and staying at umin until the final time t f . (The

4820



other cases follow in similar fashion.) Define variables v, z,
m, n, x̂01 and x̂02 as follows:

AXr +Bumax = [v z]T , (19a)

AXr +Bumin = [m n]T , (19b)

X̂0 = [x̂01 x̂02]T . (19c)

From the variation of constants formula, the system state at
time ts is given by

X̂(ts) = Φ(ts,0)X̂0 +
∫ ts

0
Φ(ts, t)

[
v
z

]
dt. (20)

From time ts to t f , the system is driven by the control signal
umin with initial state X̂(ts). So, the system state at time t f
is given by

X̂(t f ) = Φ(t f − ts,0)X̂(ts)+
∫ t f−ts

0 Φ(t f − ts, t)
[

m
n

]
dt.

(21)
Substituting (15) into (21) and multiplying both sides by
Φ(ts, t f − ts) yields

−
∫ t f−ts

0 Φ(0, t)
[

m
n

]
dt = Φ(ts,0)X̂0 +

∫ ts
0 Φ(ts, t)

[
v
z

]
dt.

(22)
Now, consider the three terms in (22). From (9), it can be
shown that

Φ(ts,0) = P
[

eλ1ts 0
0 eλ2ts

]
P−1, (23)

so that∫ ts

0
Φ(ts, t)dt = P

[
1

λ1
(eλ1ts −1) 0

0 1
λ2

(eλ2ts −1)

]
P−1,

(24)
and

−
∫ t f−ts

0 Φ(0, t)dt

= P

[
1

λ1
(eλ1(ts−t f )−1) 0

0 1
λ2

(eλ2(ts−t f )−1)

]
P−1.

(25)

Define
τ = t f − ts, R(t) = e−

a1
2 t . (26)

Substituting (6) and (8) into (23), (24) and (25) and carrying
out some straightforward but tedious calculations yields

Φ(ts,0)X̂0 =

 x̂01 cos(ωts)+ a1 x̂01+2x̂02
2w sin(ωts)

x̂02 cos(ωts)− 2a2 x̂01+a1 x̂02
2w sin(ωts)

R(ts),

(27)∫ ts
0 Φ(ts, t)

[
v
z

]
dt =

 a1v+z
a2

−v

+

 − a1v+z
a2

cos(ωts)+ v(4w2−a2
1)−2a1z

4a2w sin(ωts)

vcoswts + a1v+2z
2w sin(ωts)

R(ts),

(28)

−
∫

τ

0 Φ(0, t)
[

m
n

]
dt =

 a1m+n
a2

−m

+

 − a1m+n
a2

cos(ωτ)− m(4w2−a2
1)−2a1n

4a2w sin(ωτ)

mcos(ωτ) − a1m+2n
2w sin(ωτ)

R(−τ).

(29)
Now, substitute (27), (28) and (29) into (22) and define

X(t) = R(t)cos(ωt), Y (t) = R(t)sin(ωt), (30)

A1 =

 x̂01
a1 x̂01+2x̂02

2ω

x̂02 − 2a2 x̂01+a1 x̂02
2ω

 , (31)

A2 =

 − a1v+z
a2

v(4ω2−a2
1)−2a1z

4a2ω

v a1v+2z
2ω

 ,B2 =

 a1v+z
a2

−v

 , (32)

A3 =

 − a1m+n
a2

m(4ω2−a2
1)−2a1n

4a2ω

m a1m+2n
2ω

 ,B3 =

 a1m+n
a2

−m

 .

(33)
With these definitions, (22) can be written as

A1

 X(ts)

Y (ts)

+A2

 X(ts)

Y (ts)

+B2 = A3

 X(−τ)

Y (−τ)

+B3.

(34)
Finally let

A0 = A−1
3 (A1 +A2),

B0 = A−1
3 (B2−B3).

(35)

Then (34) can be rewritten as

A0

 X(ts)

Y (ts)

+B0 =

 X(−τ)

Y (−τ)

 . (36)

The switching and final time of the bang-bang control can
be calculated by solving (36) for ts and τ . This can be
interpreted as finding the crossing point of the curves defined
by the two sides of (36). Note that the left hand-side is an
affine transformation of the curve on the right hand side.
From (36), we see one curve is defined by an increasing
parameter and one by a decreasing parameter. We therefore
split the curve into two pieces: the switching time curve for
t > 0 and the final-time curve for t < 0. This is illustrated
graphically in Fig. 1, which shows an (X ,Y ) trajectory of a
rest-to-rest switching between two set-points. In this figure,
the crossing point is denoted M. The unit circle denotes
the splitting of the spiral into the switching-time curve ED,
located inside of the unit circle, and the final-time curve EM,
located outside of the unit circle.

Note that the spiral curve is given by (30) and is thus de-
termined only by the characteristic polynomial of the system.
The affine mapping, however, is defined by (A0,B0) in (36)
and depends not only on the system dynamics, but also on
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Fig. 1. A typical phase plane plot of a rest-to-rest bang-bang control.
The spiral curve defined by (30) is separated by the unit circle into two
segments. One segment is the switching-time curve ED inside the circle
and the other is the final-time curve EM outside the circle. The switching-
time curve is mapped to the curve FM by an affine mapping and crosses
with the final-time curve EM at point M. The switching and final time can
be calculated from the coordinates of the point M.

the initial state, target state and control bounds of the system.
Referring to Fig. 1, FM is the image of the switching-time
curve ED under the affine mapping. The parameter value
t = 0, corresponds to the point E = (1,0). As the parameter is
increased, the vector

−→
OE rotates anticlockwise along ED and

its image
−→
NF rotates anticlockwise along FM until it crosses

the final-time curve EM at point M. Under the mapping, this
point corresponds to the point D. By finding the coordinates
of point D and point M, the switching time and final time of
the bang-bang control can be calculated from (26) and (30).

Unfortunately, there is no analytic solution for the coordi-
nates of the points D and M. However, as illustrated in Fig. 2,
they can be solved efficiently using the following numerical
algorithm.

Step 0: Defining a stopping criterion ε > 0 and give an
initial guess of ∠EOD as ∠EOD1.

Step 1: Calculate the coordinates of points D1 and its
image point M1 under the affine mapping.

Step 2: Calculate the coordinates of points M2 and
∠M1NM2.

Step 3: Let ∠EOD1 = ∠EOD1− γ∠M1NM2, where γ is
a gain factor.

Step 4: Repeat step 1 to 3 until ‖M1−M2‖< ε .

IV. SIMULATION AND EXPERIMENTAL RESULTS

We ran both simulations and physical experiments to
demonstrate the feasibility of our scheme. We applied the
above method to calculate the bang-bang control to drive
a single axis of a 3-D piezoelectric nanopositioning stage
(Nano-PDQ, Mad City Labs) from one set point to another.
The stage is equipped with a position sensor with accuracy on
the order of picometers as reported by manufacturer. It was
operated in closed-loop mode with a proportional-integral
(PI) feedback controller provided by manufacturer. A data
acquisition card (NI-6259, National Instrument) was used to
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Fig. 2. Numerical calculation procedure of the coordinates of the point M.
Given an initial guess ∠EOD1, ∠DOD1 can be estimated by calculating
∠M1NM2. Points M1, M2 will converge to point M and point D1 will
converge to point D quickly by adapting ∠EOD1.

Fig. 3. Experimental step response of the nano-positioning stage. A 5 volts
to 6 volts step signal was inputted to the nano-positioning stage controller.
Both the step input signal and output signal from stage position sensor were
sampled with a sampling frequency of 500 KHz.

output the command signal to the stage controller and to
sample stage position from its position sensor. Both the input
and output signals of the data acquisition card range were
limited to [0,10] volts. The stage position was represented
by the output voltage of the position sensor. We considered
a step from the set point 5 volts to the set point 6 volts.

A. Bang-bang Control Design

The transfer function of the stage was estimated by driving
the stage in closed-loop mode with a step signal from 5 to 6
volts. The step signal and stage response are shown in Fig.
3. The identified stage transfer function was

G(s) =
−261.82s+1.8143×106

s2 +1983.3s+1.8118×106 . (37)
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Fig. 4. Simulated step response of the nano-positioning stage for set point
change from 5 volts to 6 volts based on the identified model from the
experimental step response in Fig. 3.

Fig. 5. Simulated bang-bang control response of the nano-positioning stage
for set point change from 5 volts to 6 volts. The switching and final time
were calculated as ts = 0.48075 ms and t f = 0.67958 ms. The control signal
bound was set to u ∈ [0,10] volts.

Given the stage transfer function (37), the canonical control-
lable state-space model can be written as

A =
[

0 1
−1.8118×106 −1983.3

]
, (38a)

B =
[
−261.82

2.3336×106

]
. (38b)

The initial and target state corresponding to the set points 5
and 6 volts respectively were calculated as

X0 =
[

5.0072
1309.1

]
, Xr =

[
6.0086
1570.9

]
. (39)

With the control signal bounds umin = 0 volts and umax = 10
volts, the affine mapping defined by A0 and B0 was calculated
from (31),(32),(33) and (35) as

A0 =

 −0.8333 0

0 −0.8333

 , B0 =

 1.6667

0

 . (40)

Fig. 6. Simulated state trajectories of system (3) under step and bang-
bang control signal for t ∈ [0, t f ]. Both initial and target states locate on
the steady-state line (green). Both state trajectories start from the initial
state. The bang-bang trajectory (red) gets to the target state before the step
trajectory (blue) does.

Fig. 7. Experimental bang-bang control response of the nano-positioning
stage for set point change from 5 volts to 6 volts. The switching and
final time were calculated as ts = 0.48075 ms and t f = 0.67958 ms. The
control signal bound was u∈ [0,10] volts. Both the bang-bang control signal
and output signal from stage position sensor were sampled with sampling
frequency 500 KHz.

The coordinates of point D and point M were calculated
numerically as

D =

 0.5623

0.2631

 , M =

 1.1981

−0.2192

 . (41)

From (26) and (30), we have

ts = 0.48075 ms, t f = 0.67958 ms

B. Simulation Results

A simulation program was constructed in Matlab to simu-
late the response and state-space trajectory of the stage under
the above step and bang-bang control signal. Fig. 4 shows
the step response of the stage. Note that it matches very well
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with the experimental result in Fig. 3. The simulated stage
response under the bang-bang control signal is also shown in
Fig. 5. The stage rests at the target position at the end of the
control, demonstrating the feasibility of our approach. The
transition time for the set point change of the stage from 5
volts to 6 volts was reduced from approximately 6 ms using
the step input to 0.68 ms using the bang-bang control. The
state trajectories under the step and the bang-bang control
are shown in Fig. 6. The green line indicates the steady state
values corresponding to the set points of the stage. The blue
curve is the state trajectory under the step input for t ∈ [0, t f ].
The red curve is the state trajectory under the bang-bang
control signal for t ∈ [0, t f ]. The two circle markers on the
green line are the initial and target state respectively. The top
circle marks the switching state of the bang-bang control.

C. Experimental Results
We also applied the designed bang-bang control signal to

drive the real stage. The bang-bang control signal was output
to the stage controller and the stage position sampled with a
sampling frequency of Fs = 500 kHz by the data acquisition
card. The result in Fig. 7 shows that the stage was driven
to the target position at the end of the control. However,
due to the modeling error and parameter uncertainty, the
stage passed over the target position. Due to the closed
loop controller, the stage did settle gradually to the target
position after the residual vibration damped out. To suppress
the unwanted overshoot and residual vibration caused by
the unmodeled dynamics and parameter uncertainty, one can
apply input shaping or other filtering techniques to smooth
the input signal to get proximate time-optimal response with
minimal excitation of unmodeled high-order modes [25],
[10].

V. CONCLUSIONS

We have proposed a new approach to calculate the switch-
ing and final time of the bang-bang control with only one
switch for a stable second-order system. We have shown that
the switching-time curve and the final-time curve are spirals
determined by the natural frequency and damping ratio of
the second-order system. An affine mapping, determined by
the system dynamics, the initial state and the control signal
bounds, determines the switching time and final time. This
can be readily calculated by finding the crossing point of the
final-time curve with the image of the switching-time curve
under the mapping. Both the simulation and experimental
results demonstrated the feasibility of this approach. This
approach tells us not only the switching time for the time-
optimal control, but also how long the transition takes. This is
particularly important when we want to optimize the visiting
sequence to minimize the total visiting time over a collection
of states before they are actually visited by the system.
The future works include extension to unstable second-order
system, multiple switchings and non-resting target state.
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