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Abstract

In this work we apply the moving systems approach de-
veloped by Marsden, Montgomery, and Ratiu to a free-
floating, equal-sided, spring-jointed, four-bar mecha-
nism that is being slowly rotated about its central axis
and derive a formula for the induced geometric phase.

1 Introduction

Due to the immense number of applications, research
on gyroscopes has been active for many years. With
the absence of rotating parts, low power requirements,
and inherent scalability, vibratory gyroscopes have be-
come particularly popular [1]. These devices all take
advantage of the same physical phenomenon, the Cori-
olis force [2]. Marsden, Montgomery, and Ratiu have
developed a modern geometrical approach to moving
systems through which the effect of the Coriolis force
can be understood as the holonomy of a particular con-
nection known as the Cartan-Hannay-Berry connection
[5]. This holonomy is termed the Berry-Hannay phase
(see [3] for a detailed discussion of Berry’s phase).

In the moving systems approach one starts with a Rie-
mannian manifold S, referred to as the ambient space,
and a submanifold Q ⊂ S, the configuration space. Let
M be the space of embeddings of Q into S. If a parti-
cle in Q follows a path q(t) and Q follows the curve mt

then the particle in S follows the path mt(q(t)). The
velocity in S is then Tq(t)mt · v + Zt(mt(q(t))) where
Zt(mt(q(t))) is the velocity vector dmt

dt . The Hamilto-
nian on T ∗Q is given by

H =
1
2
‖p‖2−P(Zt)− 1

2
‖Z⊥‖2 +V (q)+U(mt(q)) (1)

where V (·) is a potential on Q, U(·) is a potential on
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S, and P(Zt) is defined to be

P(Zt) = p · (Tq(t)mt)−1 [Ztmt(q)]
T (2)

where [Ztmt(q)]
T is the orthogonal projection of

Zt(mt(q(t))) onto Tmt(q)mt(Q) relative to the metric
on S.

We assume we have a Lie Group G acting on T ∗Q rel-
ative to which we can average and replace the above
Hamiltonian with its G-average. The Hamiltonian vec-
tor field of the averaged Hamiltonian term < P(Zt) >
has a natural interpretation as the horizontal lift of
Zt relative to the Cartan-Hannay-Berry connection on
T ∗Q × M . The holonomy of this connection is the
Berry-Hannay phase for the slowly moving system. For
the details of the moving systems approach see [4] and
[5].

The precession of the nodal points in a rotating vibrat-
ing ring was first analyzed in the late 1800’s by G.H.
Bryan [6]. This phenomenon has provided the basis for
gyroscopes (e.g. [7] and [8]). While the linear analy-
ses of these works is effective, it is to be expected that
a deeper understanding will emerge by appealing to a
nonlinear, geometric approach directed at more accu-
rate constitutive models. The present paper takes a
first such step by applying the geometric techniques of
moving systems to compute the Berry-Hannay phase
(=precession) for a specific class of linkages.

2 Results

The equal-sided four-bar mechanism is diagrammed
in figure 1. We follow the setup and analysis of
free-floating four-bar mechanisms by Yang and Krish-
naprasad [9]. A frame is placed at the system center
of mass. Define θi as the angle of the ith bar with re-
spect to the center of mass frame, ri as the vector from
the system center of mass to the center of mass of the
ith bar, and d± as the vector from the center of mass
of the ith bar to the joint with the i ± 1 bar. Under
appropriate conditions the configuration space of the
free-floating four-bar mechanism is S1 × S1. We take
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Figure 1: Equal-sided four-bar linkage

this as the ambient space S and choose coordinates
(θ0, θ10) where θ10 = θ1 − θ0. The shape space of this
system is S1. We take this as the configuration space Q
and choose θ10 as a coordinate. At each joint is a spring
and we assume that the total potential is such that the
nominal (unrotated) system admits a periodic solution
about some equilibrium shape. The entire system is
adiabatically (slowly) rotated (moved) at rate Ω. The
embedding Q ↪→ S is mt(θ10(t)) = (Ωt + θ0(0), θ10(t))′

with θ0(0) some arbitrary initial angle. The Lagrangian
is

L =
1
2

(
Ω

ω10

)′
M̂

(
Ω

ω10

)
− V (θ10) (3)

where M̂ is a symmetric 2x2 matrix whose elements de-
pend on θ10 and the mechanism parameters. From this
we can see Zt(mt(q)) = (Ω, 0)′. Projecting Zt(mt(q))
to Tmt(q)mt(Q) relative to M̂ yields

[Ztmt(q)]
T = M̂10(θ10)M̂−1

11 Ω (4)

The Hamiltonian can be shown to be

H =
1

2M̂11

p2
10 + V (θ10) − M̂10(θ10)

M̂11

Ωp10 (5)

where terms in Ω2 have been dropped due to the adia-
batic assumption. Since the configuration space is one-
dimensional the system is integrable and thus there ex-
ist action-angle coordinates (I, φ) on T ∗Q [10]. Let the
coordinate transformations be given by

θ10 = f1(I, φ) p10 = f2(I, φ) (6)

Using these formulas we then have

P(Z) =
M̂10(f1(I, φ))

M̂11

Ωf2(I, φ) (7)

Averaging over one cycle of φ yields < P(Z) >= Ωg(I)
for an appropriate function of the action. The Hamil-
tonian vector field given by the horizontal lift of Z(t) to
T ∗Q relative to the Cartan-Hannay-Berry connection
is then

−X<P(Z)> =
(
−Ω

∂g(I)
∂I

∂

∂φ
, 0

)
(8)
34
and the geometric phase is given by

∆φ = −
∮

Ω
∂g

∂I
dt = −

∫ 2π

0

∂g

∂I
dθ0 = −2π

∂g

∂I
(9)

3 Conclusions

In this work we have found a formula for the Berry-
Hannay phase for a generic equal-sided, spring-jointed,
four-bar mechanism. Applying these results to a sys-
tem with a quadratic potential (or a generic potential
with a small-angle approximation) yields a geometric
phase of 0.

The example here has given us insight into the use of
the moving systems approach and we are now investi-
gating the equal-sided n-bar mechanism. As this sys-
tem is similar to a rotated vibrating ring we expect to
find a non-zero Berry-Hannay phase even in the small
angle approximation. Similar to the vibrating ring we
expect the geometric phase to manifest itself as a ro-
tating wave solution.
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