
Temporal Logic Control in Dynamic Environments with Probabilistic
Satisfaction Guarantees

A. I. Medina Ayala, S. B. Andersson, and C. Belta

Abstract— Mobile robotic systems move in environments
that are constantly changing due to the presence of dynamic
obstacles. In this work we consider one such environment in
which the dynamic nature comes from doors that can open
or close during the robot’s mission. We derive a solution to
the automatic deployment of a robot from a temporal logic
specification assuming three different levels of knowledge and
sensing capabilities of the robot. Under each one of these
settings, the motion of the robot is modeled either as a
Markov decision process (MDP) or mixed observability MDP.
The objective is to find a control strategy that maximizes the
probability of satisfying a specification given in Probabilistic
Computation Tree Logic (PCTL). We describe an optimal
solution in one setting and sub-optimal, reactive solutions in the
other two. We illustrate our methods with simulation results.

I. INTRODUCTION

The need for finding better ways of planning under uncer-
tainty has grown since the domains in which robots are being
applied are becoming more complex. These domains include
unknown environments with real time constraints arising
from changes in the environment. Uncertainty in the motion
of the robot arises from both noisy actuators and noisy
sensors. Markov decision processes (MDPs) are adequate
to model robotic systems that have unreliable controllers
while maintaining the ability to accurately determine their
position with respect to some description of the environment.
In general, however, the motion of a robot in its environ-
ment is more accurately described using partially observable
MDPs (POMDPs). Recently, a sub-class of POMDPs called
mixed observability MDPs (MOMDPs) was proposed to
treat POMDP problems in which some components of the
state of the robot are fully observable. It has been shown
that exploiting the full observability of these components
improves the computational efficiency and speed of existing
planning algorithms [1].

For the most part, solving a PO(MDP) implies finding a
control policy that maximizes a value function that combines
partial rewards over multiple steps. The value function is
an intuitive high level representation of a specific motion
task. It has been shown that the maximal probability of
satisfying a temporal logic formula is the optimal value
function corresponding to the task of maximum reachability
in stochastic shortest path problems [2]. Algorithms based

This work is partially supported at Boston University by the NSF under
grants CNS-0834260 and CMMI-0928776, the ARO under grant W911NF-
09-1-0088, the AFOSR under grant FA9550-09-1-0209, and the ONR MURI
under grant N00014-09-1051.

The authors are with the Department of Mechanical Engineering, Boston
University, MA, USA, E-mail: duvinci, sanderss, cbelta@bu.edu. A. Medina
Ayala is the corresponding author.

on model checking are used to find control policies for
robotic tasks expressed as temporal logic specifications [3]-
[6]. Such specifications can be given in, for example, Linear
Temporal Logic (LTL) and Computation Tree Logic (CTL).
The starting point of model checking algorithms is to rep-
resent the partitioned environment as a transition system, or
Kripke structure [7]. The probabilistic counterpart of CTL,
probabilistic CTL (PCTL) [2], allows one to perform synthe-
sis of control strategies from specifications given as PCTL
formulas. Previous work from the authors [5] suggested the
use of PCTL model checking to deal with indoor robotic
planning. This approach assumed the environment in which
the robot is moving does not change during the robot’s task.

In this paper, we consider an extension of the problem
solved in [5] by allowing for a dynamic (changing) envi-
ronment. Specifically, the environment includes doors that
open and close during the robot’s mission. We solve this
problem under three settings that assume different levels
of knowledge and sensing capabilities of the robot. In the
first setting the robot is given a priori information about the
states of the doors, but it can only learn their true states in
a region adjacent to them. The second setting excludes the
prior information about the states of the doors but retains the
assumption that the exact state of any door is known when
the robot is in a region adjacent to it. In the last setting,
this assumption is also relaxed and we allow for possibly
erroneous measurements as to the state of the doors observed
by the robot. A Markov decision process (MDP) is used to
model the system under the first setting. The second and
third settings are cast as mixed observable Markov decision
processes (MOMDPs). We consider specifications given as
PCTL formulas and develop a framework for the synthesis
of control strategies from such specifications. While this
paper focuses for clarity on an indoor environment with
doors, the problem and methods developed can easily be
generalized to arbitrary environments with regions in which
the transitions can be open or blocked. To illustrate these
methods, we use the Robotic InDoor Environment (RIDE)
Simulator [8] to generate the MDP and MOMDP models
for a robot moving in a dynamic environment and to show
the planning of the robot. To the best of our knowledge,
the frameworks developed in this work for planning in non-
static environments from a PCTL specification are novel and
adaptable to the level of knowledge available.

II. PROBLEM FORMULATION AND APPROACH

Consider a mobile robot moving in an indoor environment
consisting of intersections, corridors, rooms, and doors as

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-456-5/11/$26.00 ©2011 IEEE 3108

illustrated in Fig. 1. We assume that the robot is programmed
with a set of primitives allowing it to move inside each region
and from one region to an adjacent one provided that the
region is not blocked by a closed door. Each primitive (or
control symbol) is a feedback control law. We suppose that
these controllers are not completely reliable. The success and
failure rates of these controllers are assumed to be known.
The robot can determine its current region exactly and only
gets information on whether a given door is open or closed
when the current region contains that door. With this setting,
we consider the following problem:

Problem 1. Given a motion specification in the form of a
temporal logic statement over a set of properties satisfied
by the regions in a dynamic indoor environment with known
topology, find a control strategy that maximizes the proba-
bility that the robot will satisfy the specification.

To capture the notion of the dynamic environment used in
this paper, we introduce the following definition.

Definition 1. A dynamic environment is a tuple E =
(R,D,A,B,H), where R = {r1, r2, . . . , rk}, is a set of
mutually disjoint regions, D = {d1, d2, . . . , dN}, is a set of
doors, A ⊆ R × R, is a binary relation representing the
adjacency between two regions. (r1, r2) ∈ A denotes that
r1 and r2 are adjacent and there is no door in between,
B = {bi : 1 ≤ i ≤ N}, where N is the number of doors,
is a set of Boolean variables indicating if a door is closed
(bi = 1) or open (bi = 0), and ⊆ D×R, is a binary relation
representing the adjacency between regions and doors. We
say that a region r has a door d if (d, r) ∈ H .

An example indoor environment is given in Fig. 1. This
environment consists of 16 corridors (marked as C1; ...; C16),
ten intersections (I1; ...; I10), and six doors (d1; ...;d6). There
are five properties of interest about these regions: Safe (the
robot can safely drive through a region with this property),
Relatively safe (the robot can pass through the region but
should avoid it if possible), Unsafe (the corresponding region
should be avoided), Power supply (there is a power supply
station to charge the robot in the region), and Destination
(a region the robot should visit). An example task based
on these properties is: “Reach Destination while going only
through either Safe or Relatively safe regions only if Power
supply is available at the Relatively Safe regions”.

In this paper we solve Problem 1 under three settings with
different levels of assumed knowledge.

1) Setting 1: In the first setting, we assume that when the
robot observes a door, it determines perfectly whether
the door is open or closed. Further, we assume the
robot knows a priori the probability that each door
is either open or closed. Doors are allowed to switch
between being open and closed, though in this work
we make the simplifying assumption that such changes
occur in synchronization with the transitions of the
robot. Under these assumptions, the entire system can
be modeled as an MDP. This structure then allows us
to use the model checking approach developed in [5] to

Fig. 1. Schematic representation of an example dynamic environment. Ci

and Ii are identifiers representing corridors and intersections, respectively.
The properties satisfied at each one of the regions are: S = Safe, R =
Relatively safe, U = Unsafe, P = Power supply, and D = Destination.

synthesize a control policy that computes the discrete
plan satisfying a specification.

2) Setting 2: In the next setting, we remove the assump-
tion that the robot has a priori knowledge about the
state of the doors. In order to solve Problem 1 under
this setting, we focus on a special class of POMDPs
called MOMDPs (mixed observability Markov deci-
sion processes [1]). Using this framework, the state
space of the system is the Cartesian product of two
components, the regions of the environment and the
state of the doors. We assume the robot knows its
current region perfectly and can only measure the state
of a door when it is in a region that has a door.
Thus the fully observable component corresponds to
the regions while the hidden one corresponds to the
states of the doors. Our approach starts by solving
the problem for the fully observable state component
offline, for each one of the possible scenarios the envi-
ronment can be in. A scenario represents a particular
configuration of the environment in which either all
doors are open or only one is closed. Each scenario
may require a distinctive control policy. Once the robot
is deployed, it selects the policy corresponding to the
current scenario; each time a door is encountered, the
new scenario is determined and the policy is changed
accordingly.

3) Setting 3: In the final setting, we also remove the
assumption that the robot has perfect measurements as
to the states of the doors. In this case, the robot may
observe an open door as being closed or vice versa.
We do assume, however, that the success and failure
rates of these observations are known and are given in
the form of the probabilities, i.e., Pr(o|s, α, x). Here
o represents the observation made of the hidden state
x from the fully observable state s after the controller

3109

α is performed. Following the same approach used to
solve Setting 2, a sub-optimal strategy is generated.

III. PRELIMINARIES

In this section, some concepts and notation used in the
paper are introduced.

Let AP be a finite set of atomic propositions.

Definition 2. A labeled Markov decision process M is a
tuple (S, s0, Act, T, L), where S is a finite set of states, s0 ∈
S is the initial state, Act is a finite nonempty set of actions,
T : S×Act×S → [0, 1] is a transition probability function
such that for each s ∈ S and α ∈ Act, either T (s, α, .) is a
probability distribution on S or T (s, α, .) is the null function
(i.e. T (s, α, s′) = 0 for any s′ ∈ S), and L : S → 2AP is
a labeling function assigning to each s ∈ S possibly several
elements of the set AP that are supposed to hold in s.

Given s ∈ S, let Act(s) denote the set of actions available
in state s, i.e., Act(s) = {α ∈ Act : T (s, α, s′) > 0|s′ ∈ S}.

A path of an MDP, is an infinite sequence si, si+1, si+2, ...
of states. A policy is a particular resolution of non-
determinism defined as a mapping π from the set of finite
paths into the set of actions Act. Given a policy π, the
operational behavior of M under π can be represented by a
Markov chain. This allows one to apply standard techniques
for Markov chains to define a σ-algebra over infinite paths
and the probability of path events [2].

PCTL is a probabilistic extension of CTL that includes the
probabilistic operator P. The syntax of PCTL is defined as
follows:

Φ ::= true | p | ¬Φ | Φ ∨ Φ | Φ ∧ Φ | P∼λ[φ]

φ ::= X Φ | P∼λ(Φ U≤n Φ)

where p is an atomic proposition, ∼∈ {<,≤, >,≥} is a
comparison operator, λ ∈ [0, 1] is a probability threshold
and n ∈ N ∪ {∞}.

PCTL formulae are interpreted over the states of M. For
representing the syntax of PCTL, we distinguish between
state formulae Φ and path formulae φ, which are evaluated
over states and paths, respectively. The next (X) and bounded
until (U≤n) operators are considered as path formulae. The
unbounded until operator is obtained by taking n =∞.

In this work, we restrict ourselves to specifications of the
form Pmax=?[φ1 U φ2], which is defined as the maximal
probability for which there exists a policy π such that the
formula “φ1 until φ2” is satisfied.

Definition 3. A labeled mixed observability Markov
decision process (MOMDP) is defined as a tuple
(S, s0, X,Θ, Act, T,O, L), where S is the set of fully ob-
servable states, s0 ∈ S is the initial fully observable state,
X is the set of hidden states, Θ is a finite set of observations,
Act is a finite set of actions, T (s, x, α, s′) = Pr(s′|s, x, α)
represents the probability of making a transition to the fully
observable state s′ if action α is applied in the observ-
able state s when the hidden state is x, O(s′, x′, α, o) =
Pr(o|s′, x′, α) is a set of observation probabilities that

describe the probability of observing o from the fully ob-
servable state s when the hidden state is x after performing
action α, and L : S → 2AP is a labeling function assigning
to each fully observable state possibly several elements of
the set AP that are supposed to hold in s.

IV. CONTROL POLICY SYNTHESIS UNDER
SETTING 1

A. Construction of the MDP Model

We assume that the transition probabilities of the robot
in the environment depend only on its current region, i.e.,
T (s, α, s′) = Pr(s′|s, α). In practice, state augmentation
may be needed to ensure this Markovianity property [5]. In
order to model the state space of the MDP, we first define
as R2 the set of regions that have a door, i.e., R2 = {r ∈
R|(d, r) ∈ H, for some d ∈ D}. We then denote by R1

the set regions with no doors, i.e., R1 = R \ R2. Hence,
the set of states of the MDP is the union of the set of
regions with no doors with the union of the set of pairs of
regions containing a door and the states of that door, i.e.,
S = R1 ∪

⋃
r∈R2
{(r, 0), (r, 1)}. Each state of the MDP

is labeled with the property that is satisfied at the region
representing such state, i.e., L(s). The set of actions of the
MDP is the set of motion primitives available at each one of
the regions in the environment including the ones that allow
the robot to make a decision at the regions adjacent to a
door, i.e., Act(s).

As an example, consider the environment depicted in Fig.
1. The controller FollowRoad is available at the corridors
while GoRight, GoLeft, and GoStraight are available at the
intersections. In regions adjacent to a door, the actions Wait
and TurnAway are also available if the door is closed.

As already outlined, the a priori probability of the door
being open or closed is known. We also assume that the state
of the doors changes synchronously with the transitions of
the robot. Thus these transitions define the only notion of
“time” in the system. To ensure that the doors do not close
while the robot is crossing, we assume an open door remains
open so long as the robot is adjacent to it.

B. PCTL Control Synthesis

By constructing the MDP as described above, the problem
can be solved using the tool developed by our research group
[5]. This tool accepts an MDP and a PCTL specification
and returns the maximum probability of satisfying this spec-
ification and the policy that gives rise to this probability.
As described in [2], [5], the complexity of this algorithm is
polynomial in the size of the state space of the MDP. An
example of this approach is given in Sec. VII.

V. CONTROL POLICY SYNTHESIS UNDER
SETTING 2

A. Construction of the MOMDP Model

The state space of the MOMDP is the Cartesian product
of the set of regions, and the valuation of the set of Boolean
variables representing the state of each door. The first rep-
resents the fully observable states, i.e., S = R, while the

3110

second represents the hidden ones, i.e., X =
⋃
bi∈B bi. Each

fully observable state component of the MOMDP is labeled
with the property that is satisfied at the region representing
the state, i.e, L(s). The set of controllers of the MOMDP is
the set of primitives available at the fully observable states,
i.e., Act(s).

The set of observations available is Θ = {open, closed},
denoting the possible states of the doors. Under the assump-
tion of perfect sensing, the exact state of the doors is known
once the robot is in a region adjacent to them. Thus, the
observation probabilities, O(s′, x′, α, o) = Pr(o|s′, x′, α),
are either 0 or 1.

The transition probabilities from states that do not have
a door are independent of the states of the doors, hence
T (s, x, α, s′) = Pr(s′|s, α). On the other hand, the transition
probabilities from states containing doors are conditioned by
the states of the doors, thus they can be obtained from the
fully observable transition and observation functions:

T (s, x, α, s′) =
∑
s∈S

Pr(s′|s, α)Pr(o|s′, x′, α). (1)

However, assuming perfect sensing, (1) reduces to
Pr(s′|s, α) if o is open or 0 if o is closed.

B. PCTL Control synthesis

In our framework, the states of the doors can change at
each transition of the robot. Thus, any information gained
from a measurement is valid only until the next transition is
made. This in turn implies that there is no need to update
the belief state over the hidden states in the MOMDP.

Reactive policy search methods help to manage unpre-
dictable changes in the environment. To solve Problem 1,
we use an online policy search that proceeds as follows. By
construction, only the state of the current door can be known;
we arbitrarily assume that the other doors are open. If there
are N doors in the environment, there are then N+1 possible
configurations. We term each of these N + 1 possibilities as
a scenario. For each scenario there is an underlying MDP
whose state space is comprised of the fully observable states
of the system. As discussed in Sec. IV, the optimal policy for
each MDP can be obtained using linear programming. This is
attained by partitioning S into three subsets: Syes, the states
that satisfy the specification with probability exactly 1, Sno,
the states that satisfy the specification with probability 0, and
S?, the remaining states. As a result, the policy that gives rise
to the maximum probability of satisfying the specification is
obtained off-line for each scenario. We denote by Π the set
of policies for all possible scenarios.

Once the robot is deployed, it applies a reactive policy
by choosing the optimal solution based on its current in-
formation. Thus, if it observes a closed door, it selects the
previously calculated policy corresponding to that scenario.
Otherwise, it selects the policy corresponding to all doors
being open. The robot applies this policy until it encounters
another closed door. The online algorithm is divided into

a planning phase (Off-line Planning Algorithm), and an
execution phase (Algorithm 1).

Producing the optimal policies involves solving one linear
program for each scenario. Hence, the complexity of this
online algorithm is O(|N |poly(|S|)).

Off-line Planning Algorithm
1: Inputs: A PCTL specification, φ :: Pmax=?[φ1 U φ2]

1 +N MDPs, Mi = (S, s0, Act, Ti, AP, L)
2: Outputs: Set of policies for all possible scenarios,

Π = {π0, ..., πN}
3: for i = 0 : N do
4: πi ←− SOLVE LINEAR PROGRAM (Mi)
5: end
6: return Π

Algorithm 1: Setting 2 execution phase
1: Inputs: Set of policies for all scenarios, Π = {π0, ..., πN}
2: π∗ = π0 /* i = 0 is the index of the scenario

in which all doors are open */
3: Act(s)← π∗(s)
4: s′ = execute Act(s)
5: s = s′
6: while IN EXECUTION do
7: if s ∈ Syes ∨ s ∈ Sno do
8: break
9: else
10: if (Pr(closed|s′, bi, Act(s)) = 1) do
11: π∗ = πi

12: go to 3
13: else
14: go to 3
15: end
16: end
17: end

VI. CONTROL POLICY SYNTHESIS UNDER
SETTING 3

A. Construction of the MOMDP Model

The robot’s motion under setting 3 is also modeled as a
MOMDP [1]. The state, action, and observation space of the
MOMDP under this setting are built in the same fashion as
in Sec. V.

The main difference between Settings 2 and 3 is the notion
of observability. Setting 3 describes a more realistic scenario
in which the uncertainty in the robot’s sensors is considered.
Thus, the probability of correctly seeing a door open or
closed depends on the reliability of the sensor measurements
and is assumed to be known. Since the transition probabilities
from states containing doors depend on the states of the
doors, they are given by the full form in (1).

B. PCTL Control Synthesis

As before, the set of policies that generate the maximum
probabilities of satisfying the specification for each scenario
are computed offline. Assuming the initial region does not
have a door, the robot starts by applying the policy that
guarantees it will satisfy the specification with maximum
probability under the assumption that all doors are open
(otherwise, after the observation is made the policy is se-
lected according to (2) as described below). This policy is
executed until the robot crosses a region containing a door.

3111

At this region, based on the observation of the door, the robot
can choose either to keep applying the current policy or to
execute a new policy. The policy selected corresponds to the
scenario that is most likely based on the observation and it
is given by the following one-step lookahead DP

ps = max
π∈Π

{ ∑
s′∈S?

T (s, x, π, s′) · ps′ +
∑

s′∈Syes

T (s, x, π, s′)

}
.

(2)

Here ps is the probability of satisfying the specification from
state s, and Syes, and S? represent the fully observable states
that satisfy the specification with probability 1, and with
probability strictly between 0 and 1, respectively. After mak-
ing the decision that will allow it to satisfy the specification
with maximum probability, the robot repeats the described
procedure until eventually it achieves the destination with a
sub-optimal policy. As in Setting 2, this approach involves
a planning and an execution phases. The Off-line Planning
Algorithm is the same as for the previous case. The execution
phase is summarized in Algorithm 2.

Algorithm 2: Setting 3 execution phase
1: Inputs: Set of policies for all scenarios, Π = {π0, ..., πN}
2: π∗ = π0 /* i = 0 is the index of the scenario

in which all doors are open */
3: Act(s)← π∗(s)
4: s′ = execute Act(s)
5: s = s′
6: while IN EXECUTION do
7: if s ∈ Syes ∨ s ∈ Sno do
8: break
9: else
10: if (s ∈ {r ∈ R|(dj , r) ∈ H)}) do
11: πi ← SOLVE (2)
12: π∗ = πi

13: go to 3
14: else
15: go to 3
16: end
17: end
18: end

The complexity of this online algorithm comes from two
sources: generation of optimal policies for each scenario and
online selection of the appropriate policy to be applied after
observing a door. Generating the optimal policies requires
computing one linear program for each scenario. Once the
robot is deployed, there are two choices available to select the
policy to be executed after making an observation. Therefore,
the overall complexity is O(2|N |poly(|S|)).

VII. SIMULATIONS AND RESULTS

A. Simulation Tool

RIDE [8] is a recently developed real-time simulator
that captures the motion capabilities of an iRobot iCreate
platform equipped with a laser range finder and an RFID
reader as it moves in an indoor environment. In order to
capture the dynamic behavior of an indoor environment,
the simulator was modified to integrate doors whose states
randomly change. RIDE was utilized to generate the MDP

and MOMDP models and to test the temporal logic-based
control strategies based on these models.

As described in [5], the states of the MDP (and thus
also the fully observable states of the MOMDP) are actually
adjacent pairs of regions (e.g. I2R3 represents the state in
which the robot was in I2 and is now in R3). The resulting
models have 64 states.

As described in Sec. IV, for the first setting, states
containing a region adjacent to a door were duplicated to
account for the two possible states the doors could be in.
Furthermore, in this case the robot was capable of per-
forming actions FollowRoad, GoRight, GoLeft, GoStraight,
TurnAway, and Wait. The transition probabilities associated
to each action (with the exception of Wait) were computed
through extensive simulation. In order to capture the relevant
characteristics of the environment, the simulator was used
to model the robot motion with and without doors. In each
trial, the robot was initialized at the beginning of the region
representing each state. If this region was a road, then
FollowRoad was applied until the system transitioned to
the next state. On the other hand, if this region was an
intersection, each one of the actions allowed at this state
was applied and the resulting transition was recorded. The
results were then integrated into the transition probabilities.

In the second and third settings, the primitives Fol-
lowRoad, GoRight, GoLeft, and GoStraight were available.
The fully observable state transition probabilities were ob-
tained in the same manner as in the first setting.

Since the third setting included partial observability, it
was necessary to also determine the probability distribution
over the set of observations. This was accomplished using
the modified RIDE simulator and incorporating a function
that generated the observations using the data from the
simulated laser range finder. The probabilities were generated
as follows. First, the robot was initialized in a region from
which a transition to a region adjacent to a door was possible.
Then, an action was selected and executed. If the robot
moved to a region adjacent to a door then an observation was
made. The process was repeated 500 times for each action
and from each initial location. The number of times that an
observation was made was saved in the form of probabilities.

B. Case Study

Consider the environment shown in Fig. 1 and the fol-
lowing motion specification: “Reach Destination by going
through either only Safe regions or through Relatively safe
regions only if Power supply is available at the Relatively
safe regions.”

This specification can be translated to the PCTL formula

φ :: Pmax=?[S ∨ (R ∧ P) U D]. (3)

Using the framework described in this paper, a control
policy was determined under each of the three settings given
in Secs. IV-VI. Fig. 2 depicts scenes from the simulation of
the control strategy maximizing the probability of satisfying
(3) under Setting 1. In the first scene, the robot is initially

3112

Fig. 2. Snapshots (to be read left-to-right and top-to-bottom) from a movie showing a robot motion produced by applying the control strategy maximizing
the probability of satisfying φ.

at C1. The robot follows the path C1I2C3I1C5I5C8I4C10I8.
This route is partially shown in the second, and third scenes.
Upon reaching I8, the robot finds door 4 to be closed. It
then pauses to see if the door will open. After 1 step, the
door remains closed and the robot turns, following the route
I8C10I4C8I5C5I1C3I2C4I3C7I7C13I10. Scenes four, and
five show part of this route. Finally, scene six demonstrates
the efficacy of the strategy when the door separating the robot
from the destination switches from closed to open, allowing
the robot to achieve the task based on the specification.

Using the computational framework developed in [5], the
maximum probability under Setting 1 was 0.425. To validate
the computed probability, 500 simulations were performed.
The simulations demonstrated that the probability of satisfy-
ing (3) was 0.416, reasonably close to the calculated prob-
ability. The maximum probabilities of satisfying (3) under
Settings 2 and 3 were obtained performing 500 simulations.
The resulting probabilities were 0.328 and 0.216, for the
second and third settings, respectively.

These simulation results agree with an intuitive under-
standing of the role of information and sensing. The more
information and accuracy the robot has about the states of
the doors, the easier it is to choose and perform the best
strategy. Moreover, having prior knowledge of the states of
the doors, as in Setting 1, allows us to get an a priori estimate
of the maximum probability of satisfaction. The lack of that
a priori knowledge, depicted in Settings 2 and 3, does not
allow us to obtain this measure. However, the assumption
of perfect knowledge can be difficult to satisfy in practice,
especially without environment modification.

VIII. CONCLUSIONS

We presented a solution to the automatic deployment of
a mobile robot moving in a dynamic indoor environment
according to a task specified as a temporal logic specification.
Three different settings were considered, each assuming
different levels of knowledge about the states of the doors
and robot’s sensing capabilities. Modeling these settings
as MO(MDP)s allowed us to adapt and use PCTL model
checking techniques to find the optimal or suboptimal control
strategy that maximizes the probability of satisfying the
specification as a PCTL formula. One of the key limitations
of the proposed approaches is the assumption that the doors
only change state in synchrony with the motion of the robot.

REFERENCES

[1] S. Ong, S. Png, D. Hsu and W. Lee, “POMDPs for robotic tasks with
mixed observability”, The International Journal of Robotics Research,
2010, vol. 29, no. 8, pp. 1053-1068.

[2] A. Bianco and L. de Alfaro, “Model checking of probabilistic and
nondeterministic systems”, Springer-Verlag, 1995, pp. 499-513.

[3] G. E. Fainekos, H. Kress-Gazit and G. J. Pappas, “Hybrid controllers
for path planning: a temporal logic approach”, In IEEE Conference
on Decision and Control, 2005, pp. 4885-4890.

[4] H. K. Gazit, G. Fainekos and G. J. Pappas, “Wheres Waldo? sen-
sorbased temporal logic motion planning”, In IEEE International
Conference on Robotics and Automation, 2007, pp. 3116–3121.

[5] M. Lahijanian, J. Wasniewski, S. B. Andersson and C. Belta, “Motion
planning and control from temporal logic specifications with proba-
bilistic satisfaction guarantees”, International Conference on Robotics
and Automation, 2010, pp. 3227-3232.

[6] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multiagent motion tasks based on LTL specifications”, In 43rd IEEE
Conference on Decision and Control, 2004, vol. 26, pp. 153-158.

[7] E. M. M. Clarke, D. Peled and O. Grumberg, Model Checking. MIT
Press, Cambridge, MA; 1999.

[8] ”Robotic indoor environment.” [Online]. hyness.bu.edu/ride/

3113

