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Abstract— In this paper, a high-speed width detector is de-
rived for use in atomic force microscopy (AFM). The algorithm
rapidly determines the width by detecting the two edges of the
sample during a fast scan. The algorithm is designed primarily
as a first step towards detection of a single macromolecule mov-
ing on a biopolymer. This detector is an important component
of a new approach in AFM, a control system that directly tracks
the motion of these single macromolecules rather than deriving
their motion from a sequence of images. Such an approach
promises a much higher temporal resolution than is achievable
in time-lapse imaging.

I. INTRODUCTION

The ability to follow the dynamics of single macro-
molecules allows researchers to study molecular processes,
increasing our understanding of molecular biology and help-
ing to elucidate a variety of genetic diseases [1], [2]. Several
techniques have been developed, including single particle
tracking in fluorescence microscopy [3] and imaging with
both special optical devices [4] and with scanning probe
systems such as the atomic force microscope (AFM) [5]
[6]. These tools and techniques have different strengths and
weaknesses. For example, optical approaches allow for the
study of molecules moving inside living cells but typically
require modification of the target through fluorescence label-
ing and offer limited spatial resolution.

Among these tools, AFM provides a unique set of ca-
pabilities, including the ability to observe systems in their
physiological environment, a resolution on the order of
nanometers or better, and the ability to measure mechanical
properties directly. Therefore, it has been used extensively in
exploring the dynamics of biological systems, such as direc-
tional transport by protein motors [7], interactions between
proteins [8] [9] and other cellular behaviors [10].

The primary drawback of AFM with respect to its appli-
cation to dynamic processes is its slow imaging rate, with
commercial instruments typically taking seconds to minutes
to acquire a single frame. As a result, there is a great deal of
ongoing work on increasing this rate. Approaches include
improvements of mechanical components [11], advanced
controller designs for piezo actuators [12] [13] as well as
changing the conventional scanning pattern [14]. As a result,
systems with near video-rate speed have been developed [15].
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For some systems, however, even video-rate is not fast
enough. For example, the dynein motor has been reported
to move at speeds of up to 1.7 µm per second. Even at 30
frames per second, the motor would take six steps between
the start and end of imaging a single frame. To study such
high speed systems, an alternative approach is needed.

Such an approach begins with the recognition that indi-
vidual measurements in AFM are very fast, with cantilever
resonant frequencies in the tens to hundreds of kHz. The
imaging rate is limited by the fact that as the cantilever
moves across the sample, the controller must maintain the
system in steady state, rejecting the disturbance represented
by the sample. When considering dynamics of single macro-
molecules, however, it is the motion, not the structure, that
is of primary importance. Approaching the problem from the
point of view of detection and tracking rather than imaging
allows us to avoid the issues related to imaging.

The general method of tracking features or single parti-
cles in scanning probe microscopy was first developed and
applied in Scanning Tunneling Microscopy (STM) through
the use of a small scan to keep the tip of the microscope
positioned over a single atom [16]. A similar technique was
used in [17] to account for thermal drift in STM. The ”protein
sandwich” method of tracking the motion of a protein held
under the tip of an AFM cantilever was explored in [18].

There have also been efforts in AFM at using high-speed
detection to infer the presence of samples from high-speed
scans. In particular, in [19] a scheme for tapping mode
AFM was developed in which the edges of the sample
were detected by processing transient signals. The approach
provides a significant increase in the scan rate. However,
it can be difficult to discern a rising edge (moving on to a
sample) from a falling edge (moving off of a sample), making
it hard to estimate the width of a sample in real time from
the data.

Our target application is the direct tracking of a single
macromolecule moving on a biopolymer. Examples include
protein motors walking in the plane parallel to the substrate
or carrying a large cargo [20] and the motion of RNA
polymerase during DNA transcription [21]. Such systems
involve features that prevent the use of the previous methods
while at the same time providing structures that can be taken
advantage of to create a new tracking scheme. In particular,
the presence of such a molecule on its track results in a
change in the apparent width of the track. Inspired by the
high speed detector of [19], [22], the current paper develops
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a high level detection scheme that utilizes the transient signal
to measure the width of a sample in real time. Accordingly
the presence and location of the moving macromolecule is
indicated and the contour of its track is described. This
detector is integrated with the local raster-scan algorithm
developed by the authors [14]. This algorithm uses the
measurements of the system in real time to steer the tip
to move along the track defined by the biopolymer. The
combined detector and local raster scan algorithm allow the
tip to be moved rapidly along a biopolymer and the width
value to be estimated in real time.

II. OVERVIEW OF THE DETECTION SCHEME

The detection scheme begins with an AFM cantilever
operating in tapping mode and being driven repeatedly across
a biopolymer according to the local raster scan algorithm
[14]. The scan pattern is illustrated in Fig. 1 in which the
tip trajectory is shown as a sequence of dots representing
the measurement points. Measurements on the underlying
sample are highlighted in yellow. Our detection scheme relies
on monitoring the difference between the actual cantilever
motion and that of a reference model.
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Fig. 1. Illustration of the tip and cantilever motion. The local raster-
scan algorithm drives the tip in a sinusoidal pattern (dots) over the sample.
Measurements on the sample itself are highlighted in yellow, those on the
substrate are in black. As the tip scans, the cantilever transitions from steady
state at A, to a transient state caused by the interaction with the sample at
B, and back to a steady state at C.

Suppose that AFM is operated with a sufficient tip speed
and the width of the sample is thin enough such that the
z–controller cannot settle into its steady state while the tip is
crossing the sample. Such a tip speed would be detrimental
to the imaging application since it would essentially be
impossible to produce a credible height value. For detection,
however, a fast tip speed has benefits. The duration of the
transient process contains information about the width of the
underlying sample. In addition, changes of the width of the
sample allow the detection of the moving macromolecule as
stated in Sec. I. Unlike an imaging application, our tracking
scheme requires that the cantilever is held in its transient
state while the tip is on top of the sample and relies on the
information extracted from this transient process.

To describe the algorithm, consider the segment of the
tip trajectory from points A to C in Fig. 1. At A and
C, the cantilever (illustrated in green) is tapping on the
substrate and is assumed to be in steady state. It is this steady
state that forms the reference model for comparison. As the
tip proceeds to B, the transition up onto the sample is a
disturbance that drives the cantilever into its transient state.
Assuming the z–controller is slow relative to the tip speed

across the sample, the cantilever will remain in the transient
state until some time after moving back to the substrate. As
the tip continues over the substrate, the controller has time to
act, returning the cantilever to its steady state upon reaching
C. The detection scheme uses the difference between the
reference (steady state) dynamics and the true dynamics to
estimate when the tip is on the sample, backing out the width
from the position of the tip during that time.

A block diagram of the scheme is given in Fig. 2. In the
next section, we walk around this diagram and describe each
component.
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Fig. 2. A block diagram of the detector. Amp is the amplitude output of
AFM while Amp m denotes the amplitude output of the reference model.

III. THE WIDTH DETECTOR: A WALK AROUND THE LOOP

As discussed in Sec. II and illustrated in Fig. 2, the
detector uses the difference between a reference model and
the true cantilever dynamics to detect the edges of the
sample. Those edges are then used to calculate the width.
This width is used in two ways; to drive the local raster-
scan algorithm and to produce a ”binary” image. Below we
describe each element in the block diagram.

A. Model Reference

The dynamics of the cantilever have been shown to be well
modeled by a second-order system with nonlinear feedback
to capture the tip sample interaction [23]. These dynamics
are given by

ÿ+
ω0

Q
ẏ+ω

2
o y =

ω2
0

K
F +ω

2
0 b, (1)

where y is the tip displacement, K is the spring constant,
ω0 is the resonant frequency, Q is the quality factor, b is
a sinusoidal excitation and F is the tip-sample interaction
force.

Several models for the interaction force have been devel-
oped (e.g. [24], [25]). Here we utilize the Derjaguin-Muller-
Topporov (DMT) model of [24]. This model captures the
interaction in tapping mode as well as the convolution effect
due to radius of the tip [26]. The DMT model expresses the
force as

Fts(z) =

{
−HR/[6(zs− z)2] zs− z≥ a0,

−HR/6a2
0 +

4
3 E∗
√

R(zs− z+a0)
3
2 zs− z < a0,

(2)
where zs denotes the distance between the sample and tip
of the undeflected cantilever, z is the tip deflection towards
the sample, H is the Hamarker constant, R the tip radius,
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E∗ is the effective contact stiffness and a0 is the interatomic
distance.

As illustrated in Fig. 2, the reference model and the
physical cantilever are driven by the same sinusoidal drive to
synchronize their dynamics in the steady state. The reference
model, however, receives no input from the physical sample
and represents the steady-state dynamics on the substrate.
Note that while the form of the steady state solution is well-
known (see (3) below), the complexity of the nonlinear tip-
sample interaction prevents one from writing an analytical
expression for the parameters in that solution; the reference
model thus provides a system-specific solution (up to the
accuracy of the model and its parameters).

B. Edge detection

Since the reference model scans only over the substrate,
its dynamics remain in the steady state, given by

ym(t) = A0 sin(ω0t +φ0), (3)

where ym(t) denotes the output of the model. The amplitude
A0 and phase φ0 are constant under the assumption that the
nominal tip-sample distance is constant [27]. In practice this
condition is enforced by the z−direction controller.

Upon transitioning from the substrate onto the sample, the
physical cantilever is driven into its transient state. These
dynamics can be described by

y(t) = A(F(t))sin(ω0t +φ(F(t)))+ γ0(t), (4)

where y(t) is the output of the physical system, F(t) is the
tip-sample force and γ0(t) is the sensor noise. After moving
back to the substrate and after sufficient time has passed,
the z–controller will drive the physical cantilever back to the
steady state described by (3). The detection problem is then
one of determining when the system is in its transient state.
Define the error δy(t) as

δy(t) = F (|(y(t))− (ym(t))|) = Φ(t)+ γ(t), (5)

where F (·) is an averaging filter, Φ(t) is the dynamic part of
δy(t) and γ(t) accounts for the measurement noise. Note that
the filter is performed on the absolute value of the residue
between y(t) and ym(t) over a period of half of the cycle of
the cantilever. As a result, the oscillation of the residue is
accounted for with the filter determining the envelope of the
signal. It is this envelope that is used in the analysis below.

Due to noise, it is reasonable to consider a moving window
of data for detection rather than a single measurement. We
therefore define the vector ~Y by

~Y (k;M) = [δy(k−M+1),δy(k−M+2), . . . ,δy(k)]T , (6)

where M is the size of the moving window. (See Sec. IV for
an example of choosing M). Note that this signal ~Y (k;M) has
two possible states; either all its elements are sampled from
the steady state of the cantilever or some of them are not.
Accordingly, the binary hypothesis testing [28] is utilized
here to determine the most likely case based on the data.

The two hypotheses are

H0 :~Y (k;M) = ~γ(k;M), (7)
H1 :~Y (k;M) = ~Φ(k;M)+~γ(k;M). (8)

Here H0 is the hypothesis that the cantilever is in its steady
state and thus the error signal is all noise while H1 is the
case where some transient dynamics appear. Due to the
complexity of ~Φ(k;M), we approximate it as a box function
with parameters selected by experience.

We use the maximum likelihood approach to decide
between the hypotheses based on the data, and assume
Gaussian statistics on the noise. We define a threshold test
on the probabilities of the two hypotheses as

P(~Y |H1)

P(~Y |H0)
=

1√
(2π)M |Σ|

e−
1
2 (
~Y−~θ)T Σ−1(~Y−~θ)

1√
(2π)M |Σ|

e−
1
2
~Y T Σ−1~Y

>H1
<H0

η ,

where ~θ is a known constant vector approximating the
magnitude of the first peak of the transient process in
Φ(t) and Σ is the covariance of ~γ(k;M). In general, the
threshold η should be determined from the requirements on
the probability of detection and of false alarm. In practice,
however, a value is typically selected based on experience
and simulation.

Taking logarithms of both sides of the above equation
yields the likelihood ratio test,

L (~Y ) = ~θ T (Σ−1T
+Σ

−1)~Y −~θ T
Σ
−1~θ >H1

<H0
ln(η). (9)

From (9), an indicator signal determining the position
of the probe “on” or “off” the sample is generated. This
then yields the start and end time of the transient process
of the cantilever. The duration of this transient process is
then received by the width computation described below
to estimate the width value of the sample. Note that the
approximation of Φ(k) and of the peak magnitude given in
~θ affects the shape of L (~Y ) and leads to an error in the
estimation of the end time of the transient process. This error
then propagates into the width calculation.

C. Width Computation

Under our assumptions, the cantilever continues to be
driven into its transient while it scans across the sample.
Once leaving the sample, it begins to settle back to steady
state. The settling time Ts is defined by [29]

Ts =−
lnε

ζ ω0
, (10)

where ε is the tolerance fraction to be chosen by the user.
The total time spent in the transient state, T , is then a sum
of the time spent crossing the sample itself (denoted t) with
the settling time. The time to cross the sample during the ith

detection cycle is then given by

ti = Ti−Tsi = Ti +
lnε

ζ ω0
, (11)

where ζ is the damping and ω0 the resonant frequency of
the cantilever.
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Once the time ti is calculated, it is used in two ways,
to modify the indicator signal to generate the “hit” signal
discussed in Sec. III-D below and to calculate the length
of the tip trajectory across the sample through the relation
li =Vtipti. This length can be translated into the width using
the knowledge of the scan pattern.

As shown in Fig. 3, the sinusoidal pattern of the tip
trajectory under the local raster-scan algorithm is defined
by a spatial frequency of f and an amplitude of A. Then
the width of the sample can be calculated from li using the
knowledge of the angle ϕ to be

wi = li cosϕ =Vtipti cos[arctan(2 f A)]. (12)

!

"

Fig. 3. Illustration of the geometry of the sinusoidal local raster-scan
pattern. The sinusoidal tip trajectory is defined by the spatial frequency fi
and amplitude Ai.

D. “Hit” generator
The local raster-scan algorithm operates by estimating the

geometric properties of the sample and predicting its spatial
evolution forward to determine a tip trajectory until the next
crossing. If the indicator signal in (9) were used directly, then
the detection would alternate between the two sides of the
sample. This alternation skews the estimates of the sample
parameters due to the width of the sample, leading to poor
tracking. In prior efforts, and ad hoc attempt to overcome
this was mode by simply ignoring every other detection.

With the width detector, however, a more direct approach
is possible. Since the total transit time across the sample is
estimated on each crossing (given by ti) the detection can
simply be delayed by ti

2 to approximate a detection at the
center of the sample, allowing every detection to be used.

E. Image generation
It is important to give visual feedback to the user in real

time. There are a variety of means by which one could do
this. In this work, we build a false height image by assigning
each measurement a height of 0 if it is off the sample and
a height proportional to the estimated width at the current
measurement location if it is on the sample. The resulting
data is non-raster and can be interpolated into an image using
a prior algorithm developed by the authors in [30]. See Fig.
7 for an example of an image produced using this approach.

IV. SIMULATION RESULT

To illustrate and verify the performance of the proposed
detector, it was incorporated into a SIMULINK-based model
of an AFM. Details on the AFM simulator can be found
in [14]; here we describe only the details relevant to the
detection scheme.

A. Dynamics in Three Axes

The cantilever model used in this paper was a typical
design for an AFM operated under tapping-mode in air. The
resonant frequency was 210 KHz, the spring constant was
0.4 N/m and the quality factor was 100. (In order to capture
imaging in liquid, the resonance frequency and quality factor
should both be reduced to account for viscous damping.) A
generic second order system was utilized to represent the
dynamics of the piezo actuator in all three axes. For each
axis, a semi-automatic tuned PID controller [31] was used
to provide a high closed loop bandwidth. The Bode plots for
the open loop dynamics, PID controller, and the closed-loop
system for the z–axis are shown in Fig. 4. The other axes
were similar and are omitted for space reasons.
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Fig. 4. Bode plots for the z–axis of the simulated AFM. The resonant
frequency of the piezo appears as the first peak in the open loop system
(blue) and was approximately 800 Hz. The semi-automatic tuned PID
controller (green) notched out the resonance of the piezo. The closed loop
dynamics (red) show a bandwidth of approximately 10 kHz. Note that the
second peak is the cantilever resonance at 210 kHz.

X (nm)

Y 
(n

m
)

 

 

100 200 300 400

50

100

150

200

250

300

350

400

H
ei

gh
t (

nm
)

0

2

4

6

8

10

Fig. 5. The simulated sample to model an RNA polymerase (black, centered
at around (118,195)) on a DNA strand (blue). The strand width is 2.5 nm
and the particle is 16 nm long with a maximum width of 11.25 nm and a
height of 10 nm.

B. Sample Model

A simulated sample with a varying width is illustrated in
Fig. 5. The sample approximates an underlying biopolymer
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(in yellow) and a particle on that polymer (red). The dimen-
sions of the sample can be selected based on the particular
biopolymer-macromolecule we are trying to mimic. For
the example considered here, we chose to model an RNA
polymerase on a DNA strand. Therefore the strand width
was selected to be 2.5 nm and the particle to be 16 nm long
with a maximum width of 11.25 nm and a height of 10 nm
[32]. For simplicity, the lateral profile of the particle was
taken to be sinusoidal.

C. Sampling Rate

In order to analyze the state of the cantilever, a fast sam-
pling rate is needed relative to its dynamics. There is no need,
however, to sample and actuate on the piezoelectric actuators
at this high rate. We therefore consider two sampling rates,
fsc for the cantilever and fsa for the actuators.

The choice of fsc is fundamentally limited by the Nyquist
rate relative to the cantilever dynamics. In practice, however,
one typically chooses a rate 5-10 times faster than the
resonant frequency. Here we use 1 MHz, a rate fast enough
for most cantilevers but also reasonably implementable in a
physical system.

The choice of fsa is more involved. It should be chosen
based not only on the actuator and controller dynamics, but
also based on the rate at which the tip is moving across
the sample. If it is too low, then the system will be slow to
respond to edge detections and poor tracking will result. In
this example, we selected a tip speed of 20 µm/sec and thus
an average transit time of approximately 125 µs. Based on
this a sampling rate of 50 kHz was selected, for an average
of approximately 6 samples per crossing.

It is important to note that 50 kHz is beyond the closed-
loop bandwidth in the z–direction (see Fig. 4). We are
not, however, attempting to control at this rate but only to
measure and estimate. This highlights the difference between
tracking and imaging since in imaging one typically operates
well below the closed-loop bandwidth.

D. Simulation Results

With the parameter settings discussed above, the simulated
sample was scanned with a local raster pattern shown as in
Fig. 6(a). The change in the scanning width at approximately

(118,194) nm was caused by the simulated particle on the
DNA. The red curve represents the estimated center of the
DNA strand.

To simulate noise in the measurements, samples from a
Gaussian white noise process were added to the cantilever
deflection measurements. The signal-to-noise ratio was set to
50 dB. Note that SNR in this setting is defined by the ratio of
the peak-to-peak range of the sensor (20 V in our example)
and of the peak-to-peak range of the sensor value under a
zero input. The window size was set to 50. At a tip speed
of 20 µm/sec, this would correspond to a window lasting
approximately 1

3 of the way across the string-like sample.
Then we applied the likelihood ratio test algorithm in (9).
Here we chose the threshold as 5×104 based on extensive
simulations. The resulting likelihood ratio and the indicator
signal are shown in Fig. 6(b). As stated before, in general
one would choose the threshold η to establish desired levels
of false positives and false negatives.

The width value estimated from (12) and its true value
are shown in Fig. 6(d). The error between these two is
due to several sources, including the noise, the choice of
threshold, and the approximation of the dynamics of the error
signal through the use of the box function (see Sec. III-B),
scan rate, cantilever properties as well as controller gains.
The estimator almost uniformly over-estimates the width,
indicating a positive bias. Such a bias is not necessarily
detrimental, however, since the goal is to determine the
location of the particle on the biopolymer and thus it is the
change in width that is most important.

Using the method discussion in Sec. III-E, a reference
image as the visual feedback was generated; this is shown
in Fig. 7.

With the particular choices of cantilever dynamics, tip
velocity, and local raster-scan parameters, the average motion
along the biopolymer is approximately 6 µm/sec. Given the
400 nm size of the image, this corresponds to approximately
10 frames/sec. This rate with the scan size shown above is
able to track a macromolecule with a walking speed up to
2 µm/sec. It is currently limited by the detection bandwidth
which in turn is limited by the need for the cantilever to
return to steady state before the next crossing. Much higher
speeds, therefore, can be achieved through, for example,
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Fig. 7. Sample-width image. Note that height values are arbitrarily selected.

active Q control [33] to drive the cantilever back to its steady
state as quickly as possible. The switching time of the Q
control would rely on the prior knowledge of the sample from
previous scans. Note, however, that this speed is sufficient
even for the dynein motor discussed in Sec. I.

V. CONCLUSIONS

In this paper, we have developed a width detector primarily
designed for tracking single macromolecules moving along
string-like biopolymers. The results are promising with re-
spect to using the scheme to locate a moving macromolecule.
A reference visual feedback was generated and a video rate
of 10 frames/sec was achieved in a simulation study.
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