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Abstract— Non-raster methods in atomic force microscopy uti-
lize high-level feedback control to steer the tip in order to
sample only regions of interest. Although the non-raster method
can reduce the scanning time by gathering fewer samples, the
measurement locations are no longer uniformly distributed. As
a result, the production of accurate images from the data is a
non-trivial problem. This paper presents a method of generating
images that faithfully represent the sample from the non-raster
data based on Kriging spatial interpolation theory. The method
is modified to work well with a particular non-raster method
developed previously by one of the authors. One of the primary
drawbacks of Kriging, however, is its computational cost. As
the algorithm is too slow for real time use, we also describe
the use Delaunay triangulation for image generation. While less
accurate than Kriging, triangulation is fast enough to produce
images in real time, providing visual feedback to the user during
the image process.

I. INTRODUCTION

The atomic force microscope (AFM) [1] is a versatile tool
in nanoscience and nanotechnology, capable of imaging with
nanoscale resolution both in ambient and liquid environments
as well as in vacuum. The imaging rate of a conventional
AFM, however, is typically on the order of minutes or more,
depending on the resolution, scan range, and sample. This
slow rate severely limits the ability of AFM to study dynamic
processes. In order to address open questions ranging from
surface diffusion, phase transition, film growth and etching,
and biomolecular motors and processes [2], researchers are
striving to decrease the imaging time while maintaining
image quality. Approaches include improving the design of
the mechanical components [2], [3], often combined with
the use of high-speed data acquisition systems [4], and the
use of modern control theory to drive the actuators as fast
as possible [5], [6]. As a result of these efforts, video-
rate imaging has been achieved [2] and the feasibility of
using high-speed AFM to record fast processes in molecular
biology has been demonstrated [7]–[9].

All of these approaches focus on improving the scan speed
but continue to rely on the raster-scan sampling pattern. In
many cases, however, the sample of interest is sparse in the
image. As a result, most of the samples are of completely
uninteresting substrate. Each of the data points on the sample
represents wasted time. Non-raster methods seek to reduce
the total number of samples by using the measured data in a
feedback manner to drive the next sampling point. As high-
level algorithms, non-raster methods are complementary to
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many of the high-speed AFM schemes. To date, the authors
have focused primarily on non-raster schemes for imaging
string-like samples such as biopolymers [10].

Under the raster scan pattern, the samples are evenly spaced
and generation of images is straightforward. Under non-
raster imaging, the acquired data is no longer regularly
distributed in space. Therefore, generating images from the
non-raster data is a non-trivial problem. Fig.1 illustrates the
imaging results of a DNA sample of both raster and non-
raster scan approaches. In order for the non-raster method to
produce useful images, the data shown in Fig. 1(b) must be
interpolated in such a way as to accurately capture the DNA
with a fidelity similar to the raster image in Fig. 1(a). In
choosing the spatial interpolation methods for reconstructing
credible images by interpolating date onto a regular grid,
accuracy is of primary concern.

(a) Raster-scan (b) Non-raster scan

Fig. 1. Comparing raster to non-raster data. (a) Raster data (and image)
of DNA. (b) Non-raster data set of the same DNA as the raster set. The
challenge is to produce an image capturing the details of the DNA in (a)
from the data set in (b). Note that the height unit is in nanometer.

Kriging models the data as the outcome of a random pro-
cess and interpolates intermediate values using an unbiased
estimator which has minimum variance over all unbiased
linear estimators. Since the time cost of Kriging is quite
high, it is best suited for off-line generation of images. It
can be useful to the user, however, to have images produced
in real time during the imaging process. We therefore also
consider alternative methods that have lower accuracy but
also lower computational complexity. A variety of methods
exist, including polygonal interpolation, averaging, inverse
distance methods, and triangulation. Among these, we focus
on Delaunay triangulation since it is reasonably accurate but
also computationally efficient.
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II. A LOCAL RASTER SCAN APPROACH TO IMAGING
STRING-LIKE SAMPLES

In this work we focus on producing images from non-
raster data obtained by an algorithm developed by one of
the authors for sampling biopolymers. We give here a brief
overview of the scheme. Details can be found in [10], [12],
[13].

On string-like samples such as biopolymers, the traditional
raster scan image is primarily of uninteresting substrate. To
avoid wasting time gathering useless data, we have designed
a feedback controller that steers the tip to remain in close
proximity to the underlying sample. Modeling the underlying
sample as a planar curve, the measurements are used in real-
time to estimate the curve parameters. This curve is in turn
used to drive the tip trajectory according to

xtip(t) = xd(s(t))+Asin(2π f s)q2(s(t)), (1)

where s(·) is the arclength parameter of the curve repre-
senting the sample, xd(·) is the estimated curve, q2(·) is the
estimated normal vector to the curve, A defines the amplitude
of the scanning path, and f defines the spatial frequency
and thus the resolution of the scanning. A sample run of the
algorithm is shown in Fig.1 in which the algorithm was run
in simulation on data captured in the traditional raster-scan
mode.

III. KRIGING APPROACH

As an alternative approach to imaging in AFM, the non-
raster scan should be capable of providing an imaging result
as faithful as the conventional raster scan. Kriging is known
as the best linear unbiased estimator [14] as it provides an
estimation error with minimum variance. Kriging is more
successful when it is well tuned to fit in the specific spatial
distribution pattern of the given data. As a result, in the
consideration of accuracy, Kriging becomes our first choice
even though it bears high computational intensity.

Kriging performs interpolation using a weighted linear com-
bination of the available data. The scheme views the sampled
data as being generated by a random process. The weights
are assigned to derive an unbiased approximation while min-
imizing the error variance. We give here a brief description
of the algorithm. Details can be found in [15].

A. Overview

Kriging estimates the value at a target location S0 according
to

V̂ (S0) =
n

∑
i=1

ωiV (Si), (2)

where S1, . . . ,Sn are the positions with known values
V (Si). The weights of this linear combination are com-
puted by establishing a probabilistic model. In this model,

V (S0),V (S1), ...,V (Sn) are seen as the outcomes of first
order stationary random processes with identical probability
distributions. Therefore, the estimation error is also a random
variable given by

R(S0) =
n

∑
i=1

ωiV (Si)−V (S0). (3)

Accordingly, the mean and variance of the estimation error
are calculated by

E(R(S0)) = E(
n

∑
i=1

ωiV (Si))−E(V (S0))

= E(V )(
n

∑
i=1

ωi −1), (4)

Var[R(S0)] = σ
2 +

n

∑
i=1

n

∑
j=1

ωiω jCi j +2
n

∑
i=1

ωiCi0, (5)

where σ2 is the variance of V , Ci j = Ci j(h), denotes the
spatial covariance between the ith and jth points with respect
to their distance h under our stationary assumption and E(V )
is the common mean of the random variables.

To achieve unbiasedness, set (4) to 0, yielding
n

∑
i=1

ωi = 1. (6)

To minimize the error variance, apply the first order condi-
tion

∂Var[R(S0)]

∂ωi
= 0. (7)

It can be shown that (7) yields n equations in the n unknown
weights, ω1,ω2, . . . ,ωn. To enforce the unbiasedness condi-
tion in (6), introducing a Lagrange multiplier µ to enforce
the unbiasedness condition. The optimal weights are then
given by the following linear system.

C11 . . . C1n 1
... . . .

...
...

Cn1 . . . Cnn 1
1 . . . 1 0




ω1
...

ωn
µ

=


C10

...
Cn0
1

 . (8)

Let C denote the (n+1)× (n+1) matrix on the left of (8)
and D the vector on the right. Under the assumption that the
C matrix is invertible, the weights are given by

ω =C−1D. (9)

This result indicates that the optimal choice of weights
depends upon the C and D matrices. These are in turn
constructed from n(n+1) covariances that capture the spatial
dependence of the data. In practice, they are typically calcu-
lated from standard covariance functions that guarantees the
existence and uniqueness of the solution of (9). Then, a set of
weights can be generated to produce unbiased estimates with
minimum error variance subject to our accepted covariance
function. If the chosen function happens to be inappropriate,
that is, if it fails to capture the spatial continuity charac-
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teristics of the data set, then Kriging is unable to offer a
satisfying result. As a result, the successful application of
Kriging requires the user to choose an appropriate covariance
function, to inspect the resulting estimates, and to manipu-
late the model parameters until a satisfying interpolation is
produced.

B. Challenges in our case

Several challenges arise when attempting to apply Kriging to
the data sets acquired from non-raster scanning of biopoly-
mers and other string-like samples.

The first challenge is due to the notion of distance in the
samples. Since the AFM data is sampled over a 2-D region, a
traditional interpretation would use a 2-D Euclidean distance.
The actual sample, however, is essentially 1-D and the
appropriate notion of distance is along the sample.

Second, the sample is highly anisotropic. The axis of continu-
ity lies along the string and is constantly changing direction
as the sample curves in space. As a result, a dynamic
direction of anisotropy is needed. As it turns out, the local
raster scan algorithm provides information as to the local
axis of continuity due to the estimate of the local direction
of the curve. Such information should be taken advantage of
to produce good interpolation results.

Third, the time to generate images from the data set should
be as small as possible. The Kriging algorithm is in general
computationally intensive. As a result, it is important to
employ an efficient algorithm for selecting relevant samples
to use in the interpolation process and to select the smallest
number of samples without reducing the quality of the
interpolation. In particular, reducing the number of samples
to use in each interpolation step is an effective means of
decreasing the image generation time since the time cost is
proportional to the cube of the number of the samples used
[15].

Based on these considerations, we have modified the standard
Kriging algorithm to take advantage of the particular data
produced by our non-raster imaging algorithm.

C. Modified Kriging for string-like samples

1) Straightening out the sample: To motivate our modifica-
tions, consider the string-like sample in Fig. 2 (in red). The
black dots in the figure represent discrete steps along the tip
trajectory under the non-raster scan algorithm and the yellow
dots indicate points at which the tip crosses the sample. The
issue of finding relevant samples to use in the interpolation
process is perhaps best illustrated by considering estimation
at points between r1 and r2. The points at r11 through r26
certainly contain information relevant to the sample in that
area. In standard Kriging, the point at rN is also considered
relevant since it is located within the neighborhood. However,
the proximity of rN is a consequence of the complex spatial
evolution of the underlying sample and could even be on

another sample entirely. In either case, the value at rN has
little to nothing to do with the height value of the samples
near the points r1 and r2. Including the data at rN in the
interpolation process would skew the estimation, in this
case leading to an erroneous widening of the sample. We
therefore need to consider not Euclidean distance in the plane
but rather distance in terms of arclength along the sample.

Fig. 2. A non-raster scan (black points) along a biopolymer sample (red).
The crossing positions are highlighted in yellow. Point rN , while physically
near points r1 through r3, is not related to those points. Interpolation near
r1 through r3 should therefore ignore rN .

To do so, we straighten out the underlying sample trajectory.
To first order, the sample trajectory between two crossings
can be approximated by a straight line. Let r j denote the
crossing points and let r ji denote the planar position of the
ith point after the jth crossing. To straighten the sample, we
first calculate the transformation to straighten the segment
between a pair of crossings. This transformation, denoted
Φ
(
·;r j,θ j, j+1

)
is given by

Φ
(
r ji ;r j,θ j, j+1

)
= Tθ j, j+1 (r ji − r j)+ r j, (10)

where θ j, j+1 is the angle of the straight line connecting
crossing points r j and r j+1 with respect to the original lab-
fixed frame and

Tθ =

[
cosθ sinθ

−sinθ cosθ

]
(11)

is a rotation matrix.

The entire trajectory is then straightened as follows. Be-
gin with r1 and apply the transformation Φ(·;r1,θ12) to
all subsequent points. This will straighten out the por-
tion between r1 and r2. Then move to Φ(r2;r1,θ12) (the
transformed position of r2) and apply the transformation
Φ(·;Φ(r2;r1,θ12)r2,θ23) to all subsequent points. This will
yield a curve in which r1, r2,and r3 are on a horizontal
line (see Fig. 3). Continue in this pattern through all the
points, yielding a transformed trajectory in which all the
crossing points lie on a horizontal line. In these transformed
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coordinates, the standard Euclidean distance describes the
distance along the sample.
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Fig. 3. The transformation Φ
(
·;r j,θ j, j+1

)
in (10) places the points r j and

r j+1 on a horizontal line. Applying the transformation sequentially yields a
trajectory in which all the intersection points are on a horizontal line.

2) Defining the axis of anisotropy: When defining the spatial
covariances in (8), it is important to capture the anisotropy in
the spatial relationships between the data points. In standard
Kriging, this is commonly done by having the variances
differ in the different spatial directions. Such differences are
typically uniform across the region to be interpolated.

In the data gathered by the local raster-scan algorithm,
however, the local “direction” is again defined as along the
sample. Thus it is constantly turning with respect to the lab
frame, depending on the path defined by the sample. The
local raster scan algorithm does record the heading direction
at each crossing point. To account for this, we modify the
covariances at every crossing point based on this information.
Thus, the heading direction estimated by the local raster-
scan algorithm at r1 is used to define the direction of the
covariances for interpolation between points r1 and r2 in Fig.
2, the heading direction at r2 is used for points between r2
and r3, and so on.

3) Selecting points and reducing the interpolation time: The
computational complexity of Kriging (for a single interpola-
tion) has been shown to be in general given by [16]

T = A0 +A1N +A2N2 +A3N3, (12)

where T is the number of operations required (and thus
proportional to the time needed), N is the number of the
known samples being used in the interpolation, and A0-A3 are
coefficients depending upon the hardware platform and the
size of the image in terms of its area and resolution.

The most important factor in reducing the time to generate
an image, then, is reducing the total number of points
used in each interpolation event. Furthermore, since the
substrate is nominally homogeneous, there is a large amount
of redundancy in the measurements collected off of the
sample. Finally, it is possible for the sample topology to
change relatively rapidly along its length, especially if one is
imaging proteins bound to biopolymers (such as polymerases
on DNA or motor proteins on actin). When applying the
Kriging algorithm, then, it is advantageous to take a small
radius over which to use data in the interpolation.

In Sec. V, we apply our modified Kriging algorithm to a
data set captured using the local raster-scan method. As
discussed there, the time to generate a single image (using
the DACE toolbox [17] in Matlab) is on the order of 40
s. While this time depends upon the hardware platform and
the implementation of the code, it is clear that orders-of-
magnitude improvement is needed for the method to be used
for generating images at video rate speeds. While we are
pursuing approaches to further reduce the computation time,
here we assume Kriging will be used for off-line image
generation. Since it can be quite useful to a user to see
images in real time, in the next section we propose to use
Delaunay triangulation, trading off some amount of accuracy
for a more efficient computation.

In practice, effective use of Kriging will rely on some a
priori knowledge of the sample. Knowing that the sample is
DNA, for example, will help the user to choose the Kriging
parameters and to evaluate the resulting image in terms of
its gross structure. As with any imaging scheme, even with
the standard raster scan method, the user must be aware of
artifacts arising from the imaging process.

IV. DELAUNAY TRIANGULATION APPROACH

Fig. 4. Delaunay triangulation interpolates by creating a triangular mesh
based on the available data.

Delaunay triangulation uses three nearby points to interpolate
sample values based on a criterion, discussed below, that
offers a smooth solution. It is a well-studied approach and
well-tuned algorithms exist which enable it to run extremely
quickly [18] [19]. Since only three points are used, the
images produced in general have less accuracy than those
made by Kriging but the speed of execution makes it a viable
alternative for online implementation.

As shown in Fig. 4, to estimate the height value of the target
position (denoted by the blue dot), triangulation employs the
Delaunay criteria to build a triangular hull using a choice of
three nearby known values (red dots) surrounding the target
and their corresponding position coordinates (black dots).
The edges of the hull are illustrated by the pink lines. The
interpolated value at the target position is then given by the
height on the triangular facet. Specifically, in the example
shown, the value at O is given by

V̂ (S0) =
AOBCVA +AOABVC +AOACVB

AABC
, (13)

where A represents the area of the triangle defined by the
points denoted in the subscript and V denotes the sample

2249



(a) radius = 15nm (b) radius = 33nm (c) radius = 66nm (d) radius = 100nm

Fig. 5. Kriging images based on different search radius (height is in the same arbitrary units as the original raster image).

value at the point denoted in the subscript. While there
are many ways to generate a triangular mesh over a set of
points, Delaunay creates a unique solution by finding one that
maximizes the minimum angle of each triangle [11].

V. SIMULATION

To illustrate and evaluate the modified Kriging and Delaunay
triangulation schemes, we applied both schemes to data sets
acquired using the local raster scan algorithm operated in
simulation on the regular raster scan image of DNA (see
Fig. 1). The original data set (acquired in intermittent contact
mode using an Asylum Research MFP-3D) had a spatial
resolution of approximately 2.9 nm/pixel and was viewed
as “ground truth”. The accuracy of an interpolated image
was described using the root mean square error on a pixel-
by-pixel basis

RMS =

√
∑

N
i=1 (x̂i − xi)

2

N
, (14)

where x̂i denotes the estimated value in pixel i, xi is the
corresponding value in the raster result and N is the total
number of estimations.

A. Low resolution data set

In the first simulation, we used a non-raster data set of
1767 samples along a 731 nm long DNA strand. The spatial
resolution in this set (defined by the average spacing of the
crossing points along the strand) was 17.4 nm. We applied
our modified Kriging algorithm with four different search
radii of (100, 66, 33, 15) nm. The resulting images are shown
in Fig. 5. We also applied the Delaunay algorithm to the same
data; the resulting image is shown in Fig. 6

In Table I we show the RMS error in the generated images
and the time to compute the image. Among the Kriging
images, the computation time is greatly reduced as the radius
is reduced due to the smaller number of points used in the
interpolation. With too large of a radius, points are used
in the interpolation that are physically unrelated, leading
to a larger RMS error. With too small of a radius, not

Fig. 6. Image generated using Delaunay triangulation from 1767 samples.
The result should be compared to those based on Kriging in Fig. 5.

TABLE I
RESULTS COMPARISON, THE RED CELL IS THE DESIGNED RADIUS

RESULT

Radius (nm) RMS (nm) CPUTime (s)
100 0.09144 233.33
66 0.08912 107.59
33 0.00868 40.18
15 0.9928 20.24

Delaunay 0.2640 0.2

enough points are used, also leading to a larger RMS error.
In this data, a search radius of approximately twice the
resolution in the data yielded the lowest image error. With
a proper choice of the searching radii, kriging is capable
of representing the profile of the sample well even when
the spatial resolution of a given data set is not high. By
comparison, the Delaunay image had a much larger error the
algorithm executed approximately two orders of magnitude
faster than Kriging.

B. High resolution data set

The accuracy of an image is limited by the resolution of
the original data set. To illustrate this, we performed image
interpolation from data sets with 2701 and 5101 samples
over the same range of the DNA. The imaging results based
on Kriging (using a radius of twice the sampling resolution
in the data set) are shown in Fig, 7. While the radius was
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smaller in the higher resolution data, the number of points
inside the radius remained approximately the same. As a
result, the computation time remained approximately 40 s.

(a) 2701 samples result (b) 5101 samples result

Fig. 7. Fig.1(a) is the original raster scanning result; (a) is a kriging
interpolation result of 2701 samples with lower spatial resolution than the
data set in (b) of 5101 samples. The RMSs are 0.001418 and 0.0007112.

The same data sets were used in the Delaunay algorithm.
The resulting images are shown in Fig. 8. While the images
capture the gross structure of the DNA with RMSs as low as
Kriging results, there are more artifacts. We note that since
Delaunay uses only three local points in the interpolation,
it is relatively straightforward to speed up the algorithm
by building the image a small region at a time based on
small blocks of incoming data. Note that for these high-
resolution data sets, the RMS error for the Delaunay images
were comparable to those of the Kriging images, indicating
the faster algorithm is as effective given enough data. The
images, however, do show clear artifacts, such as “filling in”
regions where no data was acquired. Such artifacts can be
misleading to the user.

(a) 2701 samples result (b) 5101 samples result

Fig. 8. Delaunay interpolation based on (a) 2701 and (b) 5101 samples.
The RMSs are 0.001316 and 0.0007685.

VI. CONCLUSIONS

We have presented a modified Kriging algorithm and com-
pared it to Delaunay triangulation for the generation of

images from a non-raster scan algorithm designed for high-
speed imaging of biopolymers and other string-like samples.
The results indicate that our Kriging method yields more ac-
curate images but at a high computational cost. It is therefore
best suited for offline image generation. Delaunay, while less
accurate, is fast enough for real-time implementation.
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