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Abstract— In this paper, we study the performance
of a non-raster-scan algorithm for imaging string-like
samples in an atomic force microscope. The algorithm
yields high-speed imaging through a feedback control law
that steers the tip along the sample, thereby reducing the
imaging time by eliminating unnecessary measurements.
Under simplifying assumptions, we derive expressions for
bounds on the control parameters to ensure accurate
tracking of the sample.

I. INTRODUCTION

The invention of atomic force microscopy (AFM) in
1986 [1] has led to remarkable discoveries in the field
of nanotechnology, molecular biology and many other
areas. AFM is well suited to probe into the biological
world at the molecular level due to its high spatial res-
olution and ability to operate in liquid. This capability
has been brought to bear to improve our understanding
of a wide variety of biomolecular structures, such as
proteins, DNA, lipid films, molecular motors and others
[2]–[4]. Despite these successes, the applicability of
AFM to study the dynamics in systems with nanometer-
scale features is extremely limited. In most commercial
systems the time to collect a single image is measured
in seconds to minutes. Because of the wealth of dy-
namic phenomena with time scales much faster than
this, there is great interest in improving the temporal
resolution of the instrument.

Researchers have brought many control applications
to this problem [5]. Recent results in high speed AFM
are approaching video rates [6]–[8]. These techniques
rely on improving the control of the piezoelectric
actuators used to achieve scanning to increase the scan
rate of the system while maintaining imaging quality.
Our approach takes a complementary approach and
relies on developing high-level feedback control laws
to steer the tip of the system so as to reduce the total
number of data points acquired without reducing the
amount of information gathered. The imaging time is

reduced by limiting the area that needs to be imaged.
In earlier work we proposed a non-raster scan method
for samples that are string-like [9]. More recently,
the authors of this paper have modified this approach
to a continuous scanning pattern based on the non-
raster scan method [10]. Under this scheme the data
measured by the AFM is used in real-time to steer the
tip and track the string-like sample. This paper presents
a theoretical analysis of the limits for guaranteeing
imaging of a string-like sample.

In this paper, we will first discuss the background of
our non-raster approach to scanning and describe the
scenario in which tracking can be lost. In Section III we
derive the full problem statement for the determining
bounds on the control parameters to ensure the sample
is not lost. In Section III-B we consider a worst
case scenario and finally derive a concise algebraic
expression in Section IV through a conservative ap-
proximation.

II. NON-RASTER SCAN METHOD

A. General Description

The basic idea, illustrated in Figure 1, on the non-
raster scan method is to feedback the information
gathered from the AFM tip and steer the tip in close
proximity to the underlying sample. Below we briefly
describe the approach; the details of this method can
be found in [10].

Initially, the AFM tip is raster-scanned across the
substrate until the sample is encountered. The (un-
known) sample is modeled as a planar curve, denoted
xtr. To track the path defined by the sample, we need
to estimate xtr with the past information we have, and
evolve this curve forward in the plane. We called this
predicted path, the curve of desired sample trajectory,
denoted xd. Its spatial evolution is modeled using the
equations for the evolution of a two dimensional Frenet-
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Fig. 1. Feedback control loop of non-raster scanning. The
dashed box is the AFM imaging system generating measurement
information, which is passed into the feedback loop through an
estimator, a filter and a controller to keep the AFM tip around the
neighborhood of the string like sample.

Serret frame

d

ds
xd(s) = q1d(s), (1a)

d

ds
q1d(s) = κd(s) q2d(s), (1b)

d

ds
q2d(s) = −κd(s) q1d(s), (1c)

where s represents arclength along the curve. The q1d
and q2d vectors are the tangent and normal directions,
respectively, and κd is the curvature.

The true sample trajectory xtr is also described using
(1) with its own associated curvature κtr. This curve
and its paramters, however, are not known. The curve
xd constructed by the scanning procedure is the esti-
mate of the true sample. Note that the two trajectories,
xd and xtr, are parameterized using different arclength
parameters.

Given the curve xd at an arclength position s, the tip
trajectory for the AFM xtip, is defined to be a smoothly
varying scan pattern around the xd trajectory:

xtip(s) = xd(s) +A sin(ωs)q2d(s). (2)

Note that A and ω in this equation are parameters
that the AFM user can choose. The amplitude A is
analogous to the scan size in the raster scan method,
and the spacial frequency ω is analogous to the scan
resolution. In this paper, our goal is to provide a
limiting bound to the (A,ω) pair, so the smooth non-
raster scan is guaranteed to track the string like sample.

An example of this smooth AFM tip trajectory xtip,
along with its original desired curve xd is shown in
Figure (2).

Fig. 2. Example of smooth AFM tip trajectory. xtip in the dashed
line and xd in solid line. The amplitude was chosen as A = 0.2,
and the frequency was chosen ω = 10. Curvature κd was set a
constant, making the xd a circular path.

B. Loss of tracking

There are scenarios where unwanted scan results
may occur from the smooth trajectory of non-raster
scanning. In this paper we focus on loss of tracking in
which the trajectory of the AFM tip and the trajectory
of the sample diverge. This scenario is demonstrated in
Figure 3. The underling sample xtr, indicated by the
solid blue line, has a region of both high curvature and
large change of curvature κtr, leading to the sharp turn
in the center. The AFM tip trajectory xtip, indicated
by the solid black line, tracks the sample prior to the
sharp turn but fails to follow the curve around the turn.
The notion of “large” in this setting depends on the
parameter choices in the tracking algorithm. In this
case, a different choice of the parameters A and ω
would have led to successful tracking.

III. FULL PROBLEM STATEMENT

Our goal is to identify bounds for the parame-
ters (A,ω) that will guarantee that the tip trajectory
successfully tracks a curve with a given κtr for the
underlying sample. Our approach is to identify the
conditions at the extreme case when xtr is just about
to leave the xtip trajectory.

The xtip trajectory is constructed using (2) and is
thus based upon the desired xd curve. As a result
the curve is described by the three parameters A, ω
and κd. In addition, the curves xd and xtr are both
modeled using the Frenet-Serret frame equations in (1)
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Fig. 3. Example of loss of tracking by sharp turn of sample. Here
the AFM tip trajectory fails to intersect the sample and diverges
from the true curve..

but with different arclength parameters, denoted sd and
str respectively. Note that we set κd and κtr to be
constant over a small arclength, so that xd and xtr are
both segments of circular curves.

To determine the bounds we make the following
assumptions.

1) The two trajectories start at the same place,
designated as the origin:

xtip|sd=0 = xtr|str=0 = [0 , 0]′.

2) The two trajectories have the same tangent direc-
tion q1 and normal direction q2 at the origin:

q1tip|sd=0 = q1tr|str=0 = [1 , 0]′

q2tip|sd=0 = q2tr|str=0 = [0 , 1]′

3) We set the arclength parameters sd and str to
zero at the origin.

Based on the two curves. there are six unknowns in-
volved in finding the bound to guarantee tracking.These
are A, ω, κd, κtr, sd and str.

A. General Equation Setup

There are two conditions for xtip and xtr to meet.
The first is that where the two trajectories must in-
tersect. We call this the “point match” condition. The
second is that at the location where the two intersect,
the tangent directions must match. We call this the “tan-
gent match” condition. The two conditions guarantee

that the two trajectories intersect at only a single point.
These conditions can be mathematically expressed as:

xtip(sd) = xtr(str), (3a)

arctan(
d

dsd
xtip) = arctan(

d

dstr
xtr). (3b)

Fig. 4. Full problem setup for the limiting case of tracking a
string-like sample. The true sample trajectory, shown dashed, is just
about to leave the AFM tip trajectory, shown solid. At this point,
the two trajectories must satisfy the “point match” and “tangent
match” conditions in (3).

We demonstrate the scenario in Fig. (4). Here A
is set to one unit length and ω is one rad/length.
The tip trajectory xtip in the figure is just touching
the underlying trajectory xtr. Note that the matching
conditions of (3) must be met within the first cycle for
the sinusodial term in (2) and thus ωsd ∈ [0, 2π].

Substituting (2) into (3a), and (1) into (3b), we can
rewrite the matching conditions as:

xtr(str) = xd(sd) +A sin(ωsd)q2d(sd)(4a)

arctan(q1tr) = arctan[q1d
−Aκd sin(ωsd)q1d

+Aω cos(ωsd)q2d]. (4b)

We also have an equation linking the two arclength
parameters sd and str at this limiting condition. This
can be derived using the geometric relationship shown
in Fig. 5. From the figure, θd and θtr can be related
by:

tan θd =
sin θtr

cos θtr + 1/κd − 1/κtr
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When we substitute s = θ/κ for the two arclength
parameters, we arrive at:

sdκd = arctan
(

sin(strκtr)
cos(strκtr) + 1/κd − 1/κtr

)
. (5)

The equations (4) and (5) yield a total of four indepen-
dent equations: two from the vector equation in (4a),
and the additional two from (4b) and (5). To solve
them we must choose values for two of the unknowns
and solve for the others. While the equations can be
solved numerically, due to their complexity , they yield
very little insight on finding values for the control
parameters A and ω. We therefore next consider a
limiting case.

Fig. 5. Geometric relationship between the two arclength parame-
ters sd and str using θd and θtr . In 4sdAC, tan θd can be found
dividing the length sdA = sin θtr and AC = cos θtr + 1/κd −
1/κtr .

B. Straight Line Case

Consider the two cases illustrated in Fig. 6. The
straight line case has a lower tolerance for deviations of
the true trajectory; that is a smaller difference between
the true curvature and the predicted curvature (equal
to zero in the straight line case) will lead to loss of
tracking than in the case where the predicted curvature
is nonzero. Thus an analysis of the straight line case
will yield a bound on the parameters such that tracking
will be guaranteed for all initial conditions.

Since xd is a straight line with κd = 0 along the x-
axis, its arclengh parameter is simply sd = x. From the
straight line assumption, we trivially find that xd(sd) =
[sd, 0]′. To simply notation we set sd = s.

Fig. 6. Comparison of the limits of the κtr for a straight xd case
and a curved xd case.

The AFM tip trajectory, generally obtained using (2),
can be implemented by substituting q2d = [0, 1]′ to
yield:

xtip(s) =
(

s
A sin(ωs)

)
. (6)

To perform the “point match” condition, we need to
find the equation for xtr trajectory also. Assumung that
we have the constant curvature κtr for the xtr curve, the
path is simply a circle with a the radius of curvature of
R = 1/κtr. Thus we describe the curve by the equation
x2+(y+R)2 = R2. Substituting x = s and re-arranging
the standard circle equation to a vector form, we arrive
at:

xtr(s) =
(

s

−R+
√
R2 − s2

)
. (7)

We can now impose the full equation set of “point
match” and “tangent match” as in (3), where we per-
form a standard derivative operation for the tangential
vectors with respect to the only arclength parameter s.
This yields:(

s
A sin(ωs)

)
=
(

s

−R+
√
R2 − s2

)
(8a)

arctan(
1

Aω cos(ωs)
) = arctan(

1
−s/
√
R2 − s2

) (8b)

Using the same s to parameterize both the tip, (6), and
true curves, (7), reduces the sd and str relationship to
the trivial s = s.

Thus the four parameters A,ω,R and s are deter-
mined by (8). Note that we have two less unknown pa-
rameters less then the original full problem statement in
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section (III-A). The assumption of a straight line forces
κd to be zero and allows us to use only s to characterize
both xd and xtr as oppose to having two independent
parameters. There is an infinite number of solutions to
these equations, corresponding the the equivalent set of
conditions at each cycle of the sinusoid. We must then
include the restriction that ωs ∈ [0, 2π].

We have also reduced the number of independent
equations to two since the first component of (8a)
is trivial. Thus we must still choose two of the pa-
rameters and solve for the remaining two. It is not
physically meaningful to choose the value of s and
thus the arclength value at the point of intersection
is always a dependent variable. The choice of the
other dependent variable depends upon the particular
imaging problem. For example, given the samples to be
imaged, physical models may constrain the maximum
curvature, allowing us to choose R. Similarly there may
be a predetermined imaging amplitude A determined
by the maximum width of the string like-sample. The
system (8) will then yield the necessary bound on the
resolution parameter ω; choosing a value equal to or
larger than this bound will ensure tracking. Note that
in this case the bound does not limit the resolution but
instead limits the imaging time (since smaller values
for ω imply that the sample will be traversed faster).
In other situations it may be desirable to determine a
bound on A in terms of given values of R and ω or on
R in terms of A and ω.

IV. CONSERVATIVE BOUNDS

To yield insight into these bounds, as well as to
derive a simple analytical result, we now consider a
conservative bound by declaring tracking to be lost not
at the point satisfying (3) but rather at the point given
by ωs = 3π/2. As illustrated in Fig. 7, this choice
implies that the “tangent match” condition in (3b) is
no longer satisfied.

With this assumption we are able to derive an
analytical expression for the relationship between the
parameters (see (10) below). To solve, first substitute
s0 = 3π

2ω in the second equation of (8a), yielding

−A = −R+

√
R2 − (

3π
2ω

)2.

Re-arranging, we find

A2 − 2RA+
9π2

4ω2
= 0. (9)

We now have three unknowns, A, ω, and R and only
one relationship, (9). To obtain the equations for one

Fig. 7. Comparison of the conservative approximation of the two
xtr to the full solution in the straight line case. The conservative
approximation declares tracking to be lost when the trajectory
passes through the lowest point of the sine pattern. The true curve
passing through this point has a smaller curvature than the curve that
satisfies the point and tangent matching conditions. Thus solving
for the parameters in the first case yield a conservative bound on
the imaging parameters to guarantee tracking of the sample.

of the unknowns in terms of the other two, we simply
re-arrange this equation, leading to:

A(R,ω) = R−
√
R2 − 9π2

4ω2
, (10a)

ω(A,R) =
1
2

√
9π2

2RA−A2
, (10b)

R(A,ω) =
A

2
+

9π2

8Aω2
. (10c)

As before, two of the parameters can be chosen
based on physical models of the system or other user
insight. The equations in (10) then determine the bound
on the third parameter to guarantee tracking of the
sample. Due to the simplifications, these bounds are
conservative. To consider the amount of conservatism
introduced, we numerically solved the equations for
the straight line case, (8) and compared the results
to the analytical results of this section. In Fig. 8 we
show the maximum curvature (one over the radius) of
the true curve that will ensure tracking as a function
of the resolution parameter ω for a fixed amplitude
of one unit. For very small ω, only nearly straight
lines can be tracked. As ω is increased, however, the
limiting curvature increases to an asymptotic value. The
conservative approximation, shown by the solid blue
line, is clearly more cautious than the full solution. The
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amount of conservatism introduced, however, is small.

Fig. 8. Comparison of the conservative bound to the full solution
for the straight line case. The scanning amplitude was fixed to one
unit and the maximum curvature determined as a function of the
resolution parameter ω. The level of conservatism introduced is
small.

In Fig. 9 we fix the maximum curvature of the true
curve at κ = 1 and explore the minimum value of the
amplitude parameter A as a function of the resolution
parameter ω. As before the level of conservatism intro-
duced by the approximation is small.

V. CONCLUSION

In this paper we considered a non raster-scan algo-
rithm for imaging string-like samples and described
a scenario in which imaging could fail due to loss
of tracking. We derived a set of equations that can
be solved to yield bounds on the imaging parameters
such that tracking is guaranteed. We then considered
an extreme case to derive a somewhat simpler set of
equations before deriving a set of conservative bounds
on the parameters.

These results will be useful in applying the non-raster
method to imaging samples and ensuring valid results
in terms of the structure and length of the samples being
studied.
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Fig. 9. Comparison of the conservative bound to the full solution
for the straight line case. The curvature was fixed to one and the
minimum amplitude determined as a function of the resolution
parameter ω. As in Figure 8, the level of conservatism introduced
by the simple bound is small.

REFERENCES

[1] G. Binnig, C. F. Quate, and C. Gerber, “Atomic force micro-
scope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930–933, March
1986.

[2] N. C. Santos and M. A. R. B. Castanho, “An overview
of the biophysical applications of atomic force microscopy,”
Biophys. Chem., vol. 107, no. 2, pp. 133–149, February 2004.

[3] A. Alessandrini and P. Facci, “AFM: a versatile tool in
biophysics,” Meas. Sci. Tech., vol. 16, no. 6, pp. R65–R92,
June 2005.

[4] H. Janovjak, A. Kedrov, D. A. Cisneros, K. T. Sapra, J. Struck-
meier, and D. J. Müller, “Imaging and detecting molecular
interactions of single transmembrane proteins,” Neurobio.
Aging, vol. 27, no. 4, pp. 546–561, April 2006.

[5] S. M. Salapaka and M. V. Salapaka, “Scanning probe mi-
croscopy,” Control Sys. Mag., vol. 28, no. 2, pp. 65–83, 2008.

[6] K. K. Leang and A. J. Fleming, “High-speed serial-kinematic
AFM scanner: design and drive considerations,” in Proc.
American Control Conference, 2008, pp. 3188–3193.
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