
REVIEW OF SCIENTIFIC INSTRUMENTS 82, 063703 (2011)

Local raster scanning for high-speed imaging of biopolymers in atomic
force microscopy

Peter I. Chang, Peng Huang, Jungyeoul Maeng, and Sean B. Andersson
Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA

(Received 28 February 2011; accepted 22 May 2011; published online 21 June 2011)

A novel algorithm is described and illustrated for high speed imaging of biopolymers and other string-
like samples using atomic force microscopy. The method uses the measurements in real-time to steer
the tip of the instrument to localize the scanning area over the sample of interest. Depending on the
sample, the scan time can be reduced by an order of magnitude or more while maintaining image res-
olution. Images are generated by interpolating the non-raster data using a modified Kriging algorithm.
The method is demonstrated using physical simulations that include actuator and cantilever dynamics,
nonlinear tip-sample interactions, and measurement noise as well as through scanning experiments
in which a two-axis nanopositioning stage is steered by the algorithm using simulated height data.
© 2011 American Institute of Physics. [doi:10.1063/1.3600558]

I. INTRODUCTION

The atomic force microscope (AFM) (Ref. 1) is a ver-
satile instrument for studying systems with nanometer-scale
features. Its high spatial resolution, ability to work in differ-
ent environments, and flexibility to be modified to measure
many different interactions make it a powerful tool. It contin-
ues to have a major impact on a variety of fields, including
materials science, biology, and nanotechnology. Its applica-
tion remains limited, however, by its temporal resolution, with
commercial instruments often taking on the order of minutes
to generate a single image. As a result, there is great interest
in high speed AFM with the goal of achieving video-rate and
faster imaging.2

High-speed AFM approaches can be broadly placed in
two categories. The first is the use of alternative physical de-
signs. For example, researchers have built small cantilevers,3

designed microresonators with mechanical feedback,4 uti-
lized serially connected scanning stages,5 and constructed
scanners with high resonance frequencies.6 The second cat-
egory is to apply advanced control techniques such as
combined feedforward/feedback control,7 model-based feed-
forward control,8 and iterative learning control.9 Com-
binations of such approaches have yielded video rate
imaging.10, 11

In general, existing approaches to high-speed AFM seek
to move the tip more rapidly through the raster-scan pat-
tern while maintaining image quality. Our local raster-scan
scheme takes a different approach: imaging time is reduced
by reducing the amount of sampling. The information mea-
sured by the instrument is used in real-time to adjust the
scanning process. The algorithm, designed for biopolymers
and other samples that can be modeled as a planar curve,
tracks the sample such that the measurements are restricted
to the neighborhood of the sample. Overall scanning time is
reduced not by increasing the tip speed but by decreasing the
scan area. Depending on the sample, an order-of-magnitude
or better reduction in imaging time can be achieved. Fur-
thermore, the method is complementary to other high-speed

imaging methods. Combining the algorithm with such tech-
niques can lead to further improvements in imaging time.

The resulting data are non-raster and generating an im-
age from the set is non-trivial. We have developed a modified
Kriging method12 that produces an accurate image from the
data through an interpolation scheme that takes advantage of
the structure of the data. We use that approach in this work.

II. ALGORITHM

A. Local raster scanning

Local raster scanning operates as a high-level feedback
loop around the AFM system, as illustrated in Fig. 1. There
are four blocks in the controller loop: detection, estima-
tion, filtering, and tip trajectory design. The algorithm ac-
tively tracks the spatial evolution of the underlying sam-
ple, scanning the tip transversely while moving along the
sample.

An example trajectory of the local raster-scan algorithm
is shown in Fig. 2, layered on a standard raster-scanned DNA
image. The tip trajectory (sinusoidal segments) crosses back
and forth over the DNA, driven by an estimation of the spatial
evolution of the edge of the sample (short line segments).

The evolution of the sample path, denoted r, is modeled
using the Fernet-Serret (F-S) frame equations,

r ′(s) = q1(s), (1a)

q ′
1(s) = κ(s)q2(s), (1b)

q ′
2(s) = −κ(s)q1(s), (1c)

where prime denotes the derivative with respect to the ar-
clength s, κ(s) is the curvature at s, q1(s) is the tangent to
r at s, and q2(s) is the normal to r at s. The vectors q1(s)
and q2(s) can be expressed using a heading direction θ (s),
by q1 = [cos θ (s) sin θ (s)]′ and q2 = [− sin θ (s) cos θ (s)]′.13

The curve is then determined by measuring the local curvature
and heading direction and then solving Eq. (1) until the next
measurement.
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FIG. 1. (Color online) Block diagram of the local raster-scan control loop.
Driven by the data acquired by the AFM, the detector block determines the
current position of the sample in the scan. These positions are used by the
estimator block to determine the geometric parameters driving the spatial
evolution of the path of the sample. After filtering, these values are fed to the
tip trajectory block which estimates the evolution of the sample and, from
that, the desired trajectory of the tip.

Given a curve r (·), the AFM tip trajectory is determined
by

rtip(s) = r (s) ± A sin(ωs)q2(s), (2)

where A is the scan amplitude and ω is the spatial frequency.
Note that both A and ω are user inputs that can be cho-
sen. This path is designed to provide a smooth trajectory
for the tip to ensure accurate tracking by the low-level piezo
controllers.

In order to implement the algorithm, the arclength pa-
rameter must be converted to a time parameter such that the
tip trajectory is expressed as rtip(s) = rtip(s(t)). This rela-
tionship is given by fixing the speed of the tip, vtip and then
inverting the equation,14

t = 1

vtip

∫ s

0

√
(1 − Aκ sin(ωσ ))2 + A2ω2 cos2(ωσ ) dσ.

(3)

FIG. 2. (Color online) Illustration of a typical local raster scanning trajec-
tory. The underlying image is a portion of the height data from a standard
raster-scan of DNA using a commercial AFM system. The tip trajectory (si-
nusoidal segments) is driven by the estimation of the evolution of the edge of
the DNA sample (short line segments).

In practice, the inversion of Eq. (3) is done off-line and stored
either in a look-up table or approximated with a function such
as a low-order polynomial.

Each step of the algorithm begins by detecting a transi-
tion of the tip between the substrate and the sample. The main
function of the detector block is to determine such a transition
and produce a measurement of the position of that transition,
denoted rk where k indexes crossing of the sample. Depend-
ing on the operational mode of the AFM, there are a vari-
ety of ways to perform this detection. Examples include the
use of a maximum likelihood estimator based on the height
measurements15 or a transient signal observer that monitors
the amplitude signal of an AFM operated in intermittent con-
tact (tapping) mode.16

When the detector block determines a new transition, the
index k is incremented and the new value of rk is passed to the
estimator block. This block uses past values of the crossing
positions to determine the heading direction and curvature as
follows. For the heading direction, the tangent vector to the
sample curve at rk is estimated using an Euler approximation
to the derivative,

q̂1k = rk − rk−1

‖rk − rk−1‖ ,

where ‖ · ‖ is the Euclidean norm. The estimate of the heading
direction, θ̂ , is given by the angle of q̂1k . The estimate of the
curvature, κ̂ is calculated from Heron’s formula,

κ̂ = ±4

√
l(l − a)(l − b)(l − c)

abc
,

where l is the semi-perimeter of the triangle defined by the
three points rk , rk−1, and rk−2 and a, b, and c are the lengths
of the sides of that triangle.

To mitigate the effect of noise in the estimates of θ̂ and
κ̂ (arising from noise in the estimate of rk and amplified due
to the numerical derivatives), a Kalman filter is used to filter
(θ̂ , κ̂).13

The filtered values are then sent to the tip trajectory de-
sign block. Here, they are used in Eq. (1) to propagate forward
an estimate of the path of the sample and then in Eq. (2) to
produce the desired tip trajectory. This trajectory is then sent
to the low-level controllers to achieve the tip motion.

1. Discussion of curvature assumptions

The local raster-scan algorithm assumes that the underly-
ing sample maintains a constant curvature between crossings
of the tip. Practically, this means that the curvature should
change slowly with respect to the distance between those
crossings. If this assumption fails, due either to the sam-
ple itself or noise in the measurements, then loss of track-
ing can occur (see Ref. 17 for a detailed discussion of this
issue). It is therefore important to select the resolution pa-
rameter ω large enough to ensure tracking of the particular
sample under study. While the actual curvatures are not
known a priori, it is possible to establish realistic bounds on
both the curvature and the rate of change of curvature using
their persistence length or descriptions such as a wormlike
chain model.18 These bounds can then be used to guide the
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FIG. 3. (Color online) Bode plot of the piezo dynamics (solid line with resonant peak in the magnitude), the PID controller (dashed line with a notch in the
magnitude), and the closed loop system (solid line with no resonant peak) used in the simulation. The closed loop bandwidth was over 50 kHz.

selection of scan parameters so as to ensure that the assump-
tion of constant curvature holds reasonably well.

The imaging time is directly proportional to the total path
length traveled by the tip. This in turn is increased by increas-
ing the value of ω. Selecting ω sufficiently high so as to ensure
tracking of the biopolymer along a region of maximum cur-
vature will slow down the imaging process. A logical refine-
ment of the algorithm is to allow for adaption on the value of
ω based on the estimate of the curvature, increasing it where
necessary to maintain tracking and relaxing it when possible
to minimize imaging time.

B. Imaging from local raster scanning data

Data collected along the local raster-scan trajectory are
by design not evenly spaced and thus interpolation must be
used to generate an image from them. There are a variety
of techniques for interpolating non-raster data for imaging,
including polygonal interpolation, averaging, and the inverse
distance method. We have chosen two methods for re-creating
images from the local raster scanning on biopolymers, a mod-

8nm

6 nm

FIG. 4. Sample profile used in the simulator.

ified Kriging interpolation19 tailored to stringlike samples and
standard Delaunay triangulation.20

Kriging models the sampled data as outcomes of random
variables and interpolates intermediate values with an unbi-
ased estimator that minimizes the error covariance among all
linear estimations. Due to the structure of our samples, the
information content in the acquired data is heavily anisop-
tropic, with data being related primarily along the sample.
The modified Kriging method takes this into account to pro-
duce accurate images12 (cf. Figs. 5(c) and 6(c)). Because of
its high computational cost, Kriging is best-suited for off-
line image generation. In order to provide visual feedback
for the user during scanning, one can use standard Delaunay
triangulation.12

III. SIMULATIONS

To illustrate the effectiveness of the local raster-scan al-
gorithm, a detailed dynamic simulator of an AFM system was
developed. The simulator modeled the dynamics of the actu-
ators, the low-level controllers, and the nonlinear tip-sample
dynamics and allowed us to produce both standard raster-scan
and local raster-scan images of the same sample.

A. Simulator setup

Since there are a variety of different physical designs for
AFMs,21 we used a generic model to capture the basic dy-
namics of the x, y, and z components of the AFM system.
Each axis was modeled as the same second order system de-
scribed by the Bode plot in Fig. 3. A low-level Proportional-
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FIG. 5. (Color online) Simulation result of local raster ((a)–(c)) and raster-scan (d) on a sinusoidal test curve. Image (b) clearly indicates that the local raster-scan
kept the tip in the vicinity of the sample. The tip speed in both images was set to 20.0 μm/s. The local raster-scan took 0.785 s while the raster-scan took 16.2 s
(∼21 times longer).

Integral-Derivative (PID) controller was designed based on
the semi-automatic tuning method22 and the actuators were
operated in closed-loop mode. (Note that this tuning method
was developed for high-speed AFM and illustrates the ability
to combine the local raster-scan algorithm with other high-
speed methods.) The Bode plots for the controller and the
closed-loop system are also shown in Fig. 3. To simulate sen-
sor noise in the lateral positioning, samples from a zero mean,
1 nm variance Gaussian white noise process were added to the
measurements of the x and y piezo positions. Note that while
no cross-coupling between the axes was modeled, such ef-
fects could easily be included but would require a more com-
plicated controller. As this work focuses on the higher level
control algorithm, they were neglected for simplicity.

The cantilever dynamics were modeled as a second-order
system while the tip-sample interaction was described using
the Derjaguin-Muller-Toporov model.23 The simulated AFM
could be operated in either contact or intermittent-contact
(tapping) mode. In this work, tapping mode was used with
a nominal amplitude of the cantilever oscillation of 70 nm.
The measured amplitude signal was produced by demodu-
lating the cantilever signal and corrupting it by two additive
zero mean Gaussian white noise sources. The first, captur-
ing thermal noise, had a standard deviation of 0.1 nm while
the second, capturing measurement noise, had a standard

deviation of 0.8 nm. The z controller acted to maintain a set
amplitude.

To implement the local raster-scan algorithm, one must
choose a detection algorithm for the detector block. In this
work, the transient signal detector16 was selected. This tech-
nique detects abrupt changes in the cantilever dynamics and
is well-suited for a fast-moving tip. A small, artificial shift be-
tween the detected crossing position and the reported value of
rk was added so that the algorithm would estimate the center
of the sample rather than the edge.

We simulated two samples placed in a 800 nm by 800
nm area. Each sample had the same cross section of a semi-
on top of a block (see Fig. 4). In order to roughly mimic
biopolymers, the width was set to 8 nm and the height to 6
nm. One sample path was modeled as a sinusoid along a diag-
onal line (see Fig. 5(d)) while the path of the other was mod-
eled as a “flower” pattern by periodically varying the radius
of a 300 nm circle (see Fig. 6(d)).

For each sample, a standard raster-scan image was made
using a line rate of 12.5 Hz and an image resolution of 200 by
200 pixels, corresponding to an average tip speed of 20 μm/s
and an imaging time of 16.2 s. A local raster-scan was then
made of the same sample using the same tip speed. For each
scan, the amplitude parameter was set to A = 24 nm and the
resolution parameter to ω = 1/8 rad/nm, corresponding to a

FIG. 6. (Color online) Simulation result of local raster ((a)–(c)) and raster-scan (d) on a flower test curve. Image (b) clearly indicates that the local raster-scan
kept the tip in the vicinity of the sample. The tip speed in both images was set to 20.0 μm/s. The local raster-scan took 1.25 s while the raster-scan took 16.2 s
(∼13 times longer).
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6 nm

10 nm

FIG. 7. Sample profile used to generate height measurements to drive the
local raster-scan algorithm on the nanopositioning stage.

nominal spacing between crossings of the sample of 4 nm,
making the spatial resolution equivalent to that of the raster-
scanned images.

B. Simulation results

The results for the sinusoidal sample are shown in Fig. 5.
The data measured along the local raster-scan trajectory
are shown in Fig 5(a) and the corresponding trajectory in
Fig. 5(b). The local raster-scan image, generating from the
modified Kriging method, is shown in Fig. 5(c). The raster-
scan image is shown in Fig. 5(d). Note that the noise in the
measurements can be seen on the substrate portion of the
raster image, as can a small parachuting effect (due to the dy-
namics of the controller), in which the peak of the sample ap-
pears on the leading edge of the scan direction. The Kriging
image is set to have the same pixel resolution as the raster-
scan image (200 by 200 pixels). The scan time for the local
raster-scan algorithm was 0.785 s or 4.85% of the raster-scan
imaging time. This reduction is driven by the fact that the al-
gorithm scans a significantly smaller area, greatly reducing
the path length followed by the tip.

The results for the flower sample are shown in Fig. 6,
with the measured data along the local raster-scan trajectory
in Fig 6(a) and the corresponding trajectory in Fig. 6(b). The
local raster-scan image, generating from Kriging, is shown in
Fig. 6(c) and the raster-scan image is shown in Fig. 6(d). As
before, the Kriging image has the same pixel resolution. The
scan time for the local raster-scan algorithm was 1.25 s, or
7.72% of the standard raster-scan time.

IV. EXPERIMENTS

To illustrate the scanning algorithm on a physical sys-
tem, the algorithm was used to move a two-axis nanoposi-

FIG. 8. Bode plot of the close loop response for the two axis of our nano-
positioning stage.

tioning stage. In lieu of an AFM head, artificial height mea-
surements were generated as a function of the measured po-
sition of the stage. The same two samples as imaged in the
simulation were used in the physical experiments, though the
profiles were changed to a half-sinusoid with a spatial period
of 20 nm (and thus a width of 10 nm) to loosely capture the
effect of tip-broadening (see Fig. 7). As in the simulations, the
image area was set to 800 nm by 800 nm.

A. System setup

The local raster-scan algorithm was implemented on a
digital signal processor DSP (P25M, Innovative Integrations,
Simi Valley, CA) at a 10 kHz sampling rate. It was used to
control a two-axis nanopositioner comprised of two single-
axis actuators stacked together (Nano-HL piezoactuators with
NanoDrive 85 controller, Mad City Labs, Madison, WI). The
DSP commands were output over a 16-bit digital-to-analog
converter, through a custom built converter box that translated
the ±2 V output of the DSP to the 0–10 V input range of
the piezo controller. The measured position of the nanopo-
sitioner was then input to the DSP using a 16-bit analog-
to-digital converter and passed through a digital filter. The

FIG. 9. (Color online) Experimental result of the local raster- ((a)–(c)) and raster-scan (d) on a sinusoidal test curve. As in the simulation results, the algorithm
tracked the sample, reducing image time by reducing the image area. The tip speed for both scans was set to 6.5 μm/s. The local raster-scan took 2.57 s while
the raster-scan took 49.2 s.
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FIG. 10. (Color online) Experimental result of the local raster- ((a)–(c)) and raster-scan (d) on a flower test curve. As in the simulation results, the algorithm
tracked the sample, reducing image time by reducing the image area. The tip speed for both scans was set to 6.5 μm/s. The local raster-scan took 2.75 s while
the raster-scan took 19.7 s.

closed-loop noise in the system was ∼2 nm in standard devi-
ation. The nanopositioner controller included a manufacturer-
designed PI controller for low-level positioning. The Bode
plot of the stage dynamics in the two directions is shown in
Fig. 8.

Since there was no cantilever dynamics in these experi-
ments, the transient signal detection algorithm could not be
used. In its place, a simple threshold algorithm was utilized
to determine whether the measurements were on or off the
sample. A transition from off to on or on to off triggered
an update of the algorithm. After each detection, subsequent
detections were delayed for a short period of time to en-
sure the next detection occurred on the same side of the
sample.

In order to allow for real-time execution, the inversion
of Eq. (3) to convert time to arclength was performed us-
ing a look-up table. In the implementation described here,
all calculations for a single step of the algorithm (including
sampling, detection, estimation, filtering, t − s conversion,
Frenet-Serret frame evolution, tip trajectory calculation, and
command output) took ∼30 μs.

The tip speed was set to 6.5 μm/s. Raster-scans were per-
formed over a 1 μm by 1 μm area to eliminate dynamic ef-
fects at the edges of the image due to the triangular scan pat-
tern. For the local raster-scan runs, the amplitude parameter
was set to A = 40 nm. For the sinusoidal sample, the resolu-
tion parameter was set to ω = 0.2 rad/nm, corresponding to
a nominal spacing of 5 nm between crossings of the sample.
For a comparison, the pixel size in the raster-scan was set to
2.5 nm, leading to 200 by 200 pixels in the center 800 nm
by 800 nm area. The imaging time for the raster-scan of this
region was 49.2 s. For the flower sample, the resolution pa-
rameter was set to ω = 0.1 rad/nm, corresponding to 5 nm
per sample. The pixel size in the raster-scan was thus also set
to 5 nm, leading to 160 by 160 pixels in the center region. The
imaging time for the raster-scan of this region was 19.7 s.

B. Results

The results for the sinusoidal sample are shown in Fig. 9.
The data measured during the local raster-scan are shown in
Fig. 9(a), the trajectory of the tip during the scan in Fig. 9(b),
and the corresponding image generated from the data in

Fig. 9(c). The raster-scan image is shown in Fig. 9(d). The
scan time for the local raster algorithm was 2.57 s, or 5.2%
of the raster-scan time (for just the center 800 nm by 800 nm
area).

The results for the flower sample are shown in Fig. 10.
The data measured during the local raster-scan are shown in
Fig. 10(a), the trajectory of the tip during scan in Fig. 10(b),
and the corresponding image generated from the data in
Fig. 10(c). The raster-scan image is shown in Fig. 10(d). The
scan time for the local raster-scan algorithm was 2.75 s, or
13.94 % of the raster-scan time.

V. SUMMARY

Non-raster methods such as the local raster-scan algo-
rithm presented here are a new and novel way for greatly
reducing imaging time in AFM. Improvements by an order-
of-magnitude or more will greatly extend the applicability of
AFM for studying dynamics in systems with nanometer-scale
features.
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