
Motion Planning and Control from Temporal Logic Specifications
with Probabilistic Satisfaction Guarantees

M. Lahijanian, J. Wasniewski, S. B. Andersson, and C. Belta

Abstract— We present a computational framework for auto-
matic deployment of a robot from a temporal logic specification
over a set of properties of interest satisfied at the regions of a
partitioned environment. We assume that, during the motion of
the robot in the environment, the current region can be precisely
determined, while due to sensor and actuation noise, the out-
come of a control action can only be predicted probabilistically.
Under these assumptions, the deployment problem translates
to generating a control strategy for a Markov Decision Process
(MDP) from a temporal logic formula. We propose an algorithm
inspired from probabilistic Computation Tree Logic (PCTL)
model checking to find a control strategy that maximizes the
probability of satisfying the specification. We illustrate our
method with simulation and experimental results.

I. INTRODUCTION

In the “classical” motion planning problem [1]–[3], a
specification is given simply as “go from A to B and avoid
obstacles”, where A and B are two regions of interest in
some environment. However, a mission might require the
attainment of either A or B, convergence to a region (“reach
A eventually and stay there for all future times”), visiting
targets sequentially (“reach A, and then B, and then C”),
surveillance (“reach A and then B infinitely often”), or
the satisfaction of more complicated temporal and logic
conditions about the reachability of regions of interest (e.g.,
“Never go to A. Don’t go to B unless C or D were
visited”). To accommodate such increased expressivity in
the specification language, recent works suggested the use
of temporal logics, such as Linear Temporal Logic (LTL)
and Computation Tree Logic (CTL) as motion specification
languages [4]–[8]. Algorithms inspired from model checking
[9], [10] or temporal logic games [11] are used to find motion
plans and control strategies from such specifications.

The starting point for these works is to abstract the
partitioned environment to its partition quotient graph, which
is then interpreted as a transition system, or Kripke structure
[9] during the model checking or game algorithm. To enable
the application of such techniques, the existing temporal
logic approaches to motion planning are based on two main
assumptions. First, the transition system is either purely
deterministic (i.e., in each region, an available control action
determines a unique transition to the next region) or purely
nondeterministic (a control action in a region can enable
transitions to several next regions, with no information on

This work is partially supported at Boston University by the NSF under
grant CNS-0834260, the ARO under grant W911NF-09-1-0088, and the
AFOSR under grant FA9550-09-1-0209.

The authors are with the Department of Mechanical Engineering, Boston
University, MA, USA, E-mail: morteza@bu.edu.

M. Lahijanian is the corresponding author.

their likelihoods) [12]. Second, during its motion in the en-
vironment, the robot can determine its position precisely. In
realistic robotic applications, both these assumptions might
not hold. First, due to noisy actuators, a control action can
never be guaranteed to produce the desired next transitions.
However, the transition probabilities can be computed given
the sensor and actuator noise model or through experimental
trials. Second, due to noisy measurements, the current region
of a robot cannot be known precisely, but a distribution
over the set of regions can usually be inferred from a mea-
surement. These observations lead to a Partially Observed
Markov Decision Process (POMDP) model of robot motion
[13]. If the motion specification is given simply as “go from
A to B,” then numerous algorithms exist to determine a robot
control strategy [14]–[16]. The probabilistic counterparts
of the rich, temporal logic specifications are probabilistic
temporal logics, such as probabilistic LTL [17], probabilistic
CTL (PCTL) [18] and the Continuous Stochastic Logic
(CSL) [19]. However, the problem of generating a control
strategy for a POMDP from a probabilistic temporal logic
formula is currently not well understood.

In this paper, we consider a simpler version of the above
problem. While we allow for actuation noise (i.e., the control
actions enable transitions with known probabilities), we
assume that the robot can determine its current regions
precisely. This assumption is not overly restrictive for indoor
navigation applications, such as the one considered in this
paper, where a large number of reliable RFID tags can be
placed in the environment. The robot motion model becomes
a Markov Decision Process (MDP). We consider specifica-
tions given as PCTL formulas and develop a framework for
automatic synthesis of control strategies from such specifica-
tions. While our solution to this problem is based on a simple
adaptation of existing PCTL model checking algorithms [20],
the framework is, to the best of our knowledge, novel and
quite general. In short, given a specification as a formula
in a fragment of CTL, the algorithm returns the maximum
satisfaction probability and a corresponding control strategy.
To illustrate the method, we built a Robotic InDoor Envi-
ronment (RIDE) [21], in which an iRobot iCreate platform
equipped with a laptop, RFID reader, and laser range finder,
can move autonomously through corridors and intersections
that can be easily reconfigured. RIDE is also equipped with
a simulator that can be used to help generating the MDP
model and to test the produced control strategies.

The remainder of the paper is organized as follows. In Sec.
II, we formulate the problem and outline our approach. The
MDP control strategy is briefly described in Sec. III. The

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2010 IEEE International Conference on
Robotics and Automation. Received September 15, 2009.

Fig. 1. Robotic InDoor Environment (RIDE). Left: An iCreate mobile platform equipped with a laptop, a laser range finder, and RFID reader moves
autonomously through the corridors and intersection of an indoor-like environment, whose topology can be easily reconfigured by moving the foam walls.
Right: A robot close-up.

experimental platform and the MDP modeling technique for
the robot motion are presented in Sec. IV, while experimental
results are included in Sec. V. The paper concludes with final
remarks in Sec. VI.

II. PROBLEM FORMULATION AND APPROACH

Consider a robot moving in a partitioned environment,
such as the one shown in Fig. 1 left and represented schemat-
ically in Fig. 2. We assume that the robot is programmed
with a small set of feedback control primitives allowing it to
move inside each region and from one region to an adjacent
region. We make the natural assumption that these control
primitives are not completely reliable. In other words, if
at a given region a control primitive designed to take the
robot to a specific adjacent region is used, it is possible
that the robot will instead transition to a different adjacent
region. We also assume that the success / failure rates of such
controllers are known. In a particular application, these rates
can be determined experimentally, or with a combination of
experiments and simulations, as we discuss later in the paper.
We consider the following problem:

Problem 1: Given a motion specification as a rich, tempo-
ral logic statement about properties satisfied by the regions in
a partitioned environment, find a robot control strategy that
maximizes the probability of satisfying the specification.

Consider for example the Robotic InDoor Environment
(RIDE) shown in Fig. 1, whose schematic representation
is given in Fig. 2. The regions are roads and intersections,
identified by R1, . . . , R9 and I1, . . . , I5, respectively. There
are four properties of interest about the regions: Safe (the
robot can safely pass drive through a road or intersection with
this property), Relatively safe (the robot can pass through
the region but it should avoid it if possible), Unsafe (the
corresponding region should be avoided), Medical supply
(there are medical supplies in the region associated with this
property), and Destination (a region that is required to be
visited by the robot has this property). Examples of temporal
logic motion specifications include “Reach Destination and

always avoid Unsafe regions”, “Reach Destination while
going through either only Safe regions or through Relatively
safe regions only if Medical Supply is available at such
regions”.

As it will become clear later in the paper, the rich,
temporal logic specification will be a formula of a fragment
of Computation Tree Logic, which seems to be rich enough
to accommodate a fairly large spectrum of robotic missions.
A robot control strategy will be defined as an assignment
of a control primitive to each region of the environment.
Since the outcome of a control primitive is not guaranteed
but characterized probabilistically, the satisfaction of the
specification is defined in a probabilistic sense. Among all
the possible control strategies, our solution to Problem 1
will have the highest rate of success. For example, if our
solution to Problem 1 returns a certain control strategy that
corresponds to a (maximum) probability of 0.9, then 9 out of
10 robot runs produced with the control strategy are expected
to satisfy the temporal logic specification.

Central to our approach to Problem 1 is a Markov Decision
Process (MDP, see Sec. III-A) representation of the motion
of the robot in the environment. Each state of the MDP
in general corresponds to an ordered set of regions in the
partition while the actions are labels for the feedback control
primitives. The construction of an MDP model for the motion
of the robot is described in Sec. IV. Under the additional
(and restrictive) assumption that, at any given time, the robot
knows precisely its current region, generating a robot control
strategy solving Problem 1 reduces to finding an MDP
control strategy that maximizes the probability of satisfying a
probabilistic Computation Tree Logic (PCTL) formula. This
problem is treated in Sec. III. While the framework that we
develop in this paper is quite general, we focus on RIDE,
which is described in more detail in Sec. IV-A.

When the criterion is expressed as the optimization of a
cost function subject to an MDP, there are a variety of tools
for solving the problem, such as dynamic programming and
successive approximation. These methods are polynomial in

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2010 IEEE International Conference on
Robotics and Automation. Received September 15, 2009.

Fig. 2. Schematic representation of the environment from Fig. 1. Each
region has a unique identifier (R1, . . . , R9 for roads and I1, . . . , I5 for
intersections, respectively). The properties satisfied at the regions are shown
between curly brackets inside the regions: S = Safe, R = Relatively safe, U
= Unsafe, M = Medical supply, and D = Destination.

complexity in the size of the state space [22]. Since Problem
1 involves a maximization over the dynamics of an MDP, it is
possible to convert the specification into a cost function and
take advantage of such tools. To do so in general, however,
requires state augmentation to capture the expressivity of the
temporal operators since the cost must be expressed as a
summation of per stage costs, each of which can only depend
on the current state and choice of action. As discussed in Sec.
III, the model checking scheme we adopt is also polynomial
in the size of the state space and thus conversion to a cost
function form is less computationally efficient, even when
ignoring the difficulty of finding a cost function that captures
the specification.

III. MDP CONTROL STRATEGIES FROM PCTL
SPECIFICATIONS

In this section we describe a procedure for generating
an MDP control policy that maximizes the probability of
satisfying a given PCTL specification, thereby solving Prob-
lem 1. Our approach is an adaptation of the PCTL model
checking algorithm [23]. Due to space constraints, we give
a somewhat informal description and illustrate the concepts
through simple examples.

A. Markov Decision Process

Given a set Q, let 2Q denote its power set and let
|Q| denote its cardinality. We give the following formal
definition.

Definition 1: A Markov Decision Process (MDP) is a
tuple M = (Q, q0, Act, Steps, L) where:
• Q is a finite set of states;

{Init}

{R3}

{R2}

a1

a1

a2

a4

a1 1

1

1

a41

1

0.5

0.4
q0 q1 q3

q2

0.1
a2

a3

a3

0.56

0.44

a40.8
0.2

Fig. 3. A four-state MDP.

• q0 ∈ Q is the initial state;
• Act is the set of actions;
• Steps : Q→ 2Act×Σ(Q) is a transition probability func-

tion, where Σ(Q) is the set of all discrete probability
distributions over the set Q;

• L : Q → 2Π is a labeling function assigning to each
q ∈ Q possibly several elements of a set Π of properties.

The set of actions available at q ∈ Q is denoted A(q).
The function Steps is often represented as a matrix with
|Q| columns and |Q| ·

∑|Q|−1
i=0 |A(qi)| rows (c.f. Eqn. (1)

below). For each action a ∈ A(q), we denote the probability
of transitioning from state qi to state qj under the action
a as σqi

a (qj) and the corresponding probability distribution
function as σa. Each σa corresponds to one row in the matrix
representation of Steps.

To illustrate these definitions, a simple MDP is shown in
Fig. 3. The actions available at each state are A(q0) = {a1},
A(q1) = {a2, a3, a4} and A(q2) = A(q3) = {a1, a4}. The
labels are L(q0) = {Init}, L(q2) = {R2}, and L(q3) =
{R3}. The matrix representation of Steps is given by

Steps =

q0; a1

q1; a2

q1; a3

q1; a4

q2; a1

q2; a4

q3; a1

q3; a4



0 1 0 0
0 0.1 0.5 0.4
0 0 0.56 0.44

0.8 0.2 0 0
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


. (1)

B. Paths, Control Policies, and Probability Measures

A path ω through an MDP is a sequence of states ω =
q0q1 . . . qiqi+1 . . . where each transition is induced by a
choice of action at the current step i. We denote the set
of all finite paths by Pathfin and of infinite paths by Path.

A control policy is a function A : Pathfin → Act. That
is, for every finite path, a policy specifies the next action to
be applied. Under a policy A, an MDP becomes a discrete
time Markov chain, denoted DA. Let PathA ⊆ Path and
Pathfin

A ⊆ Pathfin denote the set of infinite and finite paths
that can be produced under A. Because there is a one-to-one
mapping between PathA and the set of paths of DA, the

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2010 IEEE International Conference on
Robotics and Automation. Received September 15, 2009.

1

1

0.5

0.4

q0 q0q1

q0q1q1

q0q1q3

q0q1q1q2

q0q1q3q3

1q0q1q2 q0q1q2q0

0.1

q0q1q1q1

q0q1q1q3

0.1

0.5

0.4

Fig. 4. Fragment of DTMCs DA1 for control policy A1.

Markov chain induces a probability measure over PathA as
follows.

First, define a measure Probfin
A over the set of finite paths

by setting the probability of ωfin ∈ Pathfin
A equal to the

product of the corresponding transition probabilities in DA.
Then, define C(ωfin) as the set of all (infinite) paths ω ∈
PathA with the prefix ωfin. The probability measure on the
smallest σ-algebra over PathA containing C(ωfin) for all
ωfin ⊂ Pathfin

A is the unique measure satisfying

ProbA(C(ωfin)) = Probfin
A (ωfin)∀ωfin ∈ Pathfin

A . (2)

To illustrate this measure, consider the MDP shown in Fig.
3 and the simple control policy defined by the mapping

A1(q0) = a1,

A1(· · · q1) = a2,

A1(· · · q2) = a4,

A1(· · · q3) = a1,

(3)

where · · · qi denotes any finite path terminating in qi. The
initial fragment of the resulting Markov chain is shown in
Fig. 4. From this fragment it is easy to see that the probability
of the finite path q0q1q2 is Probfin

A1
(q0q1q2) = 0.5. Under

A1, the set of all infinite paths with this prefix is

C(q0q1q2) = {q0q1q2, q0q1q2q0q1q3, q0q1q2q0q1,

q0q1q2q0q1q1q3, . . .},

where the sequence under the over-line is repeated infinitely.
According to (2), we have that

ProbA1(C(q0q1q2)) = Probfin
A1

(q0q1q2) = 0.5.

C. PCTL Control Generation and Model Checking

With the measure defined above, one can determine the
probability of satisfying a specification by calculating the
probability of the paths that satisfy it. We use PCTL [24] , a
probabilistic extension of CTL that includes a probabilistic
operator P . Formulas of PCTL are interpreted over states of
an MDP and are constructed by connecting properties from
a set Π using standard Boolean operators (including true, ¬
(“negation”), ∧ (“conjunction”), and→ (“implication”)), the
temporal operator U denoting “until”, and the probabilistic
operator P .

To solve Problem 1 we are interested only in finding
the control policy producing the maximum probability of
satisfying a given specification. Such PCTL formulas have
the form Pmax=?[φ1Uφ2] where φ1 and φ2 are arbitrary
formulas involving only Boolean operators. The control
generation and model checking algorithm takes such a PCTL
formula, φ, and an MDP,M, and returns both the maximum
probability over all possible policies that φ is satisfied and a
control policy that produces this probability.

The method proceeds as follows. The state space Q is
partitioned into three subsets. The first, Qyes, contains all
those states that satisfy the formula with probability 1 for
some control policy A. The second, Qno contains those states
for which the probability of satisfying the formula is 0 for
all control policies, while Q? contains the remaining states.

Let xq denote the probability of satisfying φ from state
q ∈ Q. For all q ∈ Qyes, we have xq = 1 and for all q ∈ Qno

we have xq = 0. The remaining values are determined by
the following linear optimization problem.

Minimize
∑

q∈Q?

xq subject to:

xq ≥
∑

q′∈Q?

σq
a(q′) . xq′ +

∑
q′∈Qyes

σq
a(q′)

for all q ∈ Q? and (a, σa) ∈ Steps(q).

Finding the unique solution to this problem yields the optimal
probabilities xq actions and their corresponding probability
distributions (a, σa). The desired control policy is thus the
function mapping each state to the action identified by the
solution to this linear optimization problem.

To illustrate the scheme, consider once again the exam-
ple MDP shown in Fig. 3. We choose the specification
Pmax=? [¬R3 U R2]. In words, this formula states that we
wish to find the policy that maximizes the probability of
reaching the region satisfying R2 without passing through
the region satisfying R3. State q2 satisfies the formula while
state q3 does not. Therefore, Qyes = {q2}, Qno = {q3},
and Q? = {q0, q1}. From this we have that x2 = 1 and
x3 = 0. The solution to the linear optimization problem can
be found to be x0 = x1 = 0.56 under the policy defined by
mapping the states q0 and q1 to the actions a1 and a3. Thus,
the maximum probability of satisfying φ starting from q0 is
0.56.

Note that the expressivity of PCTL is limited. Neverthe-
less, it is a useful specification language in the context of mo-
bile robotics in the stochastic setting. The combination of the
probabilistic operator with Boolean and temporal operators
allows for formulas capturing complex specifications(e.g., the
case studies in Sec. V). One of the features of this approach is
that the complexity of PCTL model checking is linear in the
length of the specification formula φ, defined as the number
of logical connectives and temporal operators plus the sizes
of the temporal operators, and polynomial in the size of the
states (|Q|). It is therefore feasible to apply the scheme to
realistic robotic scenarios. Finally, our implementation for
determining a control strategy as described above is based

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2010 IEEE International Conference on
Robotics and Automation. Received September 15, 2009.

on PRISM version 3.3 [25].

IV. CONSTRUCTION AND VALIDATION OF AN MDP
MODEL FOR ROBOT MOTION

A. Experimental Platform and Simulation Tool

To test the algorithms proposed in this paper, we built
the Robotic InDoor Environment (RIDE) shown in Fig. 1,
which consists of corridors of various widths and lengths
and intersections of several shapes and sizes. The walls
were constructed from pieces of extruded polystyrene with
a “jigsaw” pattern cut into each end so neighboring pieces
could be interlocked. The shape of the pieces and their non-
permanent fastening ability allow for an easy-to-assemble,
reconfigurable, and scalable environment. Each corridor and
intersection (identified by R1, . . . , R9 and I1, . . . , I5 in Fig.
2) is bounded by a line of RFID tags (white patches in Fig. 1
left and small ID numbers in Fig. 2) meant to trigger a tran-
sition event. The correct reading of such an event guarantees
that the robot knows precisely its current region at any time.
This, together with the satisfaction of the Markovian property
enforced as described in Sec. IV-B, allows us to model the
robot motion as an MDP, and therefore the control strategy
presented in Sec. III can be used for deployment. The mobile
platform is an iRobot iCreate fitted with a Hokoyu URG-
04LX laser range finder, APSX RW-210 RFID reader, and an
MSI Wind U100-420US netbook. Commands are provided
to the iCreate from Matlab using the iRobot Open Inteface
and the iCreate Matlab Toolbox [26]. The communications
between the sensors, netbook, and robot occur through the
use of USB cable connections.

The robot’s motion is determined by specifying a forward
velocity and angular velocity. At a given time, the robot
implements one of the following four controllers (motion
primitives) - FollowRoad, GoRight, GoLeft, and GoStraight.
Each of these controllers operates by obtaining data from
the laser scanner and calculating a “target angle.” The target
angle represents the desired heading of the robot in order to
execute the specified command, and this angle is translated
into a proportional control law for angular velocity. The
target angle in each case is found by utilizing two laser data
points at certain angles relative to the robot’s heading (dif-
ferent for each controller) and finding the midpoint between
them. The target angle is then defined as the angle between
the robot’s heading and a line connecting the midpoint and
the center of the robot. For each of these four controllers, the
forward velocity control specified is based on the distance
to the nearest obstacle in any direction. Therefore, as the
robot approaches an obstacle, it tends to slow down. A cap
is placed on the maximum velocity to keep the robot at
reasonable speeds in more open areas of the environment.
Each controller also provides for obstacle avoidance and
emergency actions.

To test the robot control strategies before experimental
trials and also to generate sample data necessary for the
construction of the MDP model of the robot motion (see
Sec. IV-B), we built a RIDE simulator (see Fig. 5). The
simulator was designed to resemble the actual experiment

very closely. Specifically, it emulates experimentally mea-
sured response times, sensing and control errors, and noise
levels and distributions in the laser scanner readings. The
configuration of the environment in the simulator is also
easily reconfigurable to capture changes in the topology of
the experimental environment.

B. Construction and validation of the MDP model

In this section we discuss the construction of an MDP
model (see Def. 1) for the motion of the robot in the
environment. In summary, the set of actions of the MDP
is the set of controllers (motion primitives) FollowRoad,
GoRight, GoLeft, and GoStraight. Each state of the MDP
is a collection of regions such that the Markovian property
is satisfied (i.e., the result of an action at a state depends
only on the current state). The set of actions available at a
state is the set of controllers available at the last region in
the set of regions corresponding to the state. More details on
the construction of the MDP are given below.

The environment (see Fig. 2) consists of nine roads, within
which only the controller FollowRoad is available. There
are also two 4-way and three 3-way intersections in the
environment. The controllers available at 4-way intersections
are GoRight, GoLeft, and GoStraight, while at the 3-way
intersections only GoRight and GoLeft controllers are avail-
able. Through extensive experimental trials, we concluded
that, by grouping two adjacent regions (a road and an
intersection) in a state, we achieve the Markovian property,
for all pairs of adjacent regions. For example, the connecting
regions of R1-I2 represent one state of the MDP, which has
transitions to states I2-R3, I2-R4, and I2-R6 enabled by
actions GoLeft, GoRight, and GoStraight. When designing
the robot controllers, we also made sure that the robot never
gets stuck in a region, i.e., the robot can only spend a finite
amount of time in each region. Thus, the states are of the
form intersection-road and road-intersection (states such as
Ii-Ii or Ri-Ri do not exist). The resulting MDP for the
environment shown in Fig. 2 has 34 states. The set of actions
available at a state of the MDP is the set of controllers
available at the second region of the state. For example, when
in state R1-I2 only those actions from region I2 are allowed.

As already outlined, since extensive experimentation in
RIDE is time consuming, we used the RIDE Simulator to
compute the transition probabilities associated to each action.
We performed a total of 500 simulations for each controller
available in each MDP state. In each trial, the robot was
initialized at the beginning of the first region of each state. If
this region was a road, then the FollowRoad controller was
applied until the system transitioned to the second region
of the state. If the first region was an intersection then the
controller most likely to transition the robot to the secon
region was applied. Once the second region was reached,
one of the allowed actions was applied and the resulting
transition was recorded. The results were then compiled into
the transition probabilities. The set of properties of the MDP
is Π = {S,R,U,M,D}, where S = Safe, R = Relatively safe,
U = Unsafe, M = Medical supply, and D = Destination. Each

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2010 IEEE International Conference on
Robotics and Automation. Received September 15, 2009.

(a) (b) (c)
Fig. 5. Snapshots from the RIDE simulator used for the construction of the MDP model. The robot is represented as a white disk. The arrow inside the
white disk shows the robot’s heading. The inner circle around the robot represents the “emergency” radius (if there is an obstacle within this zone, the
emergency controller is used). The outer circle represents the radius within which the forward speed of the robot varies with the distance to the nearest
obstacle. If there are no obstacles in this area, the robot moves at maximum speed. The red dots are the laser readings used to define the target angle.
(a) The robot centers itself on a stretch of road by using FollowRoad; (b) The robot applies GoRight in an intersection but fails to turn right because the
laser readings do not properly identify the road on the right; (c) The robot applies GoRight in the same intersection and successfully turns right because
the laser readings fall inside the road.

state of the MDP is mapped to the set of properties that are
satisfied at the second region of the state. The satisfaction of
properties by the regions of the environment is given in Fig.
2.

To make sure that the MDP obtained through this extensive
simulation procedure was a good model for the actual motion
of the robot in the experimental platform, we randomly
selected four transition probabilities and experimentally de-
termined the transition probabilities. We then compared the
simulated-based and experimental-based probabilities using
either the Fisher exact test [27] when only a few experimental
trials were available or the Chi-square test for homogeneity if
there were a large number of experimental trials. These tests
confirmed that the experimental data of four randomly se-
lected transition probabilities were not significantly different
from simulation results with a minimum certainty of 0.95.

V. CASE STUDIES

Consider the RIDE configuration shown in Figs. 1 and 2
and the following two motion specifications:

Specification 1: “Reach Destination by driving through
either only Safe regions or through Relatively safe regions
only if Medical Supply is available at such regions.”

Specification 2: “Reach Destination by driving through
Safe or Relatively safe regions only.”

Specifications 1 and 2 translate naturally to PCTL formu-
las φ1 and φ2, respectively, where

φ1 : Pmax=? [(S ∨ (R ∧M))U D] (4)
φ2 : Pmax=? [(S ∨ R)U D] (5)

Assuming that the robot is initially at R1, we use the
computational framework described in this paper to find

control strategies maximizing the probabilities of satisfying
the above specifications. The maximum probabilities for
Specifications 1 and 2 are 0.227 and 0.674, respectively.
To confirm these predicted probabilities, we performed 500
simulation and 35 experimental runs for each of the op-
timal control strategies. The simulations showed that the
probabilities of satisfying φ1 and φ2 were 0.260 and 0.642,
respectively. From the experimental trials, we inferred that
the probabilities of satisfying φ1 and φ2 were 0.229 and
0.629, respectively. By using the chi-square and Fisher’s
exact statistical tests, we concluded that the frequency of
trials satisfying the specifications in the experiment matched
the simulation data with a minimum certainty of 0.95.

Snapshots from a movie showing a motion of the robot
produced by the control strategy maximizing the probability
of satisfying Specification 2 is shown in Fig. 6. With refer-
ence to the notation defined in Fig. 2, it can be seen that
the robot follows the route R1I2R3I1R5I4R8I5R9. After
this (motion not shown), the robot keeps moving in circles
by following R9I4R8I5. It can be easily seen that this run
satisfies Specification 2 (formula φ2), because S or R are true
until D is satisfied. This movie, together with other movies
of experimental trials obtained by applying the above control
strategies are available for download from [21].

VI. CONCLUSION

We presented a computational framework for automatic
deployment of a mobile robot from a temporal logic specifi-
cation about properties of interest satisfied at the regions of a
partitioned environment. We modeled the motion of the robot
as an MDP, and mapped the robot deployment problem to the
problem of generating an MDP control strategy maximizing

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2010 IEEE International Conference on
Robotics and Automation. Received September 15, 2009.

Fig. 6. Snapshots (to be read left-to-right and top-to-bottom) from a movie showing a robot motion produced by applying the control strategy maximizing
the probability of satisfying Specification 2 (Eqn. (5)).

the probability of satisfying a probabilistic Computation Tree
Logic (PCTL) formula. For the latter, we used a modified
pCTL model checking algorithm. We illustrate the method
with experimental results in our Robotic InDoor Environment
(RIDE).

ACKNOWLEDGEMENTS

The authors would like to thank K. Ryan and B. Chang-
Yun Hsu from Boston University for their help with the
development of the RIDE Simulator.

REFERENCES

[1] J. C. Latombe, Robot Motion Planning. Kluger Academic Pub., 1991.
[2] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,

L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. Boston, MA: MIT Press, 2005.

[3] S. M. LaValle, Planning algorithms. Cambridge, UK: Cambridge
University Press, 2006.

[4] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multiagent motion tasks based on LTL specifications,” in 43rd IEEE
Conference on Decision and Control, December 2004.

[5] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot
motion planning: A timed automata approach,” in Proceedings of the
2004 IEEE International Conference on Robotics and Automation,
New Orleans, LA, April 2004, pp. 4417–4422.

[6] H. K. Gazit, G. Fainekos, and G. J. Pappas, “Where’s waldo? sensor-
based temporal logic motion planning,” in IEEE Conference on
Robotics and Automation, Rome, Italy, 2007.

[7] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers
for path planning: a temporal logic approach,” in Proceedings of
the 2005 IEEE Conference on Decision and Control, Seville, Spain,
December 2005.

[8] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[9] E. M. M. Clarke, D. Peled, and O. Grumberg, Model checking. MIT
Press, 1999.

[10] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoreti-
cal Computer Science: Formal Models and Semantics, J. van Leeuwen,
Ed. North-Holland Pub. Co./MIT Press, 1990, vol. B, pp. 995–1072.

[11] N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive(1) designs,”
in VMCAI, Charleston, SC, 2006, pp. 364–380.

[12] M.Kloetzer and C. Belta, “Dealing with non-determinism in symbolic
control,” in Hybrid Systems: Computation and Control: 11th Interna-
tional Workshop, ser. Lecture Notes in Computer Science, M. Egerstedt
and B. Mishra, Eds. Springer Berlin / Heidelberg, 2008, pp. 287–300.

[13] J. Pineau and S. Thrun, “High-level robot behavior control using
POMDPs,” in AAAI Workshop notes, Menlo Park, CA, 2002.

[14] D. Bertsekas, Dynamic programming and optimal control. Athena
Scientific, 1995, vol. 1.

[15] J. Pineau, G. Gordon, and S. Thrun, “Anytime point-based approxima-
tions for large POMDPs,” Journal of Artificial Intelligence Research,
vol. 27, pp. 335–380, 2006.

[16] N. L. Zhang and W. Zhang, “Speeding up the convergence of value
iteration in partially observable Markov decision processes,” Journal
of Artificial Intelligence Research, vol. 14, pp. 29–51, 2001.

[17] C. Baier, “On algorithmic verification methods for probabilistic sys-
tems,” Ph.D. dissertation, 1998.

[18] L. D. Alfaro, “Model checking of probabilistic and nondeterministic
systems.” Springer-Verlag, 1995, pp. 499–513.

[19] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-
checking algorithms for continuous-time markov chains,” IEEE Trans.
Softw. Eng., vol. 29, no. 6.

[20] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic symbolic
model checking with PRISM: A hybrid approach,” International
Journal on Software Tools for Technology Transfer (STTT), vol. 6,
no. 2, pp. 128–142, 2004.

[21] “Robotic indoor environment.” [Online]. Available: hy-
ness.bu.edu/ride/

[22] C. Papadimitriou and J. Tsitsiklis, “The complexity of markov decision
processes,” Mathematics of Operations Research, vol. 12, no. 3, pp.
441–450, 1987.

[23] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, pp. 102–111, 1994.

[24] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker, Mathematical
Techniques for Analyzing Concurrent and Probabilistic Systems, P.
Panangaden and F. van Breugel (eds.), ser. CRM Monograph Series.
American Mathematical Society, 2004, vol. 23.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2010 IEEE International Conference on
Robotics and Automation. Received September 15, 2009.

[25] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: A
tool for automatic verification of probabilistic systems,” in Proc. 12th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’06), ser. LNCS, H. Hermanns and
J. Palsberg, Eds., vol. 3920. Springer, 2006, pp. 441–444.

[26] J. M. Esposito and O. Barton, “Matlab toolbox for the irobot create,”
www.usna.edu/Users/weapsys/esposito/roomba.matlab/, 2008.

[27] A. Trujillo-Ortiz, R. Hernandez-Walls, A. Castro-Perez,
L. Rodriguez-Cardozo, N. Ramos-Delgado, and R. Garcia-
Sanchez., “Fisherextest:fisher’s exact probability test.” WWW
document, 2004, a MATLAB file. [Online]. Available:
http://www.mathworks.com/matlabcentral/

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2010 IEEE International Conference on
Robotics and Automation. Received September 15, 2009.

