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Abstract The specific molecular events that underlie the

age-related loss of cognitive function are poorly understood.

Although not experimentally substantiated, age-dependent

neuronal loss has long been considered central to age-related

cognitive decline. More recently, age-related changes in

brain white matter have taken precedence in explaining the

steady decline in cognitive domains seen in non-diseased

elderly. Characteristic alterations in the ultrastructure of

myelin coupled with evidence of inflammatory processes

present in the white matter of several different species

suggest that specific molecular events within brain white

matter may better explain observed pathological changes

and cognitive deficits. This review focuses on recent

evidence highlighting the importance of white matter in

deciphering the course of ‘‘normal’’ brain aging.
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Abbreviations

ARCD Age-related cognitive decline

AD Alzheimer’s disease

PD Parkinson’s disease

MRI Magnetic resonance imaging

FA Fractional anisotropy

R2 Transverse relaxation rates

CNS Central nervous system

NFT Neurofibrillary tangle

iNOS Inducible nitric oxide synthase

MHC Major histocompatibility complex

CAOs Complement activated oligodendrocytes

C3aR Complement C3a receptor

PNS Peripheral nervous system

GFAP Glial acidic fibrillary protein

ACT a1-Antichymotrypsin

MBP Myelin basic protein

PLP Proteolipid protein

MAG Myelin-associated glycoprotein

CNP 2’,3’ Cyclic nucleotide phosphodiesterase

MOSP Myelin oligodendrocyte specific protein

EAE Experimental allergic encephalomyelitis

MS Multiple sclerosis

Age-related cognitive decline (ARCD)

Severe impairment of memory and executive function,

otherwise known as dementia, can be the result of a

number of pathologic processes, including several neuro-

degenerative diseases, the most prevalent of which is

Alzheimer’s disease (AD). In addition, even in the absence

of a clear pathologic process, normal healthy adults also

experience a steady decline in cognitive ability whether

measured longitudinally [64] or cross-sectionally [83, 90].

This age-related cognitive decline (ARCD) is not evenly

distributed amongst cognitive tasks, such that vocabulary

and tasks requiring semantic knowledge as well as auto-

biographical and emotional memory remain relatively

intact while processing speed, working memory, and

learning decline. These studies are fraught with issues of

individual variability, by necessity are correlational and

Special issue in honor of Naren Banik.

J. D. Hinman � C. R. Abraham (&)

Departments of Biochemistry and Medicine, Boston University

School of Medicine, 715 Albany Street, K620, Boston, MA

02118, USA

e-mail: cabraham@bu.edu

123

Neurochem Res (2007) 32:2023–2031

DOI 10.1007/s11064-007-9341-x



potentially confounded by the considerable incidence of

age-related diseases known to adversely affect cognitive

performance [33]. Yet somewhat remarkably, a consistent

decline in cognitive ability within certain domains is

maintained from population to population [4, 11, 12, 17,

19, 64, 90].

Although the pathophysiology behind the major causes

of dementia is comparatively well-understood, the biology

underlying ARCD is only recently being elucidated. In

most general terms, ARCD has been attributed to changes

in prefrontal cortex and the integrity of anterior white

matter circuits leading to non-selective recruitment of

irrelevant brain regions in impaired individuals [33, 50].

Our group, as part of a larger program project, has focused

on understanding the molecular changes underlying

ARCD, using the rhesus monkey as a model, with the most

intriguing findings being those changes present in brain

white matter. It is our belief that age-related changes in

white matter have not received adequate attention in the

context of playing a potentially causative role in cognitive

decline and hence, the discussion to follow will focus on

the importance of changes in brain white matter, beginning

with those at the gross level and culminating with those

occurring at the molecular level, as key events in under-

standing ARCD.

Imaging age-related changes in brain volume

Magnetic resonance imaging (MRI) has provided a use-

ful non-invasive tool for analyzing gross age-related

changes in brain volume. In aged human subjects, sev-

eral studies demonstrate a decline in the volume of brain

white matter, particularly in frontal lobe areas [8, 30, 61,

76]. Recent advances in MRI technology allow for more

accurate volumetric measurements by better distinguish-

ing between gray and white matter as well as capitaliz-

ing on the unique features of compact white matter

regions. The use of diffusion tensor MRI to measure

fractional anisotropy (FA), the degree to which water

molecules in a tissue are allowed to diffuse, is particu-

larly useful in assessment of white matter tract integrity,

as increased anisotropy correlates with markers of mye-

lination [45, 101]. In healthy elderly adults, FA is re-

duced compared to young, particularly in the anterior or

frontal regions of the brain including the corpus callo-

sum [32, 61, 79, 80]. In a more elegant analysis, a group

of behaviorally tested monkeys showing impaired exec-

utive function with age also show significant reductions

in FA in the anterior corpus callosum, the superior

longitudinal fasciculus II and the cingulum bundle; all

corticocortical pathways vital for executive function [52].

Using a different methodology, by transformation of the

T2 relaxation times into transverse relaxation rates (R2),

a more sensitive measure of brain myelination differ-

ences is generated [25] such that myelination increases

R2 while myelin breakdown decreases R2. In a large

population (n = 252) of healthy adults ranging from 19

to 82 years of age, frontal lobe white matter R2 shows a

quadratic regression relationship with age, indicating that

white matter volume increases until the fifth decade of

life, after which it declines steadily [7, 8], implying that

myelination is highly sensitive to time-dependent chan-

ges. These age-dependent decreases in white matter

volume generally occur without significant change in

gray matter volume [30].

The aged neuron: lost or diseased?

The importance of age-dependent neuronal loss is obvious

and its potential role in ARCD should also be evident. As a

result, many early studies, particularly prior to the advent

of MRI, focused on neuronal counts and morphology

changes, for the most part ignoring changes in glial cell

number or morphology [13, 20, 35]. However, with the

advent of precise stereologic methodology [98] and better

preservation of brain tissue, studies reporting no loss of

neurons with age began to appear [5, 16, 96]. Newer

methods were designed to account for the fact that young

brains tend to shrink more during preparation thus leading

to a conclusion of greater neuronal density in young sub-

jects. Accounting for the difference in brain shrinkage,

volumetric estimates of gray and white matter in human

post-mortem brain tissue suggest no significant loss of

neurons with age and a significant age-related loss of up to

11% in white matter [31]. This paradigm shift was sup-

ported in part by work in the aged rhesus monkey, indi-

cating changes in the myelinated axons of white matter

might be more important to aging [68, 71]. Indeed, detailed

counts of neurons from primary visual cortex (Brodmann

area 17) and prefrontal cortex (area 46) in the monkey

demonstrate there is no change in neuron number with age

(Fig. 1) [67, 70]. Furthermore, in the hippocampus, the

center of working memory, the number of CA1 pyramidal

cell neurons remains stable across age [99]. One recent

report indicated that in a cognitively relevant location in

the frontal cortex (area 8A), focal neuronal death occurs

with age [91], however, this report has yet to be confirmed.

Overall, simple age-related neuronal loss is not an adequate

suspect in explaining ARCD [26].

On the whole, other than in Layer I of the cortex, where

neurons lose apical dendritic branches and occasionally

synapses [62, 63], neuronal number and structure are lar-

gely unaffected by age. It is important to note that in

prefrontal cortex area 46 of aged rhesus monkeys, the

2024 Neurochem Res (2007) 32:2023–2031

123



observed dendritic and synaptic loss correlate with the

degree of cognitive impairment [74]. Furthermore, in the

monkey, neurons do show age-related changes in their

expression of neurotransmitters and receptors [78]. Recent

microarray analysis of gene expression in area 46 in aged

monkeys, indicates widespread transcriptional changes

occur in neurons, including the degree to which they are

susceptible to apoptosis [14]. Thus, while overall neuronal

number may not change with age, various alterations in the

health of neurons should be expected and cannot be dis-

counted in any discussion of age-related changes in the

central nervous system (CNS).

The contribution of amyloid burden

In humans, ~50% of those over the age of 85 develop

profound memory impairment as a result of AD pathology,

including the formation of senile amyloid plaques and

neurofibrillary tangles (NFTs) [18]. The high incidence of

AD in humans coupled with the virtual absence of AD-like

pathology in wild-type laboratory animals such as the

mouse, rat, and rhesus monkey, make it difficult to discern

which age-related changes are associated with ARCD

versus AD. While amyloid plaques can be found in rhesus

monkeys, they are generally of the diffuse, non-pathogenic

form and their distribution is markedly different from that

seen in AD [34, 92]. Furthermore, plaque density in

behaviorally characterized monkeys does not correlate with

cognitive deficits [15, 89]. Additionally, NFTs are not

typically found in aged monkeys and the degree of age-

related cognitive impairment is not consistent with AD

[47]. For these reasons, AD-like phenomena have not been

a focus of understanding mechanisms of ARCD and can be

considered a disparate pathologic process.

Evidence of age-related white matter inflammation

In the monkey, the number of activated microglial cells,

identified by their up-regulation of the major histocom-

patibility complex (MHC) class II proteins, increases dra-

matically with age specifically in regions of brain white

matter and the increase correlates with cognitive impair-

ment [87]. Similar increases in activated microglia have

been noted in mice [56]. These phagocytic cells are known

to produce a multitude of pro-inflammatory molecules [57],

among them inducible nitric oxide synthase (iNOS). The

resulting increase in nitric oxide presumably accounts for

the concomitant increase in detection of nitrotyrosine res-

idues in the white matter of aged monkeys [87]. Activated

microglia are known to be active and phagocytic during

phases of demyelination in the Long Evans shaker rat

[103], illustrating the consequences of an increasing

number of these cells with age. In the optic nerve of aged

monkeys, increased numbers of microglia and hypertro-

phied astrocytes can be detected under the electron

microscope, and the microglia cells appear to have

phagocytosed myelin debris [81].

Interestingly, recent work in the rhesus monkey indi-

cates that early components of the complement cascade

(C3 and C4) can be found covalently bound to the myelin

membrane in both young and old animals (J. A. Duce et al.

2006, submitted). This binding is associated with a sig-

nificant increase in aged animals in the number of com-

plement activated oligodendrocytes (CAOs), a pathological

hallmark of white matter inflammation seen in multiple

sclerosis (MS) [84] and other neurodegenerative diseases

[102]. Complement component 3a (C3a) is a potent che-

motactic factor and presumably as a result of robust

expression of the C3a receptor (C3aR), activated microglia

can be found in close association with these CAOs and in

mice lacking C3aR expression, white matter inflammation

is attenuated [10]. Thus, fixation of complement compo-

nents to myelin may be a critical inflammatory trigger in

the aging brain.

In addition to the activation of microglia, reactive astr-

ocytosis can be found in white matter regions throughout

the aged monkey brain, evidenced by an increased cell size

of glial fibrillary acidic protein (GFAP)-positive cells [88].

An increase in GFAP mRNA and protein expression can

also be detected in the brains of aged humans and rodents,

though the total number of astrocytes does not change

appreciably [27, 59]. Reactive astrocytes, like microglia,

are known to produce abundant pro-inflammatory mole-

cules including various proteases and inhibitors [22]. Of

particular interest is the protease inhibitor a1-antichymot-

rypsin (ACT), a serine protease inhibitor and acute phase

protein. In AD, ACT expression is highly up-regulated at

the RNA level [2] with reactive astrocytes being the major
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Fig. 1 Lack of evidence for neuronal loss in the aged rhesus monkey.

Comparative analysis of mean neuronal counts from 250 lm strips of

primary visual cortex (area 17) and prefrontal cortex (area 46) in

monkeys of varying ages reveals no significant change in total

neuronal number per unit volume. Adapted from Peters et al. [67, 70]
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source of ACT in the brain [1]. Microarray analysis of

brain white matter from young and old rhesus monkeys

reveals that ACT is also up-regulated during normal aging

(Duce and Abraham, unpublished results).

Myelin changes in the aged brain

In part, based on the volume of evidence from gross

pathology, imaging studies, and histologic assessments

implicating changes in white matter as central to the

mechanism of ARCD, a number of studies focus on

microscopic examination of aged myelin. In the peripheral

nervous system (PNS) of aged Fischer 344 rats, no change

in the number of myelinated fibers was observed, though

the ultrastructure of the myelin sheath, evidenced by bal-

looning and infolding, was disrupted with age [46]. Using

histologic stains for myelin content [41], demonstrated

diffuse myelin pallor throughout the human brain, partic-

ularly in the intracortical fibers thought to be responsible

for high-level cognitive function. Tang et al. [95] and

Pakkenberg and Gundersen [62] have both demonstrated a

loss of white matter from the human brain with age, of up

to 15%, as well as a decrease in the length of myelinated

fibers. In a population of Danish individuals, the total

length of myelinated fibers was seen to decrease by 10%

per decade and 45% across the lifetime [54]. This decrease

in fiber length indicates a much greater degree of myelin

loss than indicated by studies of white matter volume.

Disruption of the myelin sheath, either by activated pro-

inflammatory cells or by inappropriate protein maintenance

within the oligodendrocyte (or a combination of both), has

been described in aging rat [46, 93], monkey [66, 86], and

human [3] brains. Four distinct phenomena are known to

occur as myelin ages and these have been best described at

the ultrastructural level as occurring throughout the CNS of

the aged monkey (Fig. 2) [65]. First, localized splitting of

the major denseline to accommodate dense cytoplasm from

the oligodendrocyte can be seen in some sheaths (A).

Second, myelin sheaths can balloon out, separating the

intraperiod line, which then surrounds a fluid-filled space

(B). Some thick myelin sheaths demonstrate a double

sheath (C), with one compact set of lamellae surrounded by

another. Finally, in both primates and rodents, so-called

redundant myelin sheaths have been described [65, 69, 73]

(D). These sheaths have far too many lamellae in propor-

tion to the caliber of the axon. The significance of these

ultrastructural changes on the function of the axon remains

unclear, although the changes correlate with deficits in

cognitive function in both primary visual cortex [69] and

prefrontal cortex [72], suggesting that the disruption may

interrupt normal axonal conduction and thus impair

cognition.

Recent studies have suggested that these age-related

changes in myelin membranes alter axonal protein orga-

nization at or near the node of Ranvier. In both aged Fi-

scher 344 rats and rhesus monkeys, voltage-gated

potassium channels of the Shaker family (specifically

Kv1.2), normally localized to the juxtaparanode beneath

compact myelin, are seen to mislocalize into the paranodal

region with age [37]. This reorganization occurs together

with the presence of thick myelin sheaths with excessive

paranodal loops of myelin. It is not clear from this study

whether these changes are detrimental or restorative to

axonal conduction, as the functionality of Kv1 channels in

myelin is not well characterized. However it does dem-

onstrate the ability of myelin to have retrograde effects on

neuronal health.

The role of inappropriate protein degradation

Another common consequence of brain aging is the in-

creased detection of ubiquitin. Particularly notable in age-

related neurodegenerative diseases, ubiquitin becomes

associated with the NFTof AD, the Lewy body of Parkin-

son’s disease (PD), the inclusions of amyotrophic lateral

sclerosis, etc. [51]. In fact, one of the genes associated with

Fig. 2 Age-related changes in myelin structure. There are four

important features of age-related change in myelin ultrastructure [72].

These include, localized splitting of the MDL to accommodate dense

cytoplasm of the oligodendrocyte (A), ballooning of myelin sheaths at

the IPL forming a fluid-filled space (B), double myelin sheaths (C),

and so-called ‘‘redundant’’ myelin sheaths (D). Adapted from Peters

et al. [69, 73] and Peters and Sethares [72]
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autosomal recessive juvenile PD, parkin, codes for an en-

zyme in the ubiquitin pathway [44, 85]. Ubiquitin, a small,

highly conserved 8 kDa protein modifier is attached to

proteins destined for degradation by the proteasomal

pathway (reviewed by Fang and Weissman [23]). Likewise,

ubiquitin can be removed by the action of deubiquitinases

and the addition of ubiquitin may serve multiple cellular

functions besides protein degradation [29].

In the aging brain, immunohistochemical staining for

ubiquitin reveals localization to myelin and lysosome-re-

lated bodies in neurons [51]. Using the electron microscope

together with immunolabeling, age-related ubiquitin

deposits in humans and dogs can be seen within focal

enlargements of myelin sheaths [55]. Likewise [21], report

dense ubiquitin-positive inclusions within glial cells and

ubiquitin staining in swollen myelin sheaths as well as

documenting significantly more ubiquitin immunoreactiv-

ity in white matter than in gray. In aged dogs, white matter

degeneration is marked by deposits of non-degraded

ubiquitin-positive conjugates in myelin [24]. Interestingly,

though ubiquitin conjugation serves primarily to target

proteins for degradation, ubiquitin-protein conjugates are

consistently found in the aged brain and in neurodegener-

ative diseases, suggesting a failure of proteasomal function

with age, leaving large non-degraded, and potentially non-

functional protein complexes to accumulate. The toxicity

of these complexes may be particularly relevant in white

matter and myelin, where the normal rate of protein turn-

over is already considerably lower than that seen in whole

brain [48].

Age-related changes in myelin biochemistry

The ultimate effect of age-related increases in white matter

inflammation and myelin disruption must trickle down to

observable alterations in myelin lipids and protein

expression. On this topic, a number of reports spanning

several decades exist, demonstrating evidence of both age-

related increases and decreases in various proteins and

lipids that comprise myelin. At this time, the lack of well-

controlled studies prevents a thorough discussion of age-

related changes in myelin lipids. It is essential to add,

however that sulfatide-null mice demonstrate an increasing

prevalence of redundant, uncompacted or degenerating

myelin as well as alterations in nodal and paranodal ion

channel localization as they age [38, 53]. These changes

are very similar to changes observed in aged rhesus mon-

key myelin ultrastructure and axonal reorganization. There

has been no focused analysis of changes in CNS sulfatide

over time, though in a global analysis of myelin lipids

sulfatide was among the myelin components that were

decreased in frontal and temporal white matter regions in a

cohort of human brains aged 20-100 [94].

With respect to total amounts of myelin, measured either

with histologic stains or by various purification methods,

there is a consensus of significant myelin loss over time [9,

86, 100]. A majority of these older studies indicate no

change in the individual protein composition of myelin but

were carried out prior to clarification of the myelin prote-

ome [9, 100]. Myelin basic protein (MBP) has shown to be

decreased in elderly with no cognitive impairment (NCI)

[6, 97] as well as in AD [77], though in a study of

behaviorally characterized rhesus monkeys, MBP, prote-

olipid protein (PLP), and myelin-associated glycoprotein

(MAG) were unchanged while the levels of myelin oligo-

dendrocyte specific protein (MOSP) and 2¢’3’-cyclic

nucleotide phosphodiesterase (CNP) were increased with

age [86].

In addition to examining the age-related changes in the

total amount of myelin proteins, exploring what post-

translational modifications occur to these proteins with age

is equally important. As an example, MBP isolated from

MS human brain and demyelinating mouse models indicate

that multiple post-translational modifications, including

deimination (resulting in citrullinated proteins) and

dephosphorylation, may be essential to altering myelin

structure and function [42] and are commonly observed in

age-related neurodegenerative disease [39, 58]. In the case

of CNP, there is evidence from a cohort of aged rhesus

monkeys that CNP accumulation is related to the increased

detection of ubiquitinated species of CNP in myelin from

aged animals (Hinman, Chen, Hollander, and Abraham in

preparation). Additionally, both CNP and MOSP showed

evidence of limited proteolysis, which in the case of CNP

was attributable to an age-dependent increase in activated

calpain-1 [36, 86]. This calpain-mediated limited proteol-

ysis of CNP can also be observed in vitro by incubation of

white matter homogenates from a young monkey prepared

in the absence of protease inhibitors. The degradation is

enhanced by the addition of 500 lM calcium and can be

inhibited by a specific calpain inhibitor (Fig. 3a). Inter-

estingly, the appearance of the major 40 kDa proteolytic

fragment of CNP appears to correlate with age in a limited

sample of aged rhesus monkeys (Fig. 3b). Already impli-

cated in myelin breakdown in MS and its animal model,

experimental allergic encephalomyelitis (EAE) [82], the

exact proteolytic mechanism of calpain in the degradation

of myelin proteins has yet to be determined, however its

role in limited proteolysis is likely essential to under-

standing myelin breakdown. Further work is necessary to

understand the potential significance of limited proteolytic

fragments of CNP and other myelin proteins such as

MOSP.
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The apparent paradox of simultaneous protein accumu-

lation and increased proteolysis can be explained by con-

sidering the relationship between failed proteasomal

degradation and the recruitment of alternative proteolytic

mechanisms such as calpain. This relationship has been

described in the context of P-glycoprotein and p107 such

that both ubiquitination and calpain activation are neces-

sary for the degradation of the target molecules [40, 60]. In

the nervous system, the parkin gene codes for a ubiquitin

ligase which appears to induce calpain-mediated degrada-

tion of alpha-synuclein suggesting further that cytotoxic

states such as alpha-synuclein accumulation is a stimulus

for cooperation between ubiquitin and calpain-mediated

proteolysis [43].

Changes such as those described in the rhesus monkey,

occurring in critical lower abundance myelin proteins (e.g.,

CNP and MOSP), may be triggered by the activation of

inflammatory processes and underlie myelin disruption.

Interestingly, mice overexpressing CNP show evidence of

redundant myelin and intramyelinic vacuoles similar to

those seen in aged monkeys [28], while mice lacking CNP

show an age-dependent reactive gliosis and disorganized

paranodal profiles [49, 75], features also noted in aged

monkeys. While the precise role of CNP in myelin has yet

to be determined, these similarities argue strongly for a

prominent role for CNP (and the microtubule cytoskeleton)

in the long-term maintenance of the myelin membrane.

Summary

The study of ARCD has matured recently, moving from a

focus on age-related neuronal loss as being directly caus-

ative, to a greater understanding of the contribution of

molecular changes in brain white matter. In recent years,

research of this nature has shifted focus from characteriz-

ing gross or morphologic changes with age to under-

standing what molecular events underlie age-related white

matter inflammation and myelin membrane disruption.

Considering the abundance of evidence from both humans,

rodents, as well as the monkey, declines in white matter

integrity appear at least as important as neuronal changes in

understanding ARCD. In particular, age-related changes in

myelin protein degradation and the recruitment of

Fig. 3 Age-dependent limited proteolysis of CNP by calpain-1.

Incubation of TX-100 soluble homogenate from a 9-year-old (young)

monkey for 24 h at 37�C in the presence of TBS (lane 3) results in

the same pattern of CNP proteolysis as that seen in a 26-year-old

monkey at time zero (lane 13 from left; arrow indicates major

40 kDa CNP fragment). This pattern can be induced at time zero by

the addition of 500 lM Ca++ (lane 4) and abolished by the addition

of 5 mM EGTA (lanes 7–9) or 0.35 U of calpastatin (lanes 10–12)

(A). Long exposures of immunoblots for CNP in TX-100 soluble

fractions of temporal lobe subcortical white matter reveals the

presence of a limited proteolytic fragment of CNP migrating at

~40 kDa. Quantitative assessment of the level of this major 40 kDa

fragment observed in aged monkeys demonstrates a statistically

significant correlation with age throughout brain white matter (B)
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alternative mechanisms of proteolysis appear as principal

events in the brain aging process, occurring in advance of

age-related changes in neurons. This evidence should help

to guide future research in brain aging and influence

potential interventional targets.
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