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Abstract
The Alzheimer Disease Genetics Consortium (ADGC) performed a genome-wide association
study (GWAS) of late-onset Alzheimer disease (LOAD) using a 3 stage design consisting of a
discovery stage (Stage 1) and two replication stages (Stages 2 and 3). Both joint and meta-analysis
analysis approaches were used. We obtained genome-wide significant results at MS4A4A
[rs4938933; Stages 1+2, meta-analysis (PM) = 1.7 × 10−9, joint analysis (PJ) = 1.7 × 10−9; Stages
1–3, PM = 8.2 × 10−12], CD2AP (rs9349407; Stages 1–3, PM = 8.6 × 10−9), EPHA1 (rs11767557;
Stages 1–3 PM = 6.0 × 10−10), and CD33 (rs3865444; Stages 1–3, PM = 1.6 × 10−9). We
confirmed that CR1 (rs6701713; PM = 4.6×10−10, PJ = 5.2×10−11), CLU (rs1532278; PM = 8.3 ×
10−8, PJ = 1.9×10−8), BIN1 (rs7561528; PM = 4.0×10−14; PJ = 5.2×10−14), and PICALM
(rs561655; PM = 7.0 × 10−11, PJ = 1.0×10−10) but not EXOC3L2 are LOAD risk loci1–3.

Alzheimer Disease (AD) is a neurodegenerative disorder affecting more than 13% of
individuals aged 65 years and older and 30%–50% aged 80 years and older4–5. Early work
identified mutations in APP, PSEN1, and PSEN2 that cause early-onset autosomal dominant
AD6–9 and variants in APOE that affect LOAD susceptibility10. A recent GWAS identified
CR1, CLU, PICALM, and BIN1 as LOAD susceptibility loci1–3. However, because LOAD
heritability estimates are high (h2 ≈ 60–80%)11, much of the genetic contribution remains
unknown.

To identify genetic variants associated with risk for AD, the ADGC assembled a discovery
dataset [Stage 1; 8,309 LOAD cases, 7,366 cognitively normal controls (CNEs)] using data
from eight cohorts and a ninth newly assembled cohort from the 29 NIA-funded Alzheimer
Disease Centers (ADCs) (Supplementary Tables 1 and 2, Supplementary Note) with data
coordinated by the National Alzheimer Coordinating Center (NACC) and samples
coordinated by the National Cell Repository for Alzheimer Disease (NCRAD). For the Stage
2 replication, we used four additional datasets and additional samples from the ADCs (3,531

Naj et al. Page 6

Nat Genet. Author manuscript; available in PMC 2011 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



LOAD cases, 3,565 CNEs). The Stage 3 replication used the results of association analyses
provided by three other consortia (Hollingworth et al.12; 7,650 LOAD cases, 25,839 mixed-
age controls). For Stages 1 and 2, we used both a meta-analysis (M) approach that integrates
results from association analyses of individual datasets; and a joint analysis (J) approach
where genotype data from each study are pooled. The latter method has improved power
over meta-analysis in the absence of between-study heterogeneity13 and more direct
correction for confounding sampling bias14. We were limited to meta-analysis for Stage 3.

Because cohorts were genotyped using different platforms, we used imputation to generate a
common set of 2,324,889 SNPs. We applied uniform stringent quality control measures to
all datasets to remove low-quality and redundant samples and problematic SNPs
(Supplementary Tables 3, 4, and Online Methods). We performed association analysis
assuming an additive model on the log odds ratio scale with adjustment for population
substructure using logistic regression for case-control data and generalized estimating
equations (GEE) with a logistic model for family data. Results from individual datasets were
combined in the meta-analysis using the inverse variance method, applying a genomic
control to each dataset. The joint analysis was performed using GEE and incorporated terms
to adjust for population substructure and site-specific effects (Online Methods). For both
approaches, we also examined an extended model of covariate adjustment that adjusted for
age (age at onset or death in cases; age at exam or death in controls), sex, and number of
APOE ε4 alleles (0, 1, or 2). Genomic inflation factors (λ) for both the discovery meta-
analysis and the joint analysis and extended models were less than 1.05, indicating that there
was not substantial inflation of the test statistics (Supplementary Table 3, Supplementary
Figure 1). Association findings from meta-analysis and joint analysis were comparable.

In Stage 1, the strongest signal was from the APOE region (e.g., rs4420638, PM =1.1 ×
10−266, PJ =1.3 × 10−253; Supplementary Table 5). Excluding the APOE region, SNPs at
nine distinct loci yielded a PM or PJ ≤ 10−6 (Table 1; all SNPs with P < 10−4 are in
Supplementary Table 5). SNPs from these nine loci were carried forward to Stage 2. Five of
these had not previously been associated with LOAD at a genome-wide significance level of
P ≤ 5.0 × 10−8 (MS4A, EPHA1, CD33, ARID5B, and CD2AP). Because Hollingworth et
al.12 identified SNPs at ABCA7 as a novel LOAD locus, we included ABCA7 region SNPs
in Stage 2 and provided the results to Hollingworth et al.12. For all loci in Table 1, we did
not detect evidence for effect heterogeneity (Supplementary Fig. 2). One novel locus
(MS4A) was significant in the Stage 1+2 analysis. Four other loci approached but did not
reach genome-wide significance in the Stage 1+2 analyses and were carried forward to Stage
3. For three of these (CD33, EPHA1, and CD2AP), Stage 3 analysis strengthened evidence
for association. However, Stages 2 and 3 results did not support Stage 1 results for ARID5B
2 (Table 2).

Stage 1+2 analysis identified the MS4A gene cluster as a novel LOAD locus (PM = 1.7 ×
10−9, PJ = 1.7 × 10−9)(Table 1, Fig. 1A). The minor allele (MAF = 0.39) was protective with
identical odds ratios (ORs) from both meta-analysis and joint analysis (ORM and ORJ =
0.88, 95% CI: 0.85–0.92). In the Stage 1+2 analysis, other SNPs gave smaller P values when
compared to discovery SNP rs4938933, with the most significant SNP being rs4939338 (PM
= 2.6 × 10−11, PJ = 4.6 × 10−11; ORM and ORJ = 0.87, 95% CI: 0.84–0.91) (Supplementary
Table 5). In the accompanying manuscript12, genome-wide significant results were also
obtained at the MS4A locus (rs670139, PM = 5.0 × 10−12) using an independent sample. In a
combined analysis of ADGC results and those from Hollingworth et al.12, the evidence for
this locus at rs4938933 increased to PM = 8.2 × 10−12 (Table 3: ORM = 0.89, 95% CI: 0.87–
0.92; Fig. 1A).
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SNPs in the CD2AP locus also met our Stage 1 criteria for additional analysis (Fig. 1B).
Stage 2 data modestly strengthened this association, but the results did not reach genome-
wide significance. Stage 3 analysis yielded a genome-wide significance result for rs9349407
(PM = 8.6 × 10−9), identifying CD2AP as a novel LOAD locus. The minor allele (MAF =
0.27) at this SNP increased risk for LOAD (ORM = 1.11, 95% CI: 1.07–1.15) (Table 2, Fig.
1B).

Another locus studied further in Stages 2 and 3 centered on EPHA1. Previous work provided
suggestive evidence that this is a LOAD risk locus, although the associations did not reach
genome-wide significance (P = 1.7 × 10−6)2. Here, results from Stages 1 and 2 for SNP
rs11767557, located in the promoter region of EPHA1, reached genome-wide significance in
the joint analysis. The addition of Stage 3 results increased evidence for association (PM =
6.0 × 10−10, Table 2, Fig. 1C). The minor allele (MAF = 0.19) for this SNP is protective
(ORM = 0.90, 95% CI: 0.86–0.93). We observed no evidence for heterogeneity at this locus
(Supplementary Fig. 2D, heterogeneity P = 0.58).

In Stages 1 and 2, strong evidence for association was also obtained for SNPs in CD33, a
gene located approximately 6Mb from APOE, but the results did not reach genome-wide
significance. The addition of Stage 3 data confirmed that CD33 is a LOAD risk locus
(rs3865444; Stages 1–3, PM = 1.6 × 10−9). The minor allele (MAF = 0.30) is protective
(ORM = 0.91, 95% CI: 0.88–0.93; Tables 1,2, Fig. 1D). A single SNP (rs3826656) in the 5’
region of CD33, was previously reported as an AD-related locus using a family-based
approach as genome-wide significant (P = 6.6 × 10−6) 15. We were unable to replicate this
finding (PM = 0.73; PJ = 0.39, Stage 1 analysis for rs3826656). Though rs3826656 is only
1,348 bp from our top SNP (rs3865444), these 2 sites display only weak LD (r2 = 0.13).

Hollingworth et al 12 report highly significant evidence for the association of an ABCA7
SNP rs3764650 with LOAD (PM = 4.5 × 10−17) that included data from our study. In our
Stage 1+2 analysis, we obtained suggestive evidence for association with ABCA7 SNP
rs3752246 (PM = 5.8 × 10−7, and PJ = 5.0 × 10−7), which is a missense variant (G1527A)
that may alter the function of the ABCA7 protein (see Supplementary Table 6 for functional
SNPs in LD with SNPs yielding PM or PJ < 10−4).

Our Stage 1+2 analyses also confirmed the association of previously reported loci (BIN1,
CR1, CLU, and PICALM) with LOAD (Table 1). For each locus, supporting evidence was P
≤ 5.0 × 10−8 in one or both types of analysis.

We also examined SNPs with statistically significant GWAS results reported by others
(GAB216, PCDH11X17, GOLM118, and MTHFD1L 19, Supplementary Table 7). Stage 1
data were used except for PCDH11X where Stage 1+2 data were used because Affymetrix
platforms do not contain the appropriate SNP. Only SNPs in the APOE, CR1, PICALM, and
BIN1 loci demonstrated P < 10−6. For MTHFD1L19, at rs11754661 (previously reported P =
4.7 × 10−8) we obtained modest independent association evidence (ORM = 1.16, 95% CI:
1.04–1.29, PM = 0.006; ORJ = 1.19, 95% CI: 1.08–1.32, PJ = 7.5 × 10−4). For the remaining
sites, only nominal evidence (P < 0.05) or no evidence was obtained. For the GAB2 locus16

at rs10793294 (previously reported P = 1.60 × 10−7), we obtained nominal statistical
significance results (PM = 0.017; PJ = 0.029). The association for rs5984894 in the
PCDH11X locus17 (previously reported P = 3.9 × 10−12), did not replicate (PM = 0.89, PJ =
0.26). Likewise, findings at GOLM118 for rs10868366 (previously reported P = 2.40 × 10−4)
did not replicate (PM = 0.71; PJ = 0.62). Another gene consistently implicated in LOAD is
SORL120 where at rs3781835 (previously reported P = 0.006), we obtained modest evidence
for association (ORM = 0.72, 95% CI: 0.60–0.86, PM = 2.9 × 10−4; ORJ = 0.78, 95% CI:
0.59–0.86; PJ = 3.8 × 10−4).
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We examined the influence of the APOE ε4 allele on the loci in Table 1, stratified by and in
interactions with APOE ε4 allele carrier status. After adjustment, all loci had similar effect
sizes to the unadjusted analyses with some showing a modest reduction in statistical
significance. We previously reported evidence for a PICALM-APOE21 interaction using a
dataset that largely overlaps with the Stage 1 dataset used here. However, using the Stage
1+2 data, we do not replicate this finding or see evidence of SNP-APOE interactions with
Table 1 loci (data not shown).

Previous work reported an association between LOAD and chromosome 19 SNP rs597668,
located 7.2 kb proximal to EXOC3L2 and 296 kb distal of APOE 2. While we did observe a
signal for this SNP (Stage 1, PM = 1.5 × 10−9; PJ = 7.7 × 10−10) and other SNPs in the
EXOC2L3-MARK4 region, evidence was completely extinguished for all SNPs after
adjustment for APOE (Online Methods, Supplementary Table 8), suggesting that signal in
this region is from APOE.

Our observation of genome-wide significant associations at MS4A4A, CD2AP, EPHA1, and
CD33 extend our understanding of the genetic architecture of LOAD and confirm the
emerging consensus that common genetic variation plays a significant role in the etiology of
LOAD. With our findings and those by Hollingsworth et al.12, there are now ten LOAD
susceptibility loci (APOE, CR1, CLU, PICALM, BIN1, EPHA1, MS4A, CD33, CD2AP,
and ABCA7). Examining the amount of genetic effect attributable to these candidate genes,
the most strongly associated SNPs at each locus other than APOE demonstrated population
attributable fractions (PAFs) between 2.72–5.97% (Supplemental Table 9), with a
cumulative PAF for non-APOE loci estimated to be as much as 35%; however, these
estimates may vary widely between studies22, and the actual effect sizes are likely to be
much smaller than those estimated here because of the ‘winner’s curse’. Also the results do
not account for interaction among loci, and are not derived from appropriate population-
based samples.

A recent review of GWAS studies23 noted that risk alleles with small effect sizes (0.80 <
OR < 1.2) likely exist for complex diseases such as LOAD but remain undetected, even with
thousands of samples, because of insufficient power24. Our discovery dataset (Stage 1;
8,309 cases and 7,366 controls), was well-powered to detect associations exceeding the
statistical significance threshold of P < 10−6 (Supplementary Table 9). If there are many loci
of more modest effects, some, but not all, will likely be detected in any one study. This
likely explains the genome-wide statistical significance for the ABCA7 locus in the
accompanying manuscript12, which reaches only modest statistical significance in our
dataset (rs3752246; PM = 1.0 × 10−5, PJ = 1.9 × 10−5). Finding additional LOAD loci will
require larger studies with increased depth of genotyping to test for the effects of both
common and rare variants.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Regional association plots from the three-stage meta-analysis with LOAD. PM values for
association are shown for: (A) MS4A gene cluster, (B) CD2AP, (C) EPHA1, and (D) CD33.
For each locus, the genomic position (NCBI Build 37.1) is plotted on the X-axis against –
log10(P-value) on the Y-axis. For the SNP with the lowest P-value at each locus in Stage 1
analyses, three P-values for association are shown: P1 meta-analysis of the ADGC
Discovery (Stage 1) dataset (highlighted with a black diamond), P1+2 meta-analysis of the
Combined ADGC Discovery and Replication (Stages 1 + 2) datasets (highlighted with a
blue diamond), and P1+2+3 meta-analysis of the combined ADGC dataset and the external
replication (Stages 1 + 2 + 3) datasets (highlighted with a red diamond). Computed
estimates of linkage disequilibrium (r2) with the most significant SNP at each locus are
shown as an orange diamond for r2 ≥ 0.8, a yellow diamond for 0.5 ≤ r2 < 0.8, a grey
diamond for 0.2 ≤ r2 < 0.5, and a white diamond for r2 < 0.2. Genes in each region are
indicated at the bottom of each panel. The length and the direction of the arrowhead
represent the scaled size and the direction of the gene, respectively.
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