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Abstract Mild traumatic brain injury (mTBI), also referred
to as concussion, remains a controversial diagnosis because
the brain often appears quite normal on conventional com-
puted tomography (CT) and magnetic resonance imaging
(MRI) scans. Such conventional tools, however, do not
adequately depict brain injury in mTBI because they are
not sensitive to detecting diffuse axonal injuries (DAI), also
described as traumatic axonal injuries (TAI), the major brain
injuries in mTBI. Furthermore, for the 15 to 30 % of those
diagnosed with mTBI on the basis of cognitive and clinical
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symptoms, i.e., the “miserable minority,” the cognitive and
physical symptoms do not resolve following the first
3 months post-injury. Instead, they persist, and in some
cases lead to long-term disability. The explanation given
for these chronic symptoms, i.e., postconcussive syndrome,
particularly in cases where there is no discernible radiological
evidence for brain injury, has led some to posit a psychogenic
origin. Such attributions are made all the easier since both
posttraumatic stress disorder (PTSD) and depression are fre-
quently co-morbid with mTBI. The challenge is thus to use
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neuroimaging tools that are sensitive to DAI/TAIL such as
diffusion tensor imaging (DTI), in order to detect brain inju-
ries in mTBI. Of note here, recent advances in neuroimaging
techniques, such as DTI, make it possible to characterize better
extant brain abnormalities in mTBI. These advances may lead
to the development of biomarkers of injury, as well as to
staging of reorganization and reversal of white matter changes
following injury, and to the ability to track and to characterize
changes in brain injury over time. Such tools will likely be
used in future research to evaluate treatment efficacy, given
their enhanced sensitivity to alterations in the brain. In this
article we review the incidence of mTBI and the importance of
characterizing this patient population using objective radio-
logical measures. Evidence is presented for detecting brain
abnormalities in mTBI based on studies that use advanced
neuroimaging techniques. Taken together, these findings sug-
gest that more sensitive neuroimaging tools improve the de-
tection of brain abnormalities (i.e., diagnosis) in mTBI. These
tools will likely also provide important information relevant to
outcome (prognosis), as well as play an important role in
longitudinal studies that are needed to understand the dynamic
nature of brain injury in mTBI. Additionally, summary tables
of MRI and DTI findings are included. We believe that the
enhanced sensitivity of newer and more advanced neuroimag-
ing techniques for identifying areas of brain damage in mTBI
will be important for documenting the biological basis of
postconcussive symptoms, which are likely associated with
subtle brain alterations, alterations that have heretofore gone
undetected due to the lack of sensitivity of earlier neuroimag-
ing techniques. Nonetheless, it is noteworthy to point out that
detecting brain abnormalities in mTBI does not mean that
other disorders of a more psychogenic origin are not co-
morbid with mTBI and equally important to treat. They argu-
ably are. The controversy of psychogenic versus physiogenic,
however, is not productive because the psychogenic view does
not carefully consider the limitations of conventional neuro-
imaging techniques in detecting subtle brain injuries in mTBI,
and the physiogenic view does not carefully consider the fact
that PTSD and depression, and other co-morbid conditions,
may be present in those suffering from mTBI. Finally, we end
with a discussion of future directions in research that will lead
to the improved care of patients diagnosed with mTBI.
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Introduction

The scope of the problem More than 1.7 million people each
year in the United States experience a traumatic brain injury
(TBI), with 75 to 85 % of these injuries categorized as mild
(mTBI; CDC 2010; Faul et al. 2010; Bazarian et al. 2000).
This number is likely an underestimate because it does not
include those who are seen in private clinics or by primary
care physicians, nor does it include those who do not seek
medical treatment (Langlois et al. 20006). It is estimated, in
fact, that 14 % of mTBI patients are seen in private clinics or
by their own doctors, with an additional 25 % receiving no
medical attention (Sosin et al 1996). Based on the large
number of known and likely unknown cases, traumatic brain
injury has been referred to as the “silent epidemic” (e.g.,
Goldstein 1990). Recently, the public has become more
aware of TBI based on news reports of sports injuries
leading to long-term effects of repetitive trauma to the brain,
as well as news reports about soldiers returning from Iraq
and Afghanistan with TBI. With respect to the latter, the
most frequent combat-related injury incurred by soldiers
returning from Iraq and Afghanistan is TBI, and most par-
ticularly mTBI (Okie 2005). The frequency of these injuries
has led to TBI being called the “signature injury of war”
(Okie 2005). Further, approximately 22 % of the wounded
soldiers arriving at Lundstuhl Regional Medical Center in
Germany have head, neck, or face injuries, with cases of
TBI resulting primarily from improvised explosive devices
(IEDs), landmines, high pressure waves from blasts, blunt
force injury to the head from objects in motion, and motor
vehicle accidents (Okie 2005; Warden 2006). Of particular
note, mTBI characterizes most of the blast-induced traumatic
brain injuries seen in service members returning from Iraq
and Afghanistan, with reports of 300,000 service members
sustaining at least one mTBI as of 2008 (Tanielian and
Jaycox 2008). Mild TBI is thus a major health problem that
affects both civilians and military populations. The estimated
economic cost is also enormous, with mTBI accounting for
44 % of the 56 billion dollars spent annually in the United
States in treating TBI (Thurman 2001).

Lack of radiological evidence Mild TBI is, however, diffi-
cult to diagnose because often the brain appears quite nor-
mal on conventional computed tomography (CT) and
magnetic resonance imaging (MRI) (e.g., Bazarian et al.
2007; Inglese et al. 2005; Hughes et al. 2004; Iverson et
al. 2000; Miller 1996; Mittl et al. 1994; Povlishock and
Coburn 1989; Scheid et al. 2003). This lack of radiological
evidence of brain injury in mTBI has led clinicians typically
to diagnose mTBI on the basis of clinical and cognitive
symptoms, which are generally based on self-report, and
are non-specific as they overlap with other diagnoses (e.g.,
Hoge et al. 2008; Stein and McAllister 2009). To complicate
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matters further, while most of the symptoms in mTBI are
transient and resolve within days to weeks, approximately
15 to 30 % of patients evince cognitive, physiological, and
clinical symptoms that do not resolve 3 months post-injury
(e.g., Alexander 1995; Bazarian et al. 1999; Bigler 2008;
Rimel et al. 1981; Vanderploeg et al. 2007). Instead, these
symptoms persist and in some cases lead to permanent
disability (Carroll et al. 2004a and b; Nolin and Heroux
2006), and to what has been referred to as persistent post-
concussive symptoms (PPCS), or postconcussive syndrome
(PCS), although the latter term, “PCS,” is controversial
(e.g., Arciniegas et al. 2005).

This “miserable minority” (Ruff et al. 1996) often
experience persistent postconcussive symptoms (PPCS) that
include dizziness, headache, irritability, fatigue, sleep distur-
bances, nausea, blurred vision, hypersensitivity to light and
noise, depression, anxiety, as well as deficits in attention,
concentration, memory, executive function, and speed of pro-
cessing (e.g., Bigler 2008). Kurtzke and Kurland (1993) esti-
mates the incidence of persistent symptoms as being equal to
the annual incidence of Parkinson’s disease, Multiple Sclero-
sis, Guillain-Barré Syndrome, Motor Neuron Disease, and
Myasthenia Gravis, combined. Moreover, the modal age for
injury is young, in the 20’s and 30’s. Thus mTBI affects a
large number of individuals in the prime of life, where there is,
to date, no consistent or reliable correlations between cogni-
tive/clinical symptoms and radiological evidence of brain
injury based on conventional neuroimaging.

The explanation given for PPCS, particularly when there is
no discernible radiological evidence, has led some to posit a
psychogenic origin (e.g., Belanger et al. 2009; Hoge et al.
2008; Lishman 1988; Machulda et al. 1988). More specifical-
ly, Hoge and colleagues (2008; 2009) suggest that postcon-
cussive symptoms reported by soldiers with mTBI are largely
or entirely mediated by posttraumatic stress disorder (PTSD)
and depression. In their study, after controlling for both PTSD
and depression, the only remaining symptom was headaches.
Headaches, nonetheless, are an important symptom of TBI,
particularly mTBI.

The term “miserable minority,” described above, has been
used to identify those who likely have a more psychogenic
etiology to their symptoms (e.g., Ruff et al. 1996). Such
attributions are easy to make given that the symptoms of
mTBI, as noted above, overlap with other disorders (e.g.,
Hoge et al. 2008). Belanger et al. (2009) also suggest that
most of the symptoms reported by those with mTBI are likely
the result of emotional distress. Others have also argued that
emotional distress and/or psychiatric problems account for
those who continue to experience postconcussive symptoms
(e.g., Belanger et al. 2009; Greiffenstein 2008; Hoge et al.
2008; Lishman 1988; Machulda et al. 1988).

Persistent symptoms, however, may be the result of more
subtle neurological alterations that are beneath the threshold

of what can be detected using conventional neuroimaging
techniques that all too often do not reveal brain pathology in
mTBI (e.g., Hayes and Dixon 1994; Huisman et al. 2004;
Fitzgerald and Crosson 2011; Green et al. 2010; Miller 1996;
Niogi and Mukherjee 2010). This is not at all surprising, since
conventional techniques are not sensitive to detecting diffuse/
traumatic axonal injuries (DAI/TAI), the major brain injuries
observed in mTBI (e.g., Benson et al. 2007).

There is also evidence from the literature to suggest that
in several cases of mTBI where there was no radiological
evidence of brain injury, autopsy following death from
injuries other than mTBI revealed microscopic diffuse axo-
nal injuries that conventional neuroimaging tools did not
detect, presumably because they were not sufficiently sen-
sitive (e.g., Adams et al. 1989; Bigler 2004; Blumbergs et al.
1994; Oppenheimer 1968).

We would argue that the controversy between mTBI
being psychogenic versus physiogenic in origin is not pro-
ductive because the psychogenic view does not carefully
consider the limitations of conventional neuroimaging tech-
niques in detecting subtle brain injuries in mTBI, and the
physiogenic view does not carefully consider the fact that
PTSD and depression, and other co-morbid conditions, may
be present in those suffering from mTBI. Further, patients
with mTBI may complain more when their symptoms are
not validated. That is, when there is no radiological evi-
dence that explains their symptoms, and yet they still expe-
rience symptoms, these patients may complain more
because of the lack of validation, versus those patients
who have radiological evidence that validates their symp-
toms, leading them to complain less, simply because they
have a medical explanation for their symptoms.

The challenge The challenge then is to use neuroimaging
tools that are sensitive to DAI/TAI such as Diffusion Tensor
Imaging (DTI), to detect brain injuries in mTBI. Specifical-
ly, with recent advances in imaging such as DTI it will now
be possible to characterize better extant brain injuries in
mTBI. Of note, DTI is a relatively new neuroimaging tech-
nique that is sensitive to subtle changes in white matter fiber
tracts and is capable of revealing microstructural axonal
injuries (Basser et al. 1994; Pierpaoli and Basser 1996;
Pierpaoli and Basser 1996), which are also potentially re-
sponsible for persistent postconcussive symptoms.

Other promising techniques include susceptibility weight-
ed imaging (SWI), which is sensitive to micro-hemorrhages
that may occur in mTBI (e.g., Babikian et al. 2005; Haacke et
al. 2004; Park et al. 2009; Scheid et al. 2007), and Magnetic
Resonance Spectroscopy (MRS), which measures brain
chemistry sensitive to neuronal injury and DAI (e.g., Babikian
etal. 2006; Brooks et al. 2001; Garnett et al. 2000; Holshouser
etal. 2005; Lin et al. 2005; Lin et al. 2010; Provencher 2001;
Ross et al. 1998; Ross et al. 2005; Seeger et al. 2003; Shutter
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et al. 2004; Vagnozzi et al. 2010). In this review we focus
primarily on MRI and, most particularly, on DTI findings in
mTBI. In a separate article in this special issue, Dr. Alexander
Lin and colleagues review MRS, single photon emission
tomography (SPECT), and positron emission tomography
(PET) findings relevant to brain chemistry alterations in
mTBI, and Dr. Brenna McDonald and colleagues review
functional MRI (fMRI) findings in mTBI. The reader is also
referred to Dr. Robert Stern and colleagues’ article, also in this
issue, which reviews the evidence for repetitive concussive
and subconcussive injuries in the etiology of chronic traumatic
encephalopathy in sports-related injuries such as professional
football (see also Stern et al. 2011).

Focus of this review Here we present evidence for brain
abnormalities in mTBI based on studies using advanced
MRI/DTI neuroimaging techniques. Importantly, these
advances make it possible to use more sensitive tools to
investigate the more subtle brain alterations in mTBI. These
advances will likely lead to the development of biomarkers
of injury, as well as to staging of reorganization and reversal
of white matter and gray matter changes following injury,
and to the ability to chart the progression of brain injury
over time. Such tools will also likely be used in future
research to evaluate treatment efficacy, given their enhanced
sensitivity to alterations in the brain.

Taken together, the findings presented below suggest
that more sensitive neuroimaging tools improve the de-
tection of brain injuries in mTBI (i.e., diagnosis). These
tools will, in the near future, likely provide important
information relevant to outcome (prognosis), as well as
play a key role in longitudinal studies that are needed to
understand the dynamic nature of brain injury in mTBI.
We also believe that the enhanced sensitivity of newer
and more advanced neuroimaging techniques for identi-
fying brain pathology in mTBI will be important for
documenting the biological basis of persistent postcon-
cussive symptoms, which are likely associated with
subtle brain alterations, alterations that heretofore have
gone undetected due to the lack of sensitivity of earlier,
conventional neuroimaging techniques.

Below we provide a brief primer of neuroimaging tech-
niques, although the reader is referred to Kou et al. (2010),
Johnston et al. (2001), Le and Gean (2009), and Niogi and
Mukherjee 2010 for more detailed information. For a de-
scription of the molecular pathophysiology of brain injury,
the reader is referred to Barkhoudarian et al. (2011). The
reader is also referred to Dr. Erin Bigler’s article in this
special issue for information regarding post-mortem and
histological findings in mTBI as well as for a discussion
of the physiological mechanisms underlying TBI. Dr. Bigler
emphasizes that neuroimaging abnormalities are “gross indi-
cators” of the underlying cellular damage resulting from
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trauma-induced pathology. We concur and believe that we
now have neuroimaging tools that are sufficiently sensitive
to discern both more gross indicators of pathology, as well
as microstructural changes in white matter, and micro-
hemorrhages using newer imaging technologies. The reader
is also referred to Smith et al. (1995) and to several recent and
excellent reviews of neuroimaging findings in mTBI (e.g.,
Belanger et al. 2007; Bruns and Jagoda 2009; Gentry 1994;
Green et al. 2010; Hunter et al. 2011; Kou et al. 2010; Le and
Gean (2009); Maller et al. 2010; Niogi and Mukherjee 2010).
Jang (2011) has also published a recent review of the use of
DTI in evaluating corticospinal tract injuries after TBI.

Following the brief primer, we present MRI and DTI find-
ings relevant to mTBI. We used PUBMED to locate these
articles. The following keywords were used: (MRI or DTI or
Diffusion Tensor) AND (Concussion or Mild TBI or Mild
Traumatic Brain Injury or mTBI). The dates for the articles
selected were inclusive to September 16, 2011. We did not
include articles that were case studies, nor did we include
articles that focused on pediatric and adolescent populations
(see article in this special issue by Wilde and colleagues,
which covers this topic). We also did not include articles that
did not specify the severity of injury, but instead described
only the mechanism of injury, i.e., falls, motor vehicle acci-
dent, hit by tram (e.g., Liu et al. 1999). For the morphometric
MRI empirical studies, we note that most included mild,
moderate, and severe TBI, rather than mTBI alone. Conse-
quently we included all three. This was less the case for the
DTI empirical studies, where many focused only on mTBL
We were thus able to separate empirical studies that focused
solely on mTBI from those that included several levels of
severity, although we report on both. We include detailed
summary tables of MRI and DTI findings in order to provide
the interested reader with a more in depth and detailed review
of each empirical study included in this review. Following the
review of MRI and DTI findings, we present future directions
for research in mTBI, which include the use of multiple
modalities for imaging the same patients, and the importance
of following patients longitudinally. We also present new
imaging methods that go beyond advanced imaging
approaches reviewed here that, to date, are still as yet not used
routinely in a clinical setting. The potential for developing
biomarkers to identify and to characterize mTBI is also pre-
sented. The need here is critical as mTBI is not only difficult to
detect but the injuries to the brain are heterogeneous, and
biomarkers are needed for individualized diagnosis as well
as for early and effective treatment interventions.

Neuroimaging primer and role of neuroimaging in mTBI

Overview TBI is a heterogeneous disorder and there is no
one single imaging modality that is capable of characterizing
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the multifaceted nature of TBI. Advances in neuroimaging
are, nonetheless, unprecedented and we are now able to
visualize and to quantify information about brain alterations
in the living brain in a manner that has previously not been
possible. These advances began with computed axial tomog-
raphy (CT) in the 1970’s, and then with magnetic resonance
imaging (MRI) in the mid-1980’s, with more refined and
advanced MR imaging over the last 25 years, including per-
fusion weighted imaging (useful for measuring abnormal
blood supply and perfusion), susceptibility-weighted imaging
(SWI; useful for measuring micro-hemorrhages — e.g., Haacke
et al. 2004; Park et al. 2009), magnetization transfer MRI
(useful for measuring traumatic lesions — e.g., see review in
Le and Gean 2009), diffusion weighted imaging (DWI; useful
for measuring edema and developed initially for studies of
stroke — see review in Le and Gean (2009)), diffusion tensor
imaging (DTI; useful for measuring white matter integrity —
e.g., Basser et al. 1994), and functional MRI (fMRI; useful
for measuring altered cortical responses to controlled stimuli —
e.g., see article by McDonald et al. in this issue). Other neuro-
imaging tools, although not a complete list, include positron
emission tomography (PET; useful for measuring regional
brain metabolism using 2-fluro-2-deoxy-d-glucose, both
hyper and hypo metabolism observed in TBI — see Le and
Gean (2009) for review), single photon emission tomography
(SPECT; useful for measuring cerebral blood flow but less
sensitive to smaller lesions that are observed on MRI — see
article by Lin et al. in this issue), and magnetic resonance
spectroscopy (MRS; useful for measuring brain metabolites/
altered brain chemistry — see article by Lin et al. in this issue).
The clinical use of such tools lags behind their development,
although the gap between development and clinical applica-
tion is narrowing.

Below, we provide a brief primer for some of the neuro-
imaging tools available today. We include skull films, CT,
and MRI including DWI/DTI, and susceptibility weighted
imaging. This primer is not detailed nor is it comprehensive.
Instead, our intention is to provide the reader who is less
familiar with neuroimaging techniques with a context for
some of the tools available for investigating mTBI. Other
neuroimaging modalities, which will not be described here,
include MRS, PET, SPECT, and fMRI. MRS, PET, and
SPECT, will be reviewed by Dr. Alexander Lin and col-
leagues, and Dr. Brenna McDonald and colleagues will
review fMRI, in separate articles in this issue. Table 1
provides a brief summary of these neuroimaging tools.

Skull-X-ray and CT Skull films, or skull X-rays, while
excellent for detecting skull fracture, are not used routinely
to investigate brain trauma because they provide very limit-
ed information (e.g., Bell and Loop 1971; Hackney 1991).
Figure 1 depicts a normal skull film. Computed Tomogra-
phy or Computed Axial Tomography (CT) supplanted the

use of skull films for evaluating neurotrauma when this
technology became available in the 1970s. CT provides
three-dimensional images of the inside of an object, in this
case the brain, using two-dimensional X-Ray images
obtained around a single axis of rotation. Since CT was
introduced in the 1970s, it has become the imaging modality
of choice for evaluating closed head injury in the emergency
room (ER) (e.g., Johnston et al. 2001).

CT is, in fact, the main imaging modality used in the first
24 h for the management of neurotrauma in the ER (e.g.,
Coles 2007). The reasons for this are because it is widely
available in most hospitals, it is fast, and it is accurate for
detecting emergent conditions such as skull fractures, brain
swelling, intracranial hemorrhage, herniation, and radio-
opaque foreign bodies in the brain (see review in Johnston
et al. 2001; Le and Gean (2009)). The use of thin-volume
CT scanners are also often located in close physical prox-
imity to the ER, thus making it easy to transport neuro-
trauma patients. Additionally, the presence of metallic
objects will not result in possibly dangerous accidents in
the CT suite as would be the case using an MR scan,
depending upon the nature of the trauma, and depending
upon whether or not unknown small pieces of metal are
hidden inside the patient following a car accident or other
type of brain trauma. Of further note, MRI scanners are
generally not in close physical proximity to the ER, and
the scanning time is longer, which is an important consid-
eration for patients who are not medically stable. Moreover,
the CT environment is able to accommodate the set up of life
support and monitoring equipment that is, at this time, often
more compatible for the CT than for the MRI environment,
although this is changing. CT thus remains the most impor-
tant neuroimaging tool used in the first 24 h of acute neuro-
trauma in the ER, where the most important question to be
answered quickly is: does this person need immediate neu-
rosurgical intervention?

Figure 2 depicts a normal CT scan. Note that the skull
and the brain are visible, although there is no differentiation
between gray and white matter, which is discernible using
MRI. There are also bone artifacts with CT that are not
present with MRI, which means that areas of injury around
bone are easier to detect using MRI. MRI also uses no
ionizing energy, as CT does, which becomes important
when considering pediatric populations. This is also a con-
sideration when several repeat scans are needed over time to
follow the progression of injury.

MRI and SWI Magnetic resonance imaging was introduced
in the mid-1980s with the first images acquired on low-field
magnets, i.e., 0.5 Tesla (T). Originally this type of imaging
was called nuclear magnetic resonance (NMR) imaging but
the name was changed to magnetic resonance (MR) imag-
ing, or MRI. The basic principle behind MRI is that
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Table 1 Summary of modalities

Imaging Technique/Modality:

Function:

Advantages Offered:

X-ray
Computed Tomography (CT)

Clinical Magnetic Resonance Imaging
(MRI)

Diffusion Weighted Imaging (DWI)/
Diffusion Tensor Imaging (DTI)

Susceptibility Weighted Imaging (SWI)

Magnetic Resonance Spectroscopy (MRS)

Positron Emission Tomography (PET)

Imaging of bony structures

3D X-ray imaging of an object (e.g., brain
and skull).

Uses radiofrequency pulses to detect

changes in spin signal of hydrogen atoms.

Special type of MRI sequence that uses the
diffusion properties of water to detect
microstructural tissue architecture.

Special type of MRI technique that takes
advantage of susceptibility differences
among structures (e.g., oxygenated vs.
deoxygenated blood and iron).

Measures brain chemistry by producing a
spectrum where individual chemicals, or
metabolites can be identified and
concentrations can be measured.

Uses radiotracers labeled with different
isotopes that emit signals indicating areas
of uptake or binding in the brain, most
commonly used is 18-

Fluorodeoxyglucose, an analog of glucose.

Primarily used for detecting fractures.

Quick, able to have medical equipment in
scanning area, good for skull fractures or
gross injuries/abnormalities requiring
emergent surgical intervention such as
subdural hematomas.

Better resolution than CT, particularly for
soft tissue, can provide gross delineation
between gray and white matter structures,
better visualization of brain stem areas
compared to CT, can also detect subacute
hemorrhages and macroscopic areas of
white matter damage.

Best imaging technique available for
detecting white matter integrity/damage,
able to detect microscopic white matter
damage and trace specific tracts of the
brain (e.g., corpus callosum, superior
longitudinal fasciculus, uncinate).

Provides increased sensitivity to detect areas
of micro-hemorrhage, particularly at gray-
white matter junctions, that are not de-
tectable on standard MRI.

Provides neurophysiological data that is
related to structural damage/changes,
neuronal health, neurotransmission,
hypoxia, and other brain functions.

Provides information on the concentration
of a chemical or protein in the brain such
as the amount of glucose, which reflects
activity, or the density of a type of protein
such as beta amyloid, a hallmark of

neurodegenerative disease.

radiofrequency (RF) pulses are used to excite hydrogen
nuclei (single proton) in water molecules in the human body,
in this case the brain. By modulating the basic magnetic
field, and the timing of a sequence of RF pulses, the scanner

Fig. 1 Lateral (leff) and frontal (right) view of normal skull X-ray.
(Courtesy of Amir Arsalan Zamani, M.D.)

@ Springer

produces a signal that is spatially encoded and results in
images. While NMR can be observed with a number of
nuclei, hydrogen imaging is the only one that is widely used
in the medical use of MRIL.

MR images can be produced with different contrasts and
can be optimized to show excellent contrast between gray
and white matter, which CT does not. Early MRI scans had
poor spatial resolution and the time to acquire images was
slow, taking many minutes to acquire even one image. Since
the mid-1980s, however, the field strengths of the magnet
have increased from 0.5 to 1.0, to 1.5 T, and to 3.0 T and
beyond. In combination with advances in the capabilities of
the gradient magnetic fields and the RF equipment available
(parallel imaging), it is now possible to acquire sub-
millimeter morphologic images and rich contrast combina-
tions in clinical settings, in a shorter period of time. More-
over, reconstruction algorithms can recreate images even
when the volume of the pixel elements (voxels) is not
completely isotropic (i.e., the same size in all directions).
Figure 3 depicts MRI scans acquired on a 3 T magnet using



Brain Imaging and Behavior (2012) 6:137-192

143

Fig. 2 CT scan of a normal
brain. Left side is at the level of
the temporal lobe where bone
can be seen as white areas

(see red arrows). Right side is at
the level of the frontal lobe.
(Courtesy of Amir Arsalan
Zamani, M.D.)

1.5 mm slices. Note the high contrast between gray and
white matter that is not visible on CT (see Figure 2). Cere-
bral spinal fluid (CSF) is also prominent, and one can use
the differences in signal intensity of gray matter, white
matter, and CSF to parcellate automatically the brain into
these three tissue classes (e.g., Fischl et al. 2004; Pohl et al.
2007). Of note here, the different tissue classes, from the
parcellation, include quantitative information such as whole

Fig. 3 Structural MRI scans
acquired on a 3 T magnet using
1.5 mm slices: a T1-weighted
image, b T2-weighted image,

¢ T1-weighted image showing
gray matter, white matter,

and CSF parcellation, and

d T1-weighted image showing
the corpus callosum region

of interest

brain volume for gray matter, white matter, and CSF. This
work is based on research developed over more than a
decade in the field of computer vision.

Due to its superior contrast resolution for soft tissues,
MRI technology is far more sensitive than CT in detecting
small contusions, white matter shearing, small foci of axonal
injury, and small subacute hemorrhages (see review in Niogi
and Mukherjee 2010). That MRI is able to discern these
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more subtle abnormalities, compared with CT, makes it
particularly well suited for evaluating mTBI. Additionally,
there is higher contrast between brain and CSF, and between
gray and white matter, as well as better detection of edema
with MRI than CT, all important factors in evaluating TBI
(see review in Johnston et al. 2001).

Of further note, and of particular interest to mTBI, Mittl
and coworkers (1994) found that in mTBI, where CT find-
ings were negative, 30 % of these cases showed lesions on
MRI that were compatible with hemorrhagic and non-
hemorrhagic diffuse axonal injuries. The increased sensitiv-
ity of MRI over CT in discerning radiological evidence of
brain injury in mTBI has also been shown, and commented
upon, by a number of other investigators including Jenkins
and coworkers (1986), Levin and coworkers (1984; 1987),
Eisenberg and Levin (1989), and Bazarian and coworkers
(2007). Gentry and coworkers (1988) also observed that in a
prospective study of 40 closed injury patients, MRI was
superior to CT in detecting non-hemorrhagic lesions. These
findings, taken together, suggest that while CT may be
critically important in the first 24 h to assess the immediate
need for neurosurgical intervention, for mTBI, MRI is likely
to be more sensitive for detecting small and subtle abnor-
malities that are not detected using CT (e.g., Gentry et al.
1988; Levin et al. 1987).

There are also several types of MRI sequences that add to
what can be gleaned from conventional MRI, including the
use of T1, T2-weighted FLAIR (FLuid Attenuated Inversion
Recovery) to examine macroscopic white matter lesions and
contusions on the cortical surface, as well as susceptibility-
weighted imaging (SWI), which is a type of gradient-
recalled echo (GRE) MRI that can be performed on conven-
tional scanners. SWI was originally developed for venogra-
phy and called Blood-Oxygen-Level-Dependent (BOLD)
venographic imaging (Ashwal et al. 2006; Haacke et al.
2009; Reichenbach et al. 2000; see also review in Kou et
al. 2010 and Niogi and Mukherjee 2010). SWI takes advan-
tage of susceptibility differences between tissues, resulting
in an enhanced contrast that is sensitive to paramagnetic
properties of intravascular deoxyhemoglobin, i.e., sensitive
to venous blood, to hemorrhage, and to iron in the brain. In
essence, susceptibility differences are detected as phase
differences in the MRI signal. In the image processing stage,
SWI superimposes these phase differences on the usual
(magnitude) MR image, thereby allowing the susceptibility
differences to be accentuated in the final image. Of further
note, SWI shows six times greater ability to detect hemor-
rhagic diffuse axonal injuries than other MRI techniques
(Tong et al. 2003; 2004). This technique is thus particularly
appropriate for discerning micro-hemorrhages in TBI, as it
is sensitive to bleeding in gray/white matter boundaries,
where small and subtle lesions are not discernible using
other MRI techniques, making it particularly useful in the
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more acute and subacute stages following brain trauma.
SWI, in conjunction with diffusion measures (e.g., DTI),
will thus likely be important for discerning the subtle nature
of mTBI abnormalities in the future. SWI is offered as a
licensed acquisition and processing package by several ven-
dors, but it can be acquired and processed on any scanners
that are 1.0 T, 1.5 T, 3.0 T, or above. Figure 4 depicts
susceptibility-weighted images, where small black areas
indicate blood vessels.

DWI and DTI Diffusion weighted imaging (DWI), devel-
oped in 1991 for use in humans (e.g., Le Bihan 1991), is
based on the random motion of water molecules (i.e.,
Brownian motion). This motion in the brain is affected by
the intrinsic speed of water displacement depending upon
the tissue properties and type, i.e., gray matter, white matter,
and CSF. DWI was first used to evaluate acute cerebral
ischemia where it was thought that decreased diffusion
was the result of neuronal and glial swelling and likely
related to cytotoxic edema, whereas increased diffusion
was thought to reflect vasogenic edema. The method has
been applied to TBI with mixed results (see Niogi and
Mukherjee 2010).

Apparent Diffusion Coefficient (ADC) is a measure of
diffusion, on average, and the word “apparent” is used to
emphasize that what is quantified is at the level of the voxel,
and not at the microscopic level. This measure has been
used as an indicator of edema, which, in conjunction with
DTI (see below), can be used to quantify, indirectly, both
edema and damage to the integrity of white matter fiber
bundles in TBI (see review in Assaf and Pasternak 2008;
Niogi and Mukherjee 2010). A measure of free water, how-
ever, derived from DTI (Pasternak et al. 2009; Pasternak et
al. 2010; 2011a; b) may provide a better measure of edema,
and this will be discussed further in the section on future
directions of research.

DTTI is a DWI technique that has opened up new possi-
bilities for investigating white matter in vivo as it provides
information about white matter anatomy that is not available
using any other method — either in vivo or in vitro (Basser
et al. 1994; Pierpaoli and Basser 1996; Pierpaoli and Basser
1996; see also review in Assaf and Pasternak 2008). At
today’s image resolution, it does not detect water behavior
within individual axons. Instead it describes local diffusion
properties. In other words, the individual behavior of axons
cannot be described using DTI, but diffusion properties can
be described that are relevant to fiber bundles.

DTI differs from conventional MRI in that it is sensitive
to microstructural changes, particularly in white matter,
whereas CT and conventional MRI (including also FLAIR)
reveal only macroscopic changes in the brain. Thus subtle
changes using DTT can reveal microstructural axonal inju-
ries (Basser et al. 1994; Pierpaoli and Basser 1996; Pierpaoli
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Fig. 4 Sagittal (/eff) and

axial (right) view of
susceptibility-weighted images
(SWI) of a normal brain.
Small black areas indicate
blood vessels in the brain

that are enhanced using SWI

and Basser 1996), which are potentially responsible also for
persistent postconcussive symptoms.

The concept underlying DTT is that the local profile of the
diffusion in different directions provides important indirect
information about the microstructure of the underlying tis-
sue. It has been invaluable in investigations of white matter
pathology in multiple sclerosis, stroke, normal aging, Alz-
heimer’s disease, schizophrenia and other psychiatric disor-
ders, as well as in characterizing diffuse axonal injuries in
mTBI (see reviews in Assaf and Pasternak 2008; Kou et al.
2010; Shenton et al. 2010; Whitford et al. 2011).

The latter focus on TBI is relatively recent (see review of
the literature, below). Those investigating mTBI, in partic-
ular, have been disappointed by the lack of information
gleaned from conventional MRI and CT, although, as noted
previously, this is not surprising given that the most com-
mon injuries observed in mTBI are diffuse axonal injury/
traumatic axonal injury (DAI/TAI), which are not easily
detected using conventional MR or CT scans. With the
advent of DTI, however, DAI/TAI have the potential to be
quantified and this information can be used for diagnosis,
prognosis, and for the evaluation of treatment efficacy.

Quantification of pathology using DTI is based on meas-
ures that calculate the amount of restriction of water move-
ment in the brain, which is determined to a large extent by
the tissue being measured. For example, the movement of
water is unrestricted in a medium such as CSF, where it
diffuses equally in all directions (i.e., isotropic). However,
in white matter, the movement of water is more restricted by
axonal membranes, myelin sheaths, microtubules, neurofila-
ments, etc. In white matter, this restriction is dependent on
the directionality of the axons (i.e., diffusion is not equal in
all directions) and is referred to as anisotropic diffusion.

Using tensors, adapted from the field of engineering, the
average shape of the diffusion is characterized as more or
less spherical when there is no impediment to water diffu-
sion, as for example in CSF (i.e., unrestricted water is free to
diffuse in all directions: isotropic). However, the average

shape of the diffusion becomes more elongated, or cigar
shaped, when there is a preferred orientation in which water
is restricted, as for example in white matter. Here, water
diffuses freely in directions parallel to axons but it is re-
stricted in directions that are perpendicular to the axons,
which results in the magnitude of the diffusion along the
axons being larger than the two perpendicular directions,
leading to an elongated ellipsoidal shape of the diffusion
tensor, described as anisotropic. The measurement of the
distance that water diffuses, over a given period of time, for
at least six non-collinear directions, makes it possible to
reconstruct a diffusion tensor (and the associated ellipsoid)
that best describes water diffusion within a given voxel.
Consequently, the volume (size) and shape of the ellipsoid
can be calculated, and this provides important information
about the diffusion properties, and hence about microstruc-
tural aspects of brain tissue.

There are various ways that the shape and size of a
diffusion ellipsoid can be quantified, but the two most
common indices used are Fractional Anisotropy (FA) for
shape, and Mean Diffusivity (MD) for size. FA is a scalar
measure that ranges from 0 to 1, with 0 being completely
isotropic, meaning that water diffuses equally in all direc-
tions, and 1 depicting the most extreme anisotropic scenario
in which molecules are diffusing along a single axis. Ac-
cordingly, in CSF and gray matter, as noted above, the
direction of water is equal in all directions (i.e., isotropic),
and the value is close to 0. In contrast, in white matter, for
example in the corpus callosum, the water is relatively free
along the axons, but restricted perpendicular to the axons,
and therefore more anisotropic, with FA being closer to 1.
Thus in white matter, reduced FA is generally thought to
reflect loss of white matter integrity that may reflect damage
to myelin or axon membrane damage, or perhaps reduced
axonal packing density, and/or reduced axonal coherence
(see review in Kubicki et al. 2007).

Mean diffusivity (MD), the second most common mea-
sure (and proportional to the trace of the diffusion tensor), is
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different from FA in that it is a measure of the size of the
ellipsoid, rather than the shape, as is the case for FA. MD is
similar to ADC, described above for DWI, but instead it is
the average ADC along the three principal diffusion direc-
tions, where one axis is in the direction of the largest
magnitude of the diffusion in the voxel, and the other two
are perpendicular to the main diffusion direction. The main
diffusion direction in white matter is referred to as the
longitudinal or axial direction, while the other two direc-
tions are referred to as the radial or tangent axes. FA and
MD are frequently observed as being inversely related. (For
further descriptions of DTI and associated methods of anal-
yses, the reader is referred to Pierpaoli and Basser 1996;
Pierpaoli and Basser 1996; Smith et al. 2006; and the
reviews in Ashwal et al. 2006; Fitzgerald and Crosson
2011; Hunter et al. 2011; Le and Gean 2009; Kou et al.
2010; and Niogi and Mukherjee 2010).

Figure 5, 6, and 7 depict the kind information that can be
extracted from diffusion tensor images. For example,
Figure 5 shows diffusion images that highlight white matter,
along with colored maps that reflect the directions of the
white matter fiber tracts in the brain. Figure 6 shows white
matter tracts superimposed on structural images. Figure 7
shows an area identified as tumor in the frontal lobe, where
white matter fiber tracts can be visualized in relation to the
tumor and in relation to the frontal horn of the lateral
ventricles. These figures reflect important, recent advances
in methodology that are sufficiently robust and sensitive that
they can be used for visualizing and quantifying white
matter pathology in vivo, for the assessment of mTBI clin-
ically. These tools are available now for this purpose and
will be discussed further in the future directions section of
this article.

DTI, however, is somewhat non-specific and it is not
known whether disruptions in FA and MD are the result of
disturbances in axonal membranes, myelin sheath, micro-
tubules, neurofilaments, or other factors. More specific
measures, which are being developed (see below), are need-
ed to delineate further the biological meaning of alterations
in white matter integrity (see review in Assaf and Pasternak
2008; Niogi and Mukherjee 2010).

Fig. 5 Diffusion tensor images
acquired on a 3 T magnet. Left:
fractional anisotropy (FA) map.
White areas are areas of high
anisotropy. Right: color by
orientation map. Diffusion in
the left-right direction is
shown in red, diffusion in the
superior-inferior direction is
shown in blue, and diffusion in
the anterior-posterior direction
is shown in green
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While FA and MD are the two main dependent measures
derived from DTI, there are other measures that have been
developed, including Mode (Ennis and Kindlmann 2006),
which defines more precisely the shape of the diffusion
tensor (useful in distinguishing the anatomy of fiber tracts,
including distinguishing fiber crossings from pathology).
Other measures include Inter-Voxel Coherence (Pfefferbaum
et al. 2000), which measures how similar anisotropic tensors
are in neighboring voxels, useful in measuring anomalies in
macroscopic axonal organization within the tract of interest,
and Axial and Radial Diffusivity, which are purported to
measure axonal and myelin pathology, respectively (Song et
al. 2001; Song et al. 2003; Budde et al. 2007; Budde et al.
2011). These additional measures may provide more specific
information regarding the microstructural abnormalities
discerned using the sensitive, albeit less specific, measures
of FA and MD.

Finally, another relatively new post-processing method is
fiber tractography, which was developed to visualize and to
quantify white matter fiber bundles in the brain (e.g.,
Conturo et al. 1999; Mori et al. 1999; Basser et al. 2000).
This method makes it possible to follow fiber tracts along a
diffusion direction in very small steps so as to create long
fiber tracts that connect distant brain regions. The accuracy
of fiber tractography is dependent upon a number of factors
including image resolution, noise, image distortions and
partial volume effects that result from multiple tracts cross-
ing in a single voxel. The main advantage of DTI tractog-
raphy, from a clinical research perspective, is that the whole
fiber bundle, instead of just a portion of the fiber bundle, can
be evaluated. DTI tractography is thus a promising tool that
can be used not only to understand how specific brain
regions are connected and where damage occurs along fiber
bundles, but it can also be used to understand how this
connectivity may be relevant to functional abnormalities.
Further, tractography methods can be used to both visualize
and to quantify white matter fiber bundle damage in a single
case and thus these methods are potentially important for
diagnosing mTBI based on radiological evidence.

Importantly, many of the measures described above are
just beginning to be applied to investigate brain injuries in
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Fig. 6 Fiber tractography of
commonly damaged tracts in
mild traumatic brain injury,
including: a the anterior corona
radiata and the genu of corpus
callosum, b the uncinate
fasciculus, ¢ the cingulum
bundle in green and the body of
corpus callosum in red, and

d the inferior longitudinal
fasciculus (Niogi and
Mukherjee 2010; reprinted
with permission Wolters
Kluwer Health / Lippincott
Williams & Wilkins)

Fig. 7 Diffusion MRI data for
neurosurgical planning. The
tractography region of interest
(ROI) is a box placed around
the tumor (in green) in the
frontal lobe. The ROI is also
visualized with rectangles in the
slice views below. Tracts are
then created based on the
principal diffusion directions,
which are color-coded (bottom).
Diffusion ellipsoids are shown
along the tract to visualize the
shape of the local diffusion
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mTBI and thus this area is a relatively new frontier for
exploration. The application of DTI, and the measures de-
rived from DTI, will likely contribute enormously to our
understanding of the nature and dynamics of brain injuries
in mTBIL

Review of MRI findings in mTBI

Much of the work with MRI has been to investigate the
higher sensitivity of MRI, compared with CT, for detecting
brain abnormalities in mTBI (see previous discussion). Less
attention has been given to investigating morphometric
abnormalities in mTBI using area, cortical thickness, and/
or volume measures. Table 2 lists studies, by first author and
year, which have examined aspects of morphometric abnor-
malities in patients with mTBI. Most of these studies, how-
ever, include a range of TBI, from mild to severe (e.g.,
Anderson et al. 1995; Anderson et al. 1996; Bergeson et
al. 2004; Bigler et al. 1997; Ding et al. 2008; Fujiwara et al.
2008; Gale et al. 2005; Levine et al. 2008; Mackenzie et al.
2002; Schonberger et al. 2009; Strangman et al. 2010; Tate
and Bigler 2000; Trivedi et al. 2007; Warner et al. 2010a; b;
Wilde et al. 2004; Wilde et al. 2006; Yount et al. 2002), with
only a small number of studies that investigate morphometric
abnormalities specifically in mTBI (e.g., Cohen et al. 2007,
Holli et al. 2010). Additionally, while most of the studies
listed in Table 2 categorize severity of TBI (i.e., mild, moder-
ate, or severe) based on scores derived from the Glasgow
Coma Scale (GCS; Teasdale and Jennett 1974), one study
defines severity by posttraumatic amnesia (PTA) duration
(Himanen et al. 2005).

The time of scan post-injury has also varied considerably
from study to study with the least amount of time being a
median of one day (Warner et al., 2010), up to a mean of
30 years (Himanen et al. 2005), with one study that did not
report time of scan post-injury (Yurgelun-Todd et al. 2011).
Additionally, most of these studies were performed using a
1.5 T magnet, with only a small number performed using a
3 T magnet (e.g., Ding et al. 2008; Trivedi et al. 2007,
Warner et al. 2010a; b; Yurgelun-Todd et al. 2011). There
are also different methods used to evaluate brain injuries,
ranging from manual and automated measures of lesion vol-
ume (e.g., Cohen et al. 2007; Ding et al. 2008; Schonberger et
al. 2009), to volume analysis (e.g., Anderson et al. 1995;
Anderson et al. 1996; Bergerson Bergeson et al. 2004; Bigler
et al. 1997; Ding et al. 2008; Gale et al. 1995; Himanen et al.
2005; Mackenzie et al. 2002; Schonberger et al. 2009;
Strangman et al. 2010; Tate and Bigler 2000; Trivedi et al.
2007; Warner et al. 2010a; b; Wilde et al. 2004; Wilde et al.
2006; Yount et al. 2002), to voxel-based-morphometry
(VBM; Gale et al. 2005), to texture analysis (Holli et al.
2010a and b), to semi-automated brain region extraction
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based template (SABRE) analysis (Fujiwara et al. 2008;
Levine et al. 2008), to the use of FreeSurfer for volumetric
analysis of multiple brain regions (e.g., Strangman et al. 2010;
Warner et al. 2010a; b; Yurgelun-Todd et al. 2011).

With all the differences among the studies, the most
important take home message is that MRI can be used to
detect brain abnormalities in patients with TBI. It is also not
surprising that the injuries that are most apparent are ob-
served in more moderate and severe cases of TBI. Further,
the volume of lesions can be detected, although whether or
not these lesions are in frontal or non-frontal regions does
not seem to differentiate between groups on measures of
cognitive function (Anderson et al. 1995). Mild TBI
patients, nonetheless, evince MR lesions in 30% of a sample
of 20 patients (Cohen et al. 2007), and in one study, func-
tional outcome was correlated with lesion volume and
cerebral atrophy, although this study did not analyze,
separately, mild, moderate, and severe cases of TBI
(Ding et al. 2008).

Overall brain volume reduction (atrophy) also seems to
be a common finding in what are likely to be more severe
patients (e.g., Cohen et al. 2007; Ding et al. 2008; Gale et al.
1995; Gale et al. 2005; Levine et al. 2008; Mackenzie et al.
2002; Trivedi et al. 2007; Warner et al. 2010a; Yount et al.
2002), and there are also volume reductions noted in overall
gray matter (e.g., Cohen et al. 2007; Ding et al. 2008;
Fujiwara et al. 2008; Schonberger et al. 2009; Trivedi et
al. 2007), with a finding also of gray matter volume reduc-
tion in the frontal lobe (e.g., Fujiwara et al. 2008; Strangman
et al. 2010; Yurgelun-Todd et al. 2011), and in frontal and
temporal lobes in some cases (e.g., Bergeson et al. 2004;
Gale et al. 2005; Levine et al. 2008). Additionally, Bergeson
et al. (2004) reported a correlation between frontal and
temporal lobe atrophy and deficits in memory and executive
function in patients with a range of severity from mild, to
severe (GCS; 3-14).

Overall reduction in white matter has also been reported
(e.g., Ding et al. 2008; Levine et al. 2008; Schonberger et al.
2009), as well as white matter reduction at the level of the
mesencephalon, corona radiata, centrum semiovale (Holli et
al. 2010a and b), and corpus callosum (Holli et al. 2010a
and b; Warner et al. 2010a; Yount et al. 2002). Ding and
coworkers noted that the changes in white and gray matter
over time were correlated with acute diffuse axonal injuries
and the latter predicted post-injury cerebral atrophy.

More specific reductions in volume in brain regions have
also been observed, including in the hippocampus (Bigler et
al. 1997; Himanen et al. 2005; Strangman et al. 2010; Tate
and Bigler 2000; Warner et al. 2010a), amygdala (e.g.,
Warner et al. 2010a; b), fornix (Gale et al. 1995; Tate and
Bigler 2000), thalamus (e.g., Strangman et al. 2010; Warner
et al. 2010a; Yount et al. 2002), regions involving the
cingulate gyrus (e.g., Gale et al. 2005; Levine et al. 2008;
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Strangman et al. 2010; Yount et al. 2002), as well as in-
creased lateral ventricles, temporal horns of the lateral ven-
tricles, and/or ventricular brain ratio (e.g., Anderson et al.
1995; Bigler et al. 1997; Gale et al. 1995; Himanen et al.
2005; Wilde et al. 2006; Yount et al. 2002). Reduced vol-
ume in subcortical gray matter regions has also been
reported (Gale et al. 2005), as has reduced volume in the
putamen, precuneus, post-central gyrus, paracentral lobule,
parietal cortex, pericalcarine cortex, and supramarginal
gyrus (Warner et al. 2010a).

Taken together, these findings suggest that morphometric
brain abnormalities are observed in patients with TBI, al-
though many studies did not separate mTBI from moderate
and severe TBI. Moreover, in addition to combining mild
TBI with moderate and severe cases, the differences among
the studies reviewed make the interpretations of findings
difficult, and have led to a sponsored work group meeting
in 2009, entitled “the Common Data Elements Neuroimag-
ing Working Group.” This work group was established to
make recommendations for “common data elements” that
will likely be useful for characterizing “radiological features
and definitions,” which are critically needed to characterize
TBI (Duhaime et al. 2010). This work group was sponsored
by multiple national healthcare agencies, including the De-
fense Centers of Excellence (DCOE), The National Institute
of Neurological Diseases and Stroke (NINDS), The Nation-
al Institute on Disability and Rehabilitation Research
(NIDRR), and the Veterans Administration (VA). This work
group was also charged with making recommendations for
radiological image acquisition parameters that should be
standardized in the quest for delineating brain injuries in
TBI, particularly given that different imaging acquisition
parameters have been used for different applications, as well
as for different research studies. Further, if radiological
imaging is to be used as surrogate endpoints for evaluating
treatment in clinical trials, then some type of standardization
of the image acquisition parameters is an important consid-
eration (Duhaime et al. 2010; Haacke et al. 2010).

Haacke et al. (2010) also notes that brain imaging, partic-
ularly using more advanced imaging techniques, affords an
important and unique opportunity to visualize and to quantify
brain injuries in TBIL, which is particularly useful in what he
describes as the 90 % of cases that are categorized as mild. He
and his coworkers note that a systematic characterization of
brain injuries in TBI will likely lead to increased predictive
power in the area of clinical trials and clinical interventions.
The new methods that Haacke and coworkers describe (2010)
include, DTI, SWI, MRS, SPECT, PET, Magnetoencephalog-
raphy, and Transcranial Doppler. Haacke et al. (2010) also
discuss the importance of combining techniques in the same
subjects, such as PET and fMRI.

Selecting optimal protocols has been the focus of inves-
tigation in other disorders such as Alzheimer’s disease (e.g.,

@ Springer

Leung et al. 2010) and schizophrenia (e.g., Zou et al. 2005).
One has to keep in mind, however, that for multi-center
studies, not all centers have the most up to date, state-of-
the-art imaging, and for this reason some compromises
need to be made to acquire the best imaging data possible
across centers, with a focus on more state-of-the-art and
experimental protocols being more possible at research
centers. Nonetheless, the points raised by this working
group (Duhaime et al. 2010; Haacke et al. 2010) are im-
portant and there is much room for improvement in the
kind of imaging data and analyses performed in the inves-
tigation of TBI. For mTBI this becomes even more crucial
as subtle, small changes are unlikely to be detected using
more gross radiological measures of brain pathology. Be-
low, we review findings from diffusion imaging studies of
mTBI, an important technology for characterizing diffuse
axonal and focal axonal injuries, and which is among the
most promising imaging tools for revealing subtle, small
areas of brain injury in mTBL

Review of DTI findings in mTBI

DTI is a sensitive measure of axonal injury that is particu-
larly important for evaluating small and subtle brain alter-
ations that are characteristic of most mTBI. DTI will also
likely become an important diagnostic tool for individual
cases of mTBI, particularly where MR and CT are negative.
With respect to the latter, DTI can depict multifocal and
diffuse axonal injuries in individual cases of mTBI. Norma-
tive atlases of DTI derived measures that depict anatomical
variation in healthy controls can also be created so that
individual cases may then be compared with an atlas in
order to discern the pattern of pathology in an individual
case (e.g., Bouix et al. 2011; Pasternak et al. 2010). We will
return to the use of atlases in the section on future directions
of research, which follows.

Below we review DTI findings in mTBI. Table 3 lists
those studies that focus on mTBI only, or that include other
categories such as moderate and severe TBI, but nonetheless
conduct statistical analyses separately for the mTBI group.
Table 4, on the other hand, includes those studies that do not
separate findings in mild TBI from moderate and severe
TBI, making findings from these studies more similar to
many of the findings reported for morphometry measures in
Table 2, where mild, moderate, and severe TBI were often
not analyzed separately.

Arfanakis and coworkers (2002) were the first to use DTI
to investigate diffuse axonal injuries in mTBI. They inves-
tigated FA and MD in anterior and posterior corpus cal-
losum, external capsule, and anterior and posterior internal
capsule in 5 patients with acute mTBI (within 24 h of injury)
and 10 controls. These brain regions were selected as likely
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showing damage based on post-mortem findings. Results
showed no mean diffusivity (MD) differences between
mTBI patients and controls. Group differences were, how-
ever, observed for the corpus callosum and the internal
capsule, where fractional anisotropy (FA) was reduced in
the mTBI group compared with controls. Importantly, the
latter findings are consistent with histopathology findings in
mTBI patients who died from other causes (e.g., Adams et al.
1989; Bigler 2004; Blumbergs et al. 1994; Oppenheimer
1968). These investigators concluded that DTI is an important
early indicator of brain injury in mTBI and has the potential
for being an important prognostic indicator of later injury.
These investigators were also prescient in noting that longitu-
dinal studies are needed to understand the dynamic nature of
mTBI and how it may reflect changes in brain alterations over
time. They did not, however, include a follow up scan of
subjects in their study.

Inglese and coworkers (2005) used DTI measures to inves-
tigate both acute (n=20 mTBI mean of 4 days post-injury) and
chronic mTBI patients (n=26 mTBI, mean of 5.7 years post-
injury) compared with controls (#=29). These investigators
used FA and MD measures of diffusion to detect abnormalities
in the centrum semiovale, the corpus callosum, and the inter-
nal capsule. They reported FA reduction in all three structures
in mTBI compared with controls, as well as increased MD in
the splenium of the corpus callosum, which was higher in the
acute sample, but lower in the posterior limb of the internal
capsule compared to the chronic sample. These findings are
similar to the Arfanakis et al. (2002) study, although these
investigators also included patients with chronic TBI. These
findings also highlight the importance of detecting brain alter-
ations that change over the course of brain injury.

Miles et al. (2008) also investigated mTBI patients on
average 4 days post-injury and again at 6 months follow up
on neuropsychological measures (only). They reported in-
creased MD and reduced FA in the centrum semiovale, genu
and splenium of the corpus callosum, and in the posterior
limb of the internal capsule in mTBI compared with con-
trols. Moreover, 41% of mTBI cases evinced cognitive
impairments at baseline, and 33% at follow up 6 months
later. More specifically, while there was no correlation be-
tween baseline measures of MD/FA and cognitive measures,
baseline MD and FA correlated significantly with cognitive
measures at follow up, with FA predicting executive func-
tion, and a trend for MD to be associated with reaction time.
These findings suggest that there may be predictors of
cognitive function from baseline measures of impairment
as measured on DTI, even when there are no correlations
between these measures and cognitive measures at baseline.
These investigators also did not include follow up DTI scans
at 6 months, only cognitive follow up.

Other investigators examining acute and subacute time
periods report similar findings. For example, one study of

mild and moderate TBI was conducted within 5 to 14 days
post-injury in patients who had positive findings on clinical
CT. TBI patients showed reduced FA in the genu of the
corpus callosum (mTBI only) and increased radial diffusiv-
ity (RD) in the genu of the corpus callosum in both mild and
moderate TBI (Kumar et al. 2009). Matsushita and cow-
orkers (2011) investigated both mild and moderate TBI
patients with a median of 3.5 days post-injury. They
reported decreased FA in the splenium of the corpus cal-
losum in mTBI compared with controls. Other parts of the
corpus showed reduced FA in the moderate group including
genu, stem, and splenium. These findings suggest more
abnormalities in the moderate TBI group.

Bazarian and coworkers (2007) acquired DTI data from
mTBI patients within 72 h of brain trauma and they included
a measure of postconcussive symptoms and quality of life
assessments. They repeated these assessments 1 month later.
Decreased trace was reported particularly in the left anterior
internal capsule, and increased median FA was reported in
the posterior corpus callosum in mTBI compared with con-
trols. Of note, trace measures correlated with postconcussive
scores at 72 h and at 1 month post-injury and FA values
correlated with 72 h postconcussive score as well as with a
test of visual motor speed and impulse control. All subjects
evinced normal findings at time of injury on conventional
CT, suggesting that normal findings on conventional CT and
MRI are inadequate for characterizing the kind of injury
observed in mTBI.

The findings of lower trace and increased FA, however,
are more perplexing as the expectation is that if there is
damage to the integrity of white matter then FA will be
reduced, and MD likely increased, and this is often reported
(see Table 3 and 4). An increase in FA and a decrease in MD
may indicate axonal swelling that occurs early in the course
of injury and may correlate with poor clinical outcome.
Bazarian and coworkers (2007) have also suggested this
possibility.

Bazarian and coworkers (2011), in another study that
involved one athlete with a concussion and an additional
8 athletes with multiple (26-399) subconcussive blows to
the head, reported FA and MD changes that were greatest in
the one concussed athlete, intermediate in the subconcussive
group, and lowest for controls. Of note, they observed that
both FA and MD changed in both directions, i.e., increases
and decreases were observed. Kou and coworkers (2010)
suggest that increased MD and decreased FA may indicate
vasogenic edema, which will likely resolve over time,
whereas increased FA and reduced MD may indicate cyto-
toxic edema, reflected by axonal swelling and more restrict-
ed diffusion of water, thereby explaining the increase in FA
and decrease in MD. Thus increased FA and associated
decreased MD, early in the course of brain injury, may
indicate a poor prognosis and hence identifying this group
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early post-injury may make early interventions possible.
Here, measures such as free water, which characterize water
as belonging to tissue versus extracellular water (e.g.,
Pasternak et al. 2009), may be helpful in determining intra-
cellular versus extracellular edema, i.e., cytotoxic versus
vasogenic edema. Such measures are just beginning to be
used in mTBI by our group (e.g., Pasternak, Kubicki and et
al. 2011a; b).

A further issue is whether or not an observed increase in
FA early in the course of injury is predictive of poorer
outcome, or if an increase in FA at any time over the course
of the injury is a poor indicator of outcome. This question is
relevant, particularly given that some investigators do not
report increased FA at 24 h post-injury (e.g., Arfanakis et al.
2002), while others report increased FA at 72 h (Bazarian et
al. 2007). Of interest here, Henry et al. (2011) scanned 18
athletes with mTBI at 1 to 6 days post-injury, later in post-
injury than either the Arfanakis or Bazarian studies, and
they also reported increased FA and decreased MD in dorsal
corticospinal tracts and in the corpus callosum at both base-
line and at 6 month follow up. Further, Mayer et al. (2010)
scanned mTBI patients 21 days post-injury, on average
12 days post-injury. They, too, reported increased FA and
reduced radial diffusivity (RD) in the corpus callosum in
mTBI patients compared with controls. Finally, a study by
Hartikainen et al. (2010) compared 11 asymptomatic TBI
patients with 7 symptomatic TBI patients, which included
both mild and moderate cases, with moderate TBI patients
all having abnormal findings on clinical CT or MRI. In
comparing these two groups, the symptomatic patients
showed increased FA and lower ADC in the mesencephalon
compared with the asymptomatic patients. Thalamus, inter-
nal capsule, and centrum semiovale did not differentiate
between these two groups. There was no control group.
Nonetheless, the notion that more symptomatic patients
showed increased FA is important and could serve as a
biomarker for predicting those patients who have, or will
have, a poorer outcome.

The implications of increased FA and reduced MD, and
whether these measures are indicators of poor outcome
clearly needs further investigation. A longitudinal study
would help to follow the natural progression of brain injury
in mTBI over time in order to determine the significance of
increased versus decreased FA that is observed in mTBIL
Work by Lipton and coworkers (see empirical study in this
special issue) have investigated, in a longitudinal design,
areas of increased and decreased FA, sometimes observed in
the same patient, and they suggest that increased FA may be
associated with a compensatory mechanism or neuroplastic-
ity in response to brain injury, but it is not necessarily a
direct reflection of brain injury per se. Further work is
needed to determine the biological meaning and implica-
tions of increased and decreased FA, as the story may be

more complex than interpretations given thus far to explain
these phenomenon.

Other noteworthy findings of brain injury in mTBI in-
clude reduced FA in frontal white matter, including dorso-
lateral prefrontal cortex, where Lipton et al. (2009) reported
several clusters of increased MD, which were correlated
with worse executive functioning in a group of acute mTBI
patients compared with controls. Other findings include
abnormalities in mesencephalon, centrum semiovale, and
corpus callosum (Holli et al. 2010b), with findings for the
mesencephalon being correlated with verbal memory in
mTBI patients. Additionally, reduced FA has been reported
in the anterior corona radiata, in the genu of the corpus
callosum, and in the left superior cerebellar peduncle
(Maruta et al. 2010). In the latter study, gaze positional
errors in an eye movement task were correlated with mean
FA values of the right anterior corona radiata, the left supe-
rior cerebellar peduncle, and the genu of the corpus cal-
losum, all tracts that support spatial processing and are
involved in attention, leading these investigators to suggest
that gaze errors might be a useful screening tool for mTBI.

Kraus and coworkers (2007) focused on chronic patients
who had mild (n=20), moderate and severe (n=17) injury,
and 18 controls. They investigated FA as well as radial
diffusivity (RD), axial diffusivity (AD), and white matter
load; the latter defined as the total number of regions with
reduced FA. She and her coworkers reported FA decreases
in all thirteen brain regions examined in the moderate to
severe group. In the mTBI group, FA was reduced in only
the corticospinal tract, sagittal striatum, and superior longi-
tudinal fasciculus. Both AD and RD were increased in
several white matter regions in the moderate to severe
group, whereas in the mTBI group only increases in AD
were observed, suggesting that myelin damage is not present
in mTBI but is present in moderate to severe TBI. These
investigators concluded that white matter changes that indi-
cate diffuse axonal injury in TBI show alterations along a
spectrum from mild to severe TBI.

Lipton et al. (2008) also investigated more chronic
patients. They compared 17 mTBI patients who had nega-
tive CT/MRI findings at the time of injury, with 10 controls
who also showed negative findings on MRI. One of the
mTBI subjects subsequently was observed to develop a
small area of increased signal intensity, likely the result of
gliosis. Decreased FA and increased MD were observed in
the corpus callosum, subcortical white matter, and in the
internal capsules, bilaterally. These brain regions are similar
to those observed as abnormal in the acute studies noted
above (i.e., Arfanakis et al. 2002; Inglese et al. 2005;
Bazarian et al. 2007; Miles et al. 2008).

Niogi and colleagues (2008a) investigated a group of
patients 1 to 65 months following injury; all characterized
as having more than one symptom of postconcussive

@ Springer



180

Brain Imaging and Behavior (2012) 6:137-192

syndrome. Subjects included 34 mTBI patients that were
separated into those with negative MRI findings (n=11),
those with micro-hemorrhage (n=11), and those with white
matter hyperintensities or chronic hemorrhagic contusions,
compared with controls (n=26). They investigated six
regions of interest and reported reduced FA in the anterior
corona radiata (41 %), the uncinate fasciculus (29 %), the
genu of the corpus callosum (21 %), the inferior longitudinal
fasciculus (21 %), and the cingulum bundle (18 %). Reac-
tion time was correlated with a number of damaged white
matter structures and it was noted that 10 of the 11 of the
mTBI patients with negative MRI findings showed reduc-
tions in FA relative to controls. In a slightly larger sample of
mTBI patients, this group also reported significant correla-
tions between attentional control and FA reduction in the left
anterior corona radiata, as well as significant correlations
between memory performance and reduced FA in the unci-
nate fasciculus, bilaterally (Niogi et al. 2008b). These cog-
nitive correlates with white matter fiber tract abnormalities
findings are consistent with what would be expected given
the function of these tracts, further suggesting that FA may
be useful as a biomarker for neurocognitive function and
dysfunction in mTBI.

Given the different magnet strengths, with some con-
ducted on a 1.5 T magnet, and others conducted on a 3 T
magnet (see Tables 3 and 4), as well as differences in the
analysis methods employed, and the dependent measures
used, as well as differences in the selection of brain regions
to investigate, in addition to differences in the post-injury
time of the study, and differences in whether subjects had
positive or negative findings on conventional CT or MR, it
is surprising that there is as much convergence and consis-
tency with respect to the detection of brain abnormalities in
mTBI using DTI. Given the DTI findings reviewed above,
and listed in Tables 3 and 4, as well as the frequently of
negative CT and structural MRI scans, it is also quite clear
that DTI is by far the most sensitive in vivo method to detect
subtle brain abnormalities in mTBI.

While each of the 43 DTI studies investigating mTBI,
and included in Tables 3 (n=32) and 4 (n=11), report some
DTI abnormalities, their anatomical location does not al-
ways converge. This lack of convergence is not, however,
surprising, given the heterogeneity of brain injuries, as well
as the variability in these studies between time of injury and
DTI scan. Some regions, however, are reported more often
than the others, which might further suggest their increased
vulnerability to axonal injury.

For example, in reviewing specific brain regions, some,
as noted above, including the corpus callosum and parts of
the corpus, are abnormal in mTBI (e.g., Arfanakis et al.
2002; Bazarian et al. 2007; Grossman et al. 2011; Henry et
al. 2011; Holli et al. 2010b; Huisman et al. 2004; Inglese et
al. 2005; Kumar et al. 2009; Lipton et al. 2008; Little et al.

@ Springer

2010; Ljungqvist et al. 2011; Lo et al. 2009; Messe et al.
2011; Maruta et al. 2010; Matthews et al. 2011; Mayer et al.
2010; McAllister et al. 2012; Miles et al. 2008; Niogi et al.
2008a; b; Rutgers et al. 2008a; b; Singh et al. 2010; Smits et
al. 2011; Warner et al. 2010(b); Yurgelun-Todd et al. 2011).

Rutgers and coworkers (2008a) have also reported re-
duced FA predominantly in 9 major regions in mTBI
patients, and one of these regions included the corpus cal-
losum. In a separate study by this group of investigators
(Rutgers et al. 2008b), mTBI and moderate TBI subjects
were included. Patients with mTBI or less than 3 months
post-injury showed reduced FA and increased ADC in the
genu of the corpus callosum, whereas patients with greater
than 3 months post-injury showed no such differences. This
group of investigators also showed that more severe trauma
was associated with FA reduction in the genu and splenium
of the corpus callosum, along with increased ADC and
fewer numbers of fibers. These findings suggest that there
may be a reversal of damage to the corpus callosum in
patients with mTBI who recover after 3 months, and that
more severe damage to the corpus callosum may be associ-
ated with a worse outcome. Again, a longitudinal study that
investigates the course of injury over time would provide
important information regarding the staging, progression,
and possible recovery and reversal of brain injuries over
time.

Huisman et al. (2004) included TBI patients with Glas-
gow Coma Scale scores between 4 and 15, and hence
moderate and severe were not separated from mild in eval-
uating the corpus callosum. Matthews et al. (2011) exam-
ined mTBI patients with major depressive disorder and
those without a major depressive disorder. These investiga-
tors found that those with a major depressive disorder
showed reduced FA in the corpus callosum (also corona
radiata and superior longitudinal fasciculus) compared with
those without a major depression. Zhang et al. (2010), on
the other hand, reported no differences in the corpus cal-
losum using either whole brain analysis or region of interest
analyses between mTBI athletes and controls, but mTBI
patients did show greater variability of FA in the genu and
in the body of the corpus callosum than did controls. Lange
et al. (2011) also reported no differences in FA or MD
between mTBI and controls, although they did report a
non-significant trend for an increase in MD in the splenium
of the corpus callosum in mTBI compared with controls.
MacDonald et al. (2011) also reported no differences in
genu or splenium of corpus callosum between mTBI and
controls. The controls in this study, however, were 21 con-
trols with blast exposure but without head trauma. It may be,
however, that exposure to blasts results in subconcussive
injury to the brain as is reported in sports-related injuries
(e.g., Cubon and Putukian 2011; McAllister et al. 2012).
Accordingly, fewer findings between groups might be
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accounted for by the fact that the control group is more
similar to the mTBI group. Levin et al. (2010) also did
not find differences for the corpus callosum between TBI
patient and controls on FA or ADC measures, but here
mTBI cases were not separated from moderate TBI and
the controls were 15 veterans, 7 with extracranial injury.

Again, the issue of using a military population as a
control group needs more careful consideration as many of
these individuals may have sustained blast injuries where
they did not experience loss of consciousness but which
may, nevertheless, have resulted in subtle alterations to the
brain (and thus use of such controls might result in a de-
crease in the sensitivity of the imaging methods).

Davenport and coworkers (2011) selected veterans with
and without blast exposure in their study where they investi-
gated 25 veterans returning from Operation Enduring Free-
dom and Operation Iraqi Freedom who had been exposed to
blasts and subsequently developed symptoms indicative of
mTBI, and they included a comparison group comprised of
33 veterans who had not experienced either blast exposure or
head injury during their tour of duty. These investigators
reported diffuse and global patterns of reduced FA in white
matter in the blast exposure group compared to the group not
exposed to blast. Furthermore, those who experienced more
than one blast related mTBI showed a larger number of
reduced FA voxels in the brain. Interestingly, and surprisingly,
58 % of the no blast group had experienced a previous mTBI
as civilians, prior to entering the service. This group did show
differences, however, compared with the blast exposure group
with symptoms. Here the issue may not be exposure per se,
but the differentiation between those with and without symp-
toms being more important in differentiating between groups.
Yurgelun-Todd et al. (2011) also investigated a sample of 15
veterans with mild, moderate, and severe TBI and compared
them with 10 civilians and 6 veterans. They reported de-
creased FA in left cingulum and genu of the corpus callosum.
The TBI group showed greater impulsivity. In addition, both
total and right cingulum FA reduction was correlated with
increased suicidal ideation and increased impulsivity.

Other brain regions reported as abnormal in mTBI in-
clude the internal capsule (Arfanakis et al. 2002; Bazarian et
al. 2007; Bazarian et al. 2011; Cubon and Putukian 2011;
Grossman et al. 2011; Huisman et al. 2004; Inglese et al.
2005; Lipton et al. 2008; Lo et al. 2009; Mayer et al. 2010;
Miles et al. 2008), the external capsule (Arfanakis et al.
2002; Bazarian et al. 2007; Bazarian et al. 2011), the cen-
trum semiovale (Grossman et al. 2011; Holli et al. 2010b;
Inglese et al. 2005; Miles et al 2008), inferior fronto-
occipital fasciculus (Cubon and Putukian 2011; Messe et
al. 2011; Singh et al. 2010; Smits et al. 2011), inferior
longitudinal fasciculus (Cubon and Putukian 2011; Messe
etal. 2011; Niogi et al. 2008a; b; Singh et al. 2010), superior
longitudinal fasciculus (Cubon and Putukian 2011; Geary et

al. 2010; Mayer et al. 2010; Matthews et al. 2011; Niogi et
al. 2008a; b), uncinate fasciculus (Geary et al. 2010; Mayer
et al. 2010; Niogi et al. 2008a; b; Singh et al. 2010), corona
radiata (Little et al. 2010; Maruta et al. 2010; Matthews et al.
2011; Mayer et al. 2010; Niogi et al. 2008a; b), corticospinal
tract (Henry et al. 2011; Messe et al. 2011; Singh et al.
2010), the cingulum bundle (MacDonald et al. 2011; Niogi
et al. 2008a; b; Rutgers et al. 2008a), forceps minor and
major (parts of corpus callosum; Messe et al. 2011), forceps
major (Little et al. 2010; Messe et al. 2011), cerebral lobar
white matter (Lipton et al. 2009; Rutgers et al. 2008a),
mesencephalon (Hartikainen et al. 2010; Holli et al. 2010b),
the sagittal stratum (Cubon and Putukian 2011; Geary et al.
2010; ), frontal lobe, parietal lobe, temporal lobe, occipital
lobe (Salmond et al. 2006), dorsolateral prefrontal cortex
(Lipton et al. 2009; Zhang et al. 2010), cerebellar peduncles
(MacDonald et al. 2011; Maruta et al. 2010), hippocampus
(Singh et al. 2010 ), fornix (Singh et al. 2010 ), thalamus
(Grossman et al. 2011), thalamic radiation (Cubon and
Putukian 2011; Messe et al. 2011), orbitofrontal white matter
(MacDonald et al. 2011), subcortical white matter (Lipton
et al. 2008), fronto-temporo-occipital association fiber bun-
dles (Rutgers et al. 2008a), acoustic radiation (Cubon and
Putukian 2011), and deep cortical brain regions (Brandstack
et al. 2011).

In summary, there is a great deal of variability in DTI
studies of mTBI with respect to the time period of scanning
at post-injury, as well as other factors including magnet
strength, brain regions examined, and methods of analyses,
as noted above. Further, differences in both anatomical
location of observed brain alterations, as well as in the
nature of these alterations (i.e., increased versus decreased
FA), all contribute to the difficulty in interpreting this body
of data. The findings are nonetheless striking in that they all
suggest that radiological evidence supports small and subtle
brain injuries in mTBI (see Table 3 and 4 for details). This
evidence would not be possible if conventional MRI and CT
scans alone were used to establish brain injury; it takes more
advanced and sophisticated methods such as DTI that are
sensitive to diffuse axonal injury to delineate these abnor-
malities. Most of the studies reviewed, however, were cross-
sectional studies, with scans acquired at different times post-
injury. The cross-sectional nature of most of these studies
further highlights the need for longitudinal studies that
follow a group of mTBI patients from early in the course
of injury, i.e., the first 24 to 72 h, with repeat scans at several
weeks, 1 month, 3 months, 6 months, and 1 year. Such data
would provide important information regarding the reversal
of damage as well as provide important information about
what radiological features early in the course of injury
predict good outcome versus poorer outcome with concom-
itant post-concussive symptoms. There is also a clear need
for individualized imaging biomarkers (personalized
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medicine approach), where a single subject could be com-
pared to a normative group for accurate diagnosis, with MR
biomarkers also providing information about prognosis in
order to implement treatment plans. These and other issues
are the topic of future directions of research, which follows.

Future directions of research

Summary Until quite recently no sufficiently robust radio-
logical technologies existed, on either the acquisition or
post-processing side, to detect small and subtle brain alter-
ations that are extant in mTBI (see also Irimia et al. 2011).
Today, there are advanced image acquisition sequences
available to identify and to quantify small regions of extra-
and intra-cortical bleeding (i.e., SWI), as well as diffuse
axonal injuries (i.e., DTI). These advanced imaging tools
are particularly important for investigating brain pathology
in mTBI, where conventional MRI and CT imaging have
failed to provide radiological evidence of brain injuries.
Hence we are now able to detect and to localize brain
alterations in mTBI, which is a critical first step, as it means
that the diagnosis of mTBI can be based on radiological
evidence, rather than symptoms alone. We are now also able
to evaluate the extent of brain injuries. Moreover, we have
the capability to observe changes post-injury, and longitu-
dinally, to determine prognosis based on early and interme-
diate stages of brain injury. The latter may lead to the early
identification of those individuals who are likely to recovery
versus those who are more likely to experience prolonged
postconcussive symptoms.

Thus a focus on longitudinal studies is needed to under-
stand the dynamic nature of brain injury changes over time,
as there is very little information about the different patterns
of recovery versus non-recovery, and how these changes are
reflected by a given imaging modality. For example, lesions
may be visible using one imaging modality but not another,
depending upon the pattern and stage of recovery. Conse-
quently, the combined use of multimodal imaging, using
semi-automated measures for analyses, and including a lon-
gitudinal focus would greatly further our understanding of
mTBI. These and other future directions for research are
elaborated upon below.

Multi-modal imaging and standardized protocols What is
needed is the establishment of acquisition protocols that
include multimodal imaging to characterize brain alterations
in mTBI, as one imaging modality may not accurately
capture brain alterations in mTBI. Both Duhaime and cow-
orkers (2010) and Haacke and coworkers (2010) also dis-
cuss the need for more standardized image acquisition
protocols for both research and for clinical purposes. It is
important also to select optimal imaging acquisition
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protocols that characterize the kind of injury that is present
in mTBI. This approach has been used successfully in
research in Alzheimer’s disease, multiple sclerosis, and in
psychiatric disorders such as schizophrenia (e.g., Leung et
al. 2010; Zou et al. 2005). Following these principles is the
Clinical Consortium on PTSD and TBI (INTRuST; see
details: http://intrust.spl.harvardu.edu/pages/imaging and
see http://intrust.sdsc.edu/), a new initiative sponsored by
the Department of Defense, which includes the acquisition
of multimodal imaging, from six multi-national centers,
using a high resolution, multi-shell DTI protocol as well a
SWI and resting-state fMRI acquisition sequences, in addi-
tion to anatomical MRI sequences.

More specific measures of microstructural abnormalities With
regard to diffusion imaging, future advances will likely
include more specific parameters than FA and MD. For
example, free-water is a measure that can be derived from
conventional DTI to increase the specificity of observed
microstructural abnormalities. The free-water model (Pasternak
et al. 2009) assumes that there are two distinct compart-
ments, one that is comprised of water molecules that are
freely diffusing in extracellular space, and another that is
comprised of the remaining molecules, which are restricted
by the cellular tissue. As a result, it is possible to estimate
explicitly the volume of extracellular water, a measure that
is sensitive to vasogenic edema, and therefore consequently
likely specific to neuroinflammation as well. In addition,
DTI indices such as FA and MD that are corrected for free-
water can be used to estimate the properties of the remaining
compartment, i.e., cellular tissue. These corrected values are
tissue specific (Pasternak et al. 2009, 2011c) and the corre-
lation between corrected FA and corrected MD is reduced
(Metzler-Baddeley et al. 2012), which makes it possible to
use these two parameters, separately, to evaluate tissue
degeneration versus extracellular swelling (vasogenic ede-
ma and inflammation) and cell swelling (cytotoxic edema).
In the very near future, this free-water method may be
utilized to investigate and to track brain injury over time
and to establish possible biomarkers that predict outcome
based on knowing the type (vasogenic versus cytotoxic),
location, and extent of the edema.

Multi-shell diffusion weighted imaging (DWI) and kurtosis
Multi-shell diffusion imaging is another new approach that
may be useful in future imaging studies of mTBI. Here,
DWI is acquired at multiple b-values in the same session
and it provides additional microstructural information about
the organization of white and gray matter. In these scan
sequences, b-values, which are higher than the standard
DTI acquisition (e.g., 3000 mm/s?), are used to obtain
diffusion properties that vary with different gradient
strengths. Diffusion Kurtosis Imaging (DKI), a technique
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that uses multi-shell diffusion imaging, measures the non-
Gaussian behavior of water diffusion, and has been shown
to be sensitive to characterizing subtle changes in neuronal
tissue (Jensen et al. 2005).

The kurtosis measure is likely more sensitive to biological
processes such as “reactive astrogliosis” compared with the
more general measures of FA and MD (Zhou et al. 2012).
Specifically, kurtosis is a measure of the deviation from the
diffusion tensor model (Gaussian diffusion), and thus comple-
ments the other measures that are derived from the tensor
model. For example, the directionally specific kurtosis mea-
sure has been shown to be more sensitive to developmental
changes in white and gray matter than FA or MD in rat brains
(Cheung et al. 2009). Thus, in this way, kurtosis is more
sensitive than traditional diffusion measures to changes in
restricted diffusion and thereby has the potential to detect
changes related to cells (i.e., astrocytes, neurons, and
oligodendrocytes), as opposed to less specific measures of
changes in the integrity of tissue (e.g., FA and MD).

Lack of homogeneity in brain trauma and the need for a
personalized medicine approach While we have only
touched the surface with respect to what more sensitive
imaging technology can inform us about mTBI, another area
of interest for future research is to go beyond group analy-
ses, i.e., comparing a group of patients with mTBI with a
group of normal controls. Group analyses, in fact, are some-
what misleading because they are predicated on finding
larger differences between groups than within groups. Un-
fortunately, brain trauma is a very heterogeneous disorder,
and group analyses, particularly those that use whole brain
analyses (i.e., comparing average mTBI brain to average
MRI brain), are not well suited for accurate analysis because
they obscure the individual differences that characterize
brain injuries. The heterogeneity of brain trauma is a topic
that is also reviewed in this issue by Ms. Sara Rosenbaum
and Dr. Michael Lipton.

To circumvent this heterogeneity, a personalized ap-
proach needs to be developed that can be incorporated into
comparisons between mTBI and normal controls. Such an
approach must go beyond a visual inspection of DTI maps
such as FA and ADC, to a quantitative, objective approach.
The latter may then be used as both radiological evidence of
brain injury and to provide an individual profile of brain
injury, as well as to form the basis for comparing normal
controls and patients with mTBI.

One possible approach to this problem is to build norma-
tive atlases based on normal controls, along with robust
statistics (e.g., z-score and receiver operator-ROC- curves)
to detect “out-of-the-normal” imaging features (e.g., FA,
MD, free-water, and kurtosis) at various locations in the
brain. This information may then be used to detect brain
regions that are abnormal in any of these measures, leading

to a diagnosis of diffuse axonal injury (FA, MD), or edema
(free water), or myelin damage (kurtosis), which would be
specific for each individual case. In this way, one could not
only establish a profile of injury for each individual patient,
but one could also perform group analyses based on the
severity and load of injuries (i.e., extent and number of brain
regions involved), without relying on the assumption of a
common pattern of injury location among all patients with
TBI. The latter assumption is the current approach to group
analyses including brain-wise, voxel-based analyses that
create averages of brain regions, i.e., comparing a group of
healthy and injured brains simultaneously, and demonstrat-
ing where in the brain for the entire group of mTBI (not each
individual), differs from a group of healthy controls.

Figure 8 shows an example of one mTBI case compared
to a normative atlas of FA and of MD, where z-score maps
highlight brain regions that are more than three standard
deviations from the normative brain atlas for FA (top of
figure) and MD (bottom of figure). This is the kind of
information that can be evaluated for individual cases,
where normative atlases can be built to examine any number
of measures (i.e., FA, MD, free-water, kurtosis, etc.).

A further example is shown in Figure 9, which depicts
more than three standard deviations from the normative
brain atlas for free-water, where subject specific maps were
created to show abnormal free-water (edema) in two indi-
viduals. The individual on the top shows more localized
abnormalities, while the individual on the bottom shows
more small, scattered lesions that have an edematous or
neuroinflammatory component (Pasternak et al. 2011b).
These findings may vary across subjects, from localized
pathologies to having a more diffuse and scattered pattern
of pathology, as seen here, and, importantly, provide infor-
mation about individual pathology that is not detected using
conventional MR or CT. These variations pose extreme
challenges to group comparisons, though group compari-
sons may still be made. They also highlight the heterogene-
ity that is characteristic of TBI, including mTBI.

Tractography Another promising method for probing alter-
ations in white matter in mTBI is tractography. The word
tractography refers to any method for estimating the trajec-
tories of the fiber tracts (bundles) in the white matter. Many
methods have been proposed for tractography, and the
results will vary depending on the chosen method. For
example, deterministic tractography involves directly fol-
lowing the main diffusion direction, whereas probabilistic
methods estimate the likelihood of two regions being
connected (Bjornemo et al. 2002; Behrens et al. 2003).
The most common deterministic approach is streamline
tractography (see Figure 10) (Basser et al. 2000; Conturo
et al. 1999; Mori et al. 1999; Westin et al. 1999), which is
closely related to an earlier method for visualization of
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Fig. 8 Z-score maps for a
patient with chronic mTBI
subject. Z-score maps were
created from a comparison to
a normative atlas. The regions
in red and yellow show
statistically significant
abnormal regions for either
FA (top) or MD (bottom)

tensor fields known as hyperstreamlines (Delmarcelle and
Hesselink 1992). For a clinical and technical overview of
tractography in neurological disorders, the reader is referred
to Ciccarelli et al. (2008). For reviews of tractography
techniques including explanations of common tractography
artifacts and a comparison of methods, the reader is referred
to Jones (2008) and Lazar (2010).

DTI based streamline tractography has been used by several
investigative groups to examine schizophrenia and other neu-
rological and psychiatric disorders (see review in Kubicki et al.
2007; Shenton et al. 2010; Whitford et al. 2011). The main
limitation of this method is that it does not allow one to trace
fibers through complex fiber orientations such as branching
and crossing fibers. This is because DTI based streamline

Fig. 9 Z-score maps for two
patients with chronic mTBI.
Z-score maps were created from
a comparison to a normative
atlas. The images at the top
show a patient with more
localized regions of increased
free-water while the images at
the bottom show a patient

with more diffuse regions of
increased free-water (blue color
indicates statistically significant
areas of free-water compared
with the normative atlas)
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tractography assumes that there exists only one fiber bundle
oriented coherently in a single direction at each voxel. Thus
voxels where different fiber bundles cross cannot be charac-
terized using this model. Consequently, several advanced mod-
els have been proposed in the literature, such as a high-order
tensor model (Ozarian 2003; Barmpoutis et al. 2009), a spher-
ical harmonics based nonparametric model (Anderson 2005)
and a multi-tensor model (Tuch et al. 2002; Pasternak et al.
2008; Malcolm et al. 2010), among others.

Figure 10 shows a method of tracing the corpus callosum
fiber bundle using single tensor DT based tractography (on the
top) and another method using two-tensor DTI based tractog-
raphy (on the bottom) that illustrates the improved fiber track-
ing using the two-tensor method. This method makes it
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Fig. 10 Part of the corpus callosum fibers, where seeding was done in
the mid-sagittal plane of the corpus callosum. Top figure shows the
tracing using the standard single-tensor model and bottom figure
shows tracts generated with the two-tensor model

possible now to trace multiple fiber tracts that traverse the brain
and connect several different brain regions (e.g., Malcolm et al.
2010; Pasternak et al. 2008; Tournier et al. 2008).

Figure 11 shows all of the fibers in the brain that travel
through the corpus callosum, in a single case, using two-
tensor tractography (Malcolm et al. 2010). Of note here, the
methodology for analysis can remain the same as before, i.e.,
trace a certain fiber bundle in healthy controls and compute the
“typical” diffusion properties such as FA, MD, etc., then trace
the same bundle in TBI subjects, and finally compare them to
detect differences. What is different in terms of moving from a
single tensor model to two and multi-tensor models is that it
improves the ability to accurately identify crossing fiber tracts.

Mean-squared-displacement and return-to-origin probabilities
Other more sensitive markers of diffusion, such as mean-

Fig. 11 Panel A shows a coronal view of white matter fiber tracts
using a two-tensor model that go through the corpus callosum Panel B
is a sagittal view of the corpus callosum shown in Panel A

squared-displacement and return-to-origin probabilities, can
be obtained from more advanced diffusion scans such as
multi-shell (multiple b-values) diffusion imaging (e.g.,
Mitra 1992; Yu-Chien et al. 2007). Although the scan time
for these acquisitions is longer, they provide more subtle
information beyond what can be obtained from DTI as it is
currently used. For example, the return-to-origin probability
measures the probability that a water molecule will return to
its starting point in a given amount of time. This measure
will be higher for white matter due to restriction on the
motion of water as a result of the coherent layout of the
white matter fibers. This probability will be lower in gray
matter and lowest in CSF, where water is essentially free to
move. Thus this measure captures subtle changes in the
organization of white matter and has been shown to be more
sensitive to de-myelination of white matter tracts compared
to DTI measures such as FA (Assaf et al. 2005).

Another diffusion measure that is more sensitive to the
restriction of water molecules due to cellular boundaries is
mean-square-displacement (MSD)(e.g., Assaf et al. 2002).
This measure is the mean distance travelled by a water
molecule in a given diffusion time. Thus, MSD is highly
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dependent on the cellular structure at any given location and
hence could be related to the concentration of certain bio-
chemicals. This could be validated by correlating this mea-
sure with the concentration of certain biochemicals such as
phospholipids as obtained using an MRS scan. Hence, such
measures can be very useful for detecting mTBI since the
underlying tissue changes are often very subtle and may be
missed by current DTT and DKI imaging protocols. In the
near future, this approach could also be combined with
other brain biomarkers that are based, for example, on
blood-serum, the latter a powerful complementary tool
that provides information about genes and proteins af-
fected by brain injury (see section below; see also
Mondello et al. 2011).

Identification and delineation of brain injury, and the
development of biomarkers for possible treatment and
treatment efficacy trials Advanced multi-modal neuroimag-
ing techniques provide radiological evidence of mTBI that
go beyond self-report and other more conventional meas-
ures, and may elucidate further the mechanisms and neuro-
physiology underlying mTBI. This is an important first step.
More studies, however, are needed using multi-modal im-
aging techniques. Further, based on their enhanced sensitiv-
ity, many of these more advanced techniques should be used
to monitor treatment efficacy, and serve as endpoints for
new trials of medication aimed at neuroplasticity or neuro-
inflammation in TBI.

One example of multi-modal neuroimaging is to com-
bine MRS and DTI in the same subjects. MRS and DTI
are highly complimentary given the biochemical and
structural focus of each modality. However, few studies
have utilized the two together. In severe head injury, the
combination of these two modalities has provided greater
diagnostic accuracy for predicting outcome one year fol-
lowing injury (Tollard et al. 2009), than either MRS or
DTI alone. It is likely that this same combination would
also provide greater sensitivity to the more subtle changes in
mTBIL

The co-localization of DTI and MRS may also provide
greater insight into the underlying physiological changes
that occur in mTBI. An early MRS study by Cecil and
coworkers (Cecil et al. 1998) did not have DTI available at
the time, but their findings of decreased N-acetyl aspartate
(NAA; a putative neuronal and axonal marker; see review in
this issue by Lin et al.) in the corpus callosum corroborates
DTI findings of reduced FA, as previously described in the
current review. As NAA is transported down axons and the
loss of FA is attributed to axonal injury, a strong correlation
between these two measures further strengthens the argu-
ment for axonal injury. NAA MRS measures can also help
to validate DTI studies in regions of fiber crossings and
confirm that decreased FA can be attributed to loss of fiber
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integrity as opposed to technical issues. Studies of schizo-
phrenia (e.g., Tang et al. 2007) and motor neuron disease
(Nelles et al. 2008) have also utilized MRS and DTI in this
complimentary fashion.

Additionally, by combining different biomarkers from
blood with MR biomarkers, we may be able to delineate
further specific types of brain injury involved in mTBI, as
well as how they change over time, and what the evolution
is of secondary damage or progression of types of injury
over time. More specifically, serum biomarker profiles, as
an outcome measure of brain damage, are being used to
detect brain damage in ischemic stroke and TBI in animal
studies (Liu et al 2010). This approach may also be useful in
humans where TBI-specific biomarkers could be developed,
based on proteomics, to provide distinctive profiles of spe-
cific genes and proteins that are altered in mTBI (e.g.,
Mondello et al. 2011). The free-water model, described
above, could also be combined with measures of proteins
involved in neuroinflammation in the brain to develop com-
bined TBI-specific biomarkers that may detect brain injuries
and predict course, outcome, and treatment response better
than using either a proteomic or MR biomarker alone.

Thus combining multimodal imaging modalities, and
combining genomic and proteomic biomarkers with MR
biomarkers, may lead to the discovery of more specific
biomarkers of biochemical and physiological processes,
which, in turn, may provide important new information
about primary and secondary consequences of injury, and
assist in determining what combination of biomarkers are
indicative of axonal injury, inflammation, demyelination,
apoptosis, neuroregeneration, etc., and what combination
best predict outcome and treatment. It is also likely that
the development of multiple biomarkers will lead to a new
stratification of patients based on several biomarkers that,
when combined, are more specific to important measures of
brain injury than is any one biomarker alone. This new
approach to developing multi-modal MR biomarkers and
combining these with serum based proteomic biomarkers
to investigate brain injuries in mTBI may go a long way to
providing more accurate diagnosis of mTBI, as well as to
providing important indicators of treatment response and
outcome.
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