David A. Harris, MD, PhD

Professor and Chair, Department of Biochemistry

Phone:David A. Harris 617.638.4362
Fax: 617.638.5339
Email: daharris@bu.edu
Location: 72 E. Concord Street, Silvio Conte Building, K225
Lab website: bumc.bu.edu/biochemistry/people/faculty/david-a-harris




Dr. Harris earned his B.S. degree at Yale University (New Haven, CT), and his M.D. and Ph.D. degrees at Columbia University (New York, NY).  He was a faculty member in the Department of Cell Biology and Physiology at Washington University in St. Louis for 19 years before moving to Boston University School of Medicine in 2009 to assume the position of Professor and Chair in the Department of Biochemistry.

Research Interests

Dr. Harris’ laboratory investigates the molecular and cellular mechanisms underlying two classes of human neurodegenerative disorders: prion diseases and Alzheimer’s disease.  Alzheimer’s disease afflicts 5 million people in the U.S., a number that will increase dramatically as the population ages.  Prion diseases are much rarer, but are of great public health concern because of the global emergence of bovine spongiform encephalopathy (“mad cow disease”), and its likely transmission to human beings.  Moreover, prions exemplify a novel mechanism of biological information transfer based on self-propagating changes in protein conformation, rather than on inheritance of nucleic acid sequence.  Prion and Alzheimer’s diseases are part of a larger group of neurodegenerative disorders, including Parkinson’s, Huntington’s and several other diseases, which are due to protein misfolding and aggregation. A prion-like process may be responsible for the spread of brain pathology in several of these disorders, and there is evidence that the prion protein itself may serve as a cell-surface receptor mediating the neurotoxic effects of multiple kinds of misfolded protein.  Thus, their work on prion and Alzheimer’s diseases will likely provide important insights into a number of other chronic, neurodegenerative disorders.

His lab’s work has several broad objectives. First, they wish to understand how the cellular form of the prion protein (PrPC) is converted into the infectious form (PrPSc). To address this question, they have investigated the cellular localization and trafficking of both PrPC and PrPSc, the nature of their association with cell membranes, as well as the molecular features of the conversion process itself.  Second, they want to understand how prions and other misfolded protein aggregates cause neurodegeneration, neuronal death and synaptic dysfunction.  In this regard, they seek to identify what molecular forms of PrP and the Alzheimer’s Aβ peptide represent the proximate neurotoxic species, and what receptors and cellular pathways they activate that lead to pathology.  Third, they aim to use knowledge of the cell biology of prion and Alzheimer’s diseases to develop drug molecules for treatment of these disorders.

Dr. Harris’ lab utilizes a range of experimental systems and models, including transgenic mice, cultured mammalian cells, yeast (S. cerevisiae), and in vitro systems. They employ a wide variety of techniques, including protein chemistry, light and electron microscopy, mouse transgenetics, high-throughput screening, neuropathological analysis, biophysical techniques (surface plasmon resonance, NMR, X-ray crystallography), electrophysiology (patch-clamping), medicinal chemistry, and drug discovery approaches.

ADC Role

Dr. Harris serves a training faculty member for the NIA-funded Alzheimer’s Disease Translational Research Training Program (T32).

Recent Publications

For a full list of publications click here.

  • Imberdis T, Heeres JT, Yueh H, Fang C, Zhen J, Rich CB, Glicksman M, Beeler AB, Harris DA. Identification of Anti-prion Compounds using a Novel Cellular Assay. J Biol Chem. 2016 Dec 09; 291(50):26164-26176. PMID: 27803163.
    View in: PubMed
  • Fang C, Imberdis T, Garza MC, Wille H, Harris DA. A Neuronal Culture System to Detect Prion Synaptotoxicity. PLoS Pathog. 2016 May; 12(5):e1005623. PMID: 27227882.
    View in: PubMed
  • Saá P, Harris DA, Cervenakova L. Mechanisms of prion-induced neurodegeneration. Expert Rev Mol Med. 2016 Apr 08; 18:e5. PMID: 27055367.
    View in: PubMed
  • Sempou E, Biasini E, Pinzón-Olejua A, Harris DA, Málaga-Trillo E. Activation of zebrafish Src family kinases by the prion protein is an amyloid-ß-sensitive signal that prevents the endocytosis and degradation of E-cadherin/ß-catenin complexes in vivo. Mol Neurodegener. 2016 Feb 09; 11:18. PMID: 26860872.
    View in: PubMed
  • Imberdis T, Harris DA. Synthetic Prions Provide Clues for Understanding Prion Diseases. Am J Pathol. 2016 Apr; 186(4):761-4. PMID: 26854642.
    View in: PubMed