Announcements

• Chapter 11 Discussion for October 14:
 • C1: Tuesday 10AM in CAS B36
 • C2: Tuesday 3PM in CAS 326
 • C3 & C4: Tuesday 8 – 9:30 PM in LSE B01 (Basement Auditorium)

• Chapter 11 Computer Lab meets first in CAS 330

 B2: Wed 10/15 8-10am
 B3: Wed 10/15 1-2pm
 B4: Wed 10/15 6-8pm
 B5: Thur 10/16 8-10am
 B6: Thur 10/16 1-2pm
 B7: Thur 10/16 6-8pm
 B8: Fri 10/17 8-10am
 B9: Fri 10/17 1-3pm
 BC: Fri 10/17 6-8pm
 BA: Mon 10/20 12-1pm
 BB: Mon 10/20 4-6pm
 B1: Tue 10/21 4-6pm

When you are done with the computer lab, or when time runs out, you may return to SCI162 to complete any remaining Chapter 3 work
Chapter 3: Purification of Lactate Dehydrogenase (LDH)

Purpose of Week 3:

F) Run 3P-D sample on an affinity chromatography column to isolate LDH

G) Consolidate purified LDH column fractions & concentrate by ultrafiltration
LDH Purification Process – Weekly Overview

Week 1
- Disruption of tissue (Cell lysis)
- Clearing the cell lysate
 - Homogenization achieved by blending minced tissue + buffer
 - Separation via centrifugation
 - Pellet – Cell Debris
 - Supernatant – Cell Extract (lysate)

Week 2
- Removal of additional contaminants
 - Protein precipitation via ammonium sulfate fractionation
 - Further separation by affinity chromatography

Week 3
- Isolation of LDH
 - Concentrate by ultrafiltration (Week 3 or 4)
LDH Purification Process – Fractions

Fractions:
(bold = containing LDH)

1. **Disruption of tissue** (Cell lysis)
 - Homogenization achieved by **blending** minced tissue + buffer

2. **Clearing the cell lysate**
 - Separation via **centrifugation**
 - Pellet – Cell Debris
 - Supernatant – Cell Extract (lysate)

3. **Removal of additional contaminants**
 - Protein precipitation via ammonium sulfate fractionation

4. **Isolation of LDH**
 - Further separation by **affinity chromatography**

Purified Protein

- First cut:
 - 1P
 - 1S

- Second cut:
 - 2P, 2S

- 3P-D*

Concentrate by ultrafiltration (Week 3 or 4)

Wash fractions + NADH eluate
Affinity Chromatography

- AMP moeity of NADH binds to LDH in the NADH-binding site

- We are using Affi-Gel Blue Gel Resin to bind LDH to the column
 - Crosslinked 4% agarose matrix
 - Agarose beads are attached to Cibacron blue F3GA ligand
 - Cibacron blue F3GA is an analog of AMP (mimics the substrate of LDH)

NADH is later used to elute LDH since NADH binds more tightly than AMP
Affinity chromatography & ultrafiltration

3P-D – dialyze
Activity Assay for total Units & calculate volume to load 5000 U onto column

Run affinity column

Flow-through Fraction – Buffer & unbound proteins
Collect in flask & assay for activity

Wash Fractions – Additional unbound proteins
Collect in test tubes until $A_{280} < 0.1$

NADH eluate Fractions – purified LDH
Assay each fraction for activity & pool fractions with highest activity ($\leq 10 \text{ mL}$)

Ultrafiltration
(Concentrate to ~1 mL)

Purified (concentrated) LDH
Affinity chromatography setup

i) Preparing the column
 • Packing the column with resin
 • Equilibration

ii) Sample application & running the column
 • Binding LDH to the beads
 • Elution
Pipet Affi-gel resin into column

Let resin settle, then drain buffer to just above surface. **DO NOT let column dry out!**

Equilibrate column with buffer

Drain buffer to just above surface. Column is now ready to load.
Apply dialyzate to column with transfer pipet, then drain to just above surface & collect flow-through.

Wash column with buffer & collect fractions until $A_{280} < 0.1$.

Drain buffer to just above surface. Elute LDH with NADH solution. Collect & assay fractions.

Loading & running the affinity column.
Chapter 3F-G: Procedures overview

Part F:
I. Column preparation
II. Affinity chromatography
III. Collect & pool purified LDH from column

Part G:
I. Concentration of purified LDH by ultra-filtration

*NOTE: Some groups might not make it to this step. If you have to wait until the following week, turn in your POOLED LDH to TFs
Chapter 3F Procedure

Column Preparation

NOTE: This must be started AS SOON AS YOU GET TO LAB. TFs will give pre-lab talk after column equilibration.

1. Take 5 mL of 50% affinity resin slurry and load column
 - *Your partner should be testing activity for 3P-dialyzed*

2. Allow slurry to settle for a few minutes to correctly pack column
 - *Do NOT allow column to dry out at any point of the lab!!!*

3. Equilibrate with 10-15 mL of 0.02 M potassium phosphate buffer
 - *If flow rate for column is very slow, contact TF immediately!*
Chapter 3F Procedure

Affinity chromatography: loading the column

1. Measure and record the volume of the 3P-Dialyzed fraction

2. From calculated activity, determine the volume of 3P-dialyzed fraction needed for 5000 U
 • Don’t forget to take an aliquot for dye-binding
 • Heart samples: you may need your entire 3P-D fraction

3. Test the initial “flow-through” for activity
 • Why is this necessary?
 • What does low activity tell you?
 • What does high activity tell you?
Chapter 3F Procedure

Affinity chromatography: washing the column

1. Wash column with 5 mL portions of buffer
 • Collect washes from column in 1-2 mL fractions

2. Measure absorbance @ 280 nm of “wash” fractions on the UV-Vis
 • Which macromolecules are absorbing @ 280 nm?
 • What is the significance of $A_{280} < 0.1$?
Chapter 3F Procedure

Eluting & pooling LDH from the column

1. Begin eluting with 0.2 mM NADH in 0.02 M potassium phosphate buffer
 - What is in the buffer that allows LDH to elute?
 - Why does LDH elute from the column?

2. Collect eluate in 1-2 mL fractions

3. Test eluate fractions for LDH activity

4. Pool the fractions with the highest activity in a 15-mL conical tube
 - Keep total volume below 10 mL
 - Measure and record this volume
Tips: Affinity chromatography

• When adding liquid to the column, be gentle and do not disturb the resin bed

• Never allow any part of the resin to dry out!
 • *When column is flowing, one person must be monitoring it at all times*

• Set up calculation for 5000 U in **pre-lab** procedure!
 • *Have TF check before loading sample*

• If flow rate is very slow, immediately call TFs

• Keep flow-through and all eluate fractions on ice
 • *Why is this important?*

• Pay attention to [NADH] on labels for wash & elution buffer stocks
 • *Why is this important?*

• Properly label all fraction tubes
Chapter 3G Procedure

Concentration of purified LDH by ultra-filtration

• Add sample to ultra-filtration device
• Place in ice tray on top of stir plate
• Spin internal stir bar slowly
• Slowly begin to apply pressure from nitrogen tank
• Collect the flow-through as you concentrate your sample
• Collect sample in eppendorf tube when you have ~1.5 – ~1.0 mL of sample left

• *Place on ice and do not throw your away sample!*
Tips: Ultra-filtration concentration

- Keep ultra-filtration device packed in ice in a small plastic box
 - Assemble unit similar to last week’s Erlenmeyer flask setup

- Keep nitrogen pressure low and be patient
 - No more than one drop of flow-through every 5 seconds
Week 3: Activity Assays

- Perform LDH Activity Assays for:
 - 3P dialyzed
 - “Flow-through”
 - Eluate fractions
 - Ultra-filtered, purified LDH

- Use aliquots for assays
- Dilute where necessary
- For Weeks 2 & 3 samples, only need 1 dilution for each fraction in $\Delta A_{340}/\text{min} = -0.05$-0.25 range

What do you use to blank your spectrophotometer?
Week 3: Bradford Assays

- Protein Concentration – Bradford (dye-binding) Assay
 - Make new standard curve if doing this week
 - Find protein concentration for:
 - 3P dialyzed
 - “Flow-through”
 - Eluate fractions
 - **Ultra-filtered, purified LDH**
- Use aliquots for assays
- A_{595} should be within linear region of your standard curve
 - Dilute protein when necessary

What do you use to blank your spectrophotometer?
Chapter 3, Week 3 Checklist:

At the end of lab, you should have:

✔ Prepared four new “sets” of fractions (& recorded volumes of):
 o 3P-dialyzed
 o “Flow-through”
 o Eluate fractions
 o Ultra-filtered, purified LDH

✔ Performed activity assays on all fractions

✔ Made a new standard curve & performed Bradford assays (only if had time)

✔ Turned in all aliquots and purified LDH to TFs to freeze
Public Service Announcement:
What will happen if you throw your LDH away...

(you)

... DON'T TALK EVER AGAIN!

(your lab partner)

WHAT I HAZ SEEN CANNOT BE UNSEEN

(your TFs)
Questions?