Lecture 5 (9/16/20)								
• Reading: Ch3; 82–87, 92–94								
Problems:	Ch3 (text); 2,3,4,7,11,12 Ch3 (study guide); 4,5,6,8,9 Ch2 (text); 34							
NEXT								
Reading:	Ch3; 89–93, 95-96 Ch1; Fig 1-9 Ch9, 332-333							
Problems:	Ch3 (text); 9,10,14,15,22 Ch1 (text); 9							

Lecture 5 (9/16/20)						
OUTLINE						
Amino Acids						
– Definition						
The 4 S's						
Common Properties						
Five Classes						
 Hydrophobic–aliphatic [6] 						
– Hydrophobic–aromatic [3]						
– Special–sulfur [2]						
 Hydrophilic-polar [4] 						
 Hydrophilic–charged [5] 						
Other amino acids						
Linking amino acids						
Acid/base properties						
– Titrations						
 Isoelectric point 						
Electrophoresis						

Hydrophilic, Charged Amino Acids: Classification									
<u>çoo</u> -	çoo	-	ç00-		çoo-		<u>çoo</u> -		
н₃ ⁺ — с —н н	l₃n, – ,	-l H₃Ň	<u>а</u> с́_н		н₃ń—с॑—н	н	J₃ŇĊ-H		
CH ₂	CH 2		BCH2		ĊH₂		ĊH₂		
coo-	CH 2		γĊH₂		ĊH2		Ċ−NH		
	coo	-	δCH2		ĊH2		∥ "CH		
			ε cH2		NH C		H .		
			*NH3		Ċ=ŇH₂	\sim			
			0	100	NH ₂	K			
	YT	5	(T		3	200		
	Dekrh family								
Asp	Glu			Lys	Arg		His		
Nega	tive		Voor	%	Positive		Structure		
Name	3-letter	1-letter	discovered	abundance in proteins	NOTES	рК _а	device		
Aspartate	Asp	D	1868	5	α-amino-succinate; Most acidic	3.7	Ala+carboxyl		
Glutamate	Glu	E	1866	7	α -amino-glutarate	4.3	Ala+acetate		
Lysine 🗸	Lys	ĸ	1889	6	Only "bis" amino acid	10.5	ε-amino		
Arginine 🗸	Arg	R	1886	5	Most basic	12.5	δ -guanidino		
Histidine 🗸	His	н	1896	2	Only physiological ionization	6.0	Ala+imidazole		

	Amino Acids: Naming Dicarboxylic Acids							
<image/>								
		Dicarboxylic	acids: OMSGAP					
Rubric	Name (conjugate base)	Dicarboxylic Name of Acid	acids: OMSGAP Structure (conjugate base)	X = (CH ₂) _z in ⁻ OOC-X-COO ⁻ : z=?				
Rubric	Name (conjugate base) oxalate	Dicarboxylic Name of Acid oxalic	acids: OMSGAP Structure (conjugate base) -OOC-COO-	X = (CH ₂) _z in -OOC-X-COO-: z=? 0				
Rubric Oh My	Name (conjugate base) oxalate malate	Dicarboxylic Name of Acid oxalic malic	acids: OMSGAP Structure (conjugate base) -OOC-COO- -OOC-CH2-COO-	X = (CH ₂) _z in ⁻ OOC-X-COO ⁻ ; z=? 0 1				
Rubric Oh My Such	Name (conjugate base) oxalate malate succinate	Dicarboxylic Name of Acid oxalic malic succinic	acids: OMSGAP Structure (conjugate base) -OOC-COO- -OOC-CH2-COO- -OOC-CH2-COO- -OOC-CH2-COO-	X = (CH ₂) _z in ⁻ OOC-X-COO ⁻ : z=? 0 1 2				
Rubric Oh My Such Good	Name (conjugate base) oxalate malate succinate glutarate	Dicarboxylic Name of Acid oxalic malic succinic glutaric	acids: OMSGAP Structure (conjugate base) -OOC-COO- -OOC-CH2-CH2-COO- -OOC-CH2-CH2-COO- -OOC-CH2-CH2-CH2-COO-	X = (CH ₂) _z in ⁻ OOC-X-COO ⁻ : z=? 0 1 2 3				
Rubric Oh My Such Good Apple	Name (conjugate base) oxalate malate succinate glutarate adipate	Dicarboxylic Name of Acid oxalic malic succinic glutaric adipic	acids: OMSGAP Structure (conjugate base) -OOC-COO- -OOC-CH2-COO- -OOC-CH2-CH2-COO- -OOC-CH2-CH2-CQ- -OOC-CH2-CH2-CH2-COO- -OC-CH2-CH2-CH2-COO-	X = (CH ₂) _z in ⁻ OOC-X-COO ⁻ : z=? 0 1 2 3 4				

	Amino Acids: Classification							
•	 The 20 amino acids found in proteins can be placed in five families based on the physical and chemical properties of their R groups: 							
	•	Hydrophobic, aliphatic (6)	Gavlip family					
	•	Hydrophobic, aromatic (3)	PTT family					
	•	Special (hydrophobic/hydrophilic)(2)	MC family					
	•	Hydrophilic, polar (4)	Qnst family					
	•	Hydrophilic, charged (5)	Dekrh family					

Year % Structure							
Name	3-letter	1-letter	discovered	in proteins	NOTES	pK _a	mnemonic device
Glycine	Gly	G	1820	7	Smallest, not chiral		Н
Alanine	Ala	A	1888	8	Foundational for ~10 othe	er AA	Methyl
Valine 🧹	Val	V	1856	7	isopropyl		V-shaped
Leucine	Leu	L	1819	10	Most abundant, domir	nant	Ala + Val
Isoleucine 🗸	lle	I	1904	6	Two chiral centers (L & D)		Val + Me
Proline	Pro	Р	1901	5	Only imino acid (2° amine); special bonds in proteins; is modified by OH		5-membered ring; same # as Val; 3C
Phenylalanine	Phe	F	1879	4	aromatic		Phenyl+Ala
Tyrosine	Tyr	Y	1846	3	aromatic, can ionize; amphipathic	10.1	p-phenol+Ala
Tryptophan 🧹	Trp	w	1901	1	aromatic & fluorescent; least abundant		Indole+Ala
Methionine 🗸	Met	M	1922	2	Most like straight-chain aliphatic		Ala+Me/ether
Cysteine	Cys	C	1899	2	can ionize; nucleophile	10.5	Ala+SH
Glutamine	Gln	Q	1883	4	Glx; gets hydrolyzed to G	lu	Amide of Glu
Asparagine	Asn	N	1806	4	First isolated from asparagus Asx; gets hydrolyzed to Asp		Amide of Asp
Serine	Ser	s	1865	7	Isolated from Sericin, pole cousin of Ala	ar	hydroxyl+Ala
Threonine 🧹	Thr	T	1935	6	Two chiral centers (L & D)		Me+Ser
Aspartate	Glu	D	1868	5	α-amino-succinate; Most acidic	3.7	Ala+carboxyl
Glutamate	Asp	E	1866	7	α -amino-glutarate	4.3	Ala+acetate
Lysine 🗸	Lys	K	1889	6	Only "bis" amino acid	10.5	ε-amino
Arginine 🧹	Arg	R	1886	5	Most basic	12.5	δ -guanidino
Histidine 🗸	His	H	1896	2	Only physiological ionization	6.0	Ala+imidazole

Amino Acids Carry a Net Charge of Zero
at a Specific pH value (the pl)• The Isoelectric Point (equivalence point, pl) is the pH value
where the net charge is ZERO.• Zwitterions predominate at pH values between the pK_a values
of the amino and carboxyl groups.• The exact value is the average of the two pK_a values forming
or titrating the zwitterion.• At the pH equal to the pI:
- AA is least soluble in water.

- AA does not migrate in electric field.

Electrophoresis for Protein Analysis

- Electrophoresis is the migration of molecules in an electric field.
- Electrophoresis is one of the most commonly used analytical scale <u>separation</u> techniques
 - The electric field pulls proteins according to their charge.
- Gel electrophoresis adds a solid support in which the separation occurs. The gel matrix hinders mobility of proteins according to their size and shape.
 - The commonly used gels are either polyacrylamide (proteins) or agarose (nucleic acids).
 - separation of proteins via electrophoresis is often called polyacrylamide gel electrophoresis, or PAGE.
- For proteins to separate, they have to have a charge.

